Big Data platforms and cloud elasticity: use cases

Dr Ioannis Konstantinou ikons@cslab.ntua.gr

01/07/14 Big Data platforms and cloud elasticity: use cases

Outline

- Big Data facts
- Hadoop Ecosystem
 - MapReduce
 - Hadoop Distributed File System
 - MapReduce example: Word count
 - HIVE and PIG
 - NoSQL datastores and HBase
 - Apache Mahout
- CSLAB Big Data projects

Big Data facts 1/2

- 90% of today's data was created in the past 2 years
- Moore's Law: Data size doubles every 18 months
- YouTube: 13M hours and 700B playbacks in 2010.
 48h/min -> 8years/day upload
- Facebook: 20TB/day zipped. 1B shares/day
- CERN/LHC: 40TB/day (15PB/year)

01/07/14 Big Data platforms and cloud elasticity: use cases

Big Data facts 2/2

- By 2015, 4.4M new Big Data IT jobs
- By 2018, a shortage of 190K big-data experts and 1.5M analysts
- Bad/poor data costs US 600B \$/year
- For a Fortune 1000 company, a 10% increase on data usability -> 2B USD increase

01/07/14 Big Data platforms and cloud elasticity: use cases

Big Data Application Use Cases

- Retail
 - Monitoring social media to get preferences, customer behavior, product perception, etc.
- Banking/Insurance
 - Risk management, fraud detection, etc.
- Manufacturing
 - Maintenance and repair, supply chain management, etc.

Not only Google and Facebook have big data needs!!!!

- Advertising/Marketing
 - Responsiveness to campaigns, etc.
- Government
 - Publicizing data
- Media
 - Personalization, archiving, etc.
- Telecommunications
 - Failure prevention, etc.

Big Data Sources

- Social net
- Public we
- Data War
- Monitorir
- How to de 1000 users
- Distribute

01/07/14 Big Data platforms and cloud elasticity: use cases

divide and conquer

Parallelization Challenges

- How do we assign tasks to workers?
- What happens when
 - We have more tasks than workers?
 - Workers need to share intermediate results?
- How do we summarize intermediate results?
- How do we know that workers have finished?
- What happens when some workers have been terminated?

Outline

- Big Data facts
- Hadoop Ecosystem
 - MapReduce
 - Hadoop Distributed File System
 - MapReduce example: Word count
 - HIVE and PIG
 - NoSQL datastores and HBase
 - Apache Mahout
- CSLAB Big Data projects

Hadoop Ecosystem

01/07/14 Big Data platforms and cloud elasticity: use cases

Hadoop Ecosystem

01/07/14 Big Data platforms and cloud elasticity: use cases

What is MapReduce?

- A programming model and framework
- For the development of applications for
 - Fast and parallel processing of huge data sets
 - Using clusters of commodity hardware
 - Closed-source Google Implementation
 - '03 and '04 Scientific papers describing its architecture
- Hadoop: open-source MapReduce implementation

 http://hadoop.apache.org/

What is Hadoop?

- 2 subsystems: data management (I/O) and computation (CPU):
 - I/O: HDFS (Hadoop Distributed File System)
 - CPU: MapReduce the computation framework running on top of HDFS
 - HDFS is MapReduce's I/O
- A collection of java processes running in a set of different machines.
 - hadoop streaming allows many different programming langs.
- Who uses it?
 - Yahoo!, Amazon, Facebook, Twitter
 - And many others...

- A distributed scalable file system for applications that manage large data sets.
 - Distributed: running on top of a computer cluster
 - Scalable: 10K nodes, 100K files 10PB storage
 - Closed-source optimizations (MapR M5-M7, cloudera)
- Apps view a singe file-system and are un-aware of the underlying cluster.
- Files are split into blocks
- Typical block size 128 MB.

HDFS/MapReduce Architecture

Master/Slave

HDFS: One NameNode for many DataNodes

- NameNode: registry keeping File->Datanode locations (like FAT or ext3 block metadata)
- DataNodes: only raw file chunks
- MapReduce: One
 - JobTracker to manage
- Many TaskTrackers
- -NameNode and JobTracker
- running on master -DataNode and TaskTracker running on slaves
 - Data locality

- Problem "breaks " in two phases, Map and Reduce
- Map: Non overlapping input data chunks that contain <key,value> pairs are assigned in different processes (mappers) which produce a set of intermediate <key,value> results
- Reduce: Map results are fed to a usually smaller number of processes (reducers) which "summarize" input results into less <key,value> pairs.

Job Execution

- Data is uploaded to HDFS and are split into MB size chunks.
 - Every chunk contains a number of <key,value> pairs
- Tasktrackers execute a copy of the M/R program in different data chunks (data parallel)
- One node is the master JobTracker. It assigns tasks to workers. Tasks can be map or reduce

Example: Word Count 1/3

- Target: count word frequency in a large text corpus
- Possible use: Find popular urls in webserver logfiles
- Implementation plan:
 - "Upload" texts to MapReduce HDFS
 - Write a map and a reduce function
 - Execute a MapReduce job
 - Collect results

Example: Word Count 2/3

```
map(key, value):
```

```
// key: document name; value: text of document
  for each word w in value:
    emit(w, 1)
```

```
reduce(key, values):
// key: a word; value: an iterator over counts
```

```
result = 0
```

```
for each count v in values:
```

```
result += v
```


Example: Word Count 3/3

01/07/14 Big Data platforms and cloud elasticity: use cases

Who uses it? What for?

- Amazon, e-bay
 - product search indices, analytics
- AOL
 - behavioral analysis and targeting
- LinkedIn
 - discovering People You May Know
- Facebook
 - Storage of internal logs for reporting/analytics and machine learning
- Twitter
 - Processing of tweets

Hadoop Ecosystem

01/07/14 Big Data platforms and cloud elasticity: use cases

Hadoop HIVE 1/2

- Data Warehouse
 System for Hadoop
- Data Aggregation
- Ad-Hoc Queries
- SQL-like Language (HiveQL)
- Developed at facebook

Hadoop HIVE 2/2

- Data Warehouse on top of Hadoop
- SQL-like language HiveQL
- Queries implicitly converted into MR jobs
 Distributed query execution
- Different storage types
 - plain text, RCFile, Hbase ...
- Supports all major primitive types – integers, floats, doubles, strings
- Supports complex types
 - maps, lists, structs
- Built-in extensible user defined functions

Hadoop PIG

- Data Warehouse
 System for Hadoop
- Data Aggregation
- Ad-Hoc Queries
- High-Level Scripting Language (Pig Latin)
- Developed at Yahoo

HIVE/PIG examples

2 Datasets: movies (movie info), movierating (user ratings for movies) Problem: find average rating for each movie.

CREATE TABLE newmovie (id INT, name STRING, year INT, numratings INT, avgrating FLOAT); INSERT OVERWRITE TABLE newmovie SELECT id, name, year, COUNT(1), AVG(rating) FROM movie JOIN movierating ON movie.id = movierating.movieid GROUP BY id, name, year;

HIVE

PIG

Who uses them? What for?

- AOL, LinkedIn, Salesforce, Twitter, Yahoo
 - Analytics and batch data processing
 - People you may know (Linked in)
 - Custom UDF development
 - Usage log processing, tweet mining
 - >40% of Yahoo's Hadoop Jobs are Pig jobs

Hadoop Ecosystem

01/07/14 Big Data platforms and cloud elasticity: use cases

NoSQL

- Modify legacy RDBMS model to something more

 Scalable
 - Available/Fault tolerant
- No–SQL = threw away SQL
- Not–only–SQL = Require more for different applications
- No relations, but simple <key,value> pairs
- A value can be anything from a string entry, to multiple columns or files.
- Usually indexed by key.

NoSQL Characteristics 1/2

- Different consistency levels (non ACID)
- Schema-less
- Queries
 - Complex ones are translated into M/R jobs
 - Support for simple get/select key
- Data insertion
 - Simple puts (key, value)
 - Bulk insert support

Hadoop NoSQL: HBase

- Google Bigtable Clone (NoSQL "pioneer")
- HBase = Bigtable open sourced
- Top level apache project
- Goes with Hadoop
- Can be used by Hadoop MapReduce as I/O
- Java written

Who uses it? What for?

- Facebook
 - Provide messages infrastructure
- Twitter
 - read/write backup of all mysql tables in backend
 - timeseries DB for cluster-wide monitoring/performance
- Yahoo
 - document fingerprint store for detecting nearduplications
- Celer technologies
 - Fast and adaptable financial trading framework
 - storing all financial data for trading, risk, clearing in a single data store

Hadoop Ecosystem

01/07/14 Big Data platforms and cloud elasticity: use cases

Apache Mahout

- A library collection for scalable machine learning
 - "Machine Learning is programming computers to optimize a performance criterion using example data or past experience"
 - Intro. To Machine Learning by E. Alpaydin
- Scalability with Hadoop (latest version is based on Spark)
- Mahout algos also utilize Map-Reduce algos: linear scalability
- Latest release version: Mahout 0.9

What does it support?

- 3C + FPM + 0 = Mahout
 - Clustering
 - Classification
 - Collaborative Filtering
 - Frequent Pattern Mining
 - Other

Clustering

Grouping based on a similarity notion

Τριπλάσια αύξηση στην ετήσια διακίνηση δεδομένων μέσω Internet ...

PC Magazine - Ειδήσεις - πριν από 36 λεπτά 🛛 👥 💓 📑 🖂

Σύμφωνα με την έρευνα Cisco Visual Networking Index Global Forecast and Service Adoption, η παγκόσμια διακίνηση δεδομένων μέσω IP (Internet Protocol) θα αυξηθεί σχεδόν τρεις φορές μέσα στην επόμενη τετραετία. Οι βασικοί λόγοι, είναι ο μεγαλύτερος ...

Cisco: Τριπλάσια η διακίνηση δεδομένων μέσω διαδικτύου έως το 2018 Capital.gr Το μέλλον του διαδικτύου Newsbeast.gr

- Grouping similar objects
- Meaning of similarity: distance metric:
 - Euclidean
 - Cosine
 - Tanimoto
 - Manhattan

 \approx

Classification

- Identify the "type" of a new object based on its characteristics (features)
- Types are predetermined

01/07/14 Big Data platforms and cloud elasticity: use cases

Classification

- Supervised learning: offline model training from manually annotated objects (training set)
- "Guess" a type of a new object according to its extracted features and existing model.
 - Twitter sentiment analysis
 - Many ☺=> Positive, Many ☺ => Negative

Collaborative filtering (CF)

- Recommenders
- User preferences prediction according to:
- Its options so far
- Options of people similar to her (collaborative)
- Propose limited options (filtering)

Customers Who Bought This Item Also Bought

Machine Learning... by Christopher M. Bishop ★★★★☆☆ (50)

\$76.10

The Elements of Statistical Learning: Data Minin... by Trevor Hastie (38) \$71.96

Pattern Classification (2nd Edition) by Richard O. Duda

Who uses it? What for?

• AOL

- Shopping recommendations
- Amazon
 - Amazon personalization platform
- Foursquare
 - Use it for its recommendation engine
- Twitter
 - User interest modeling (Using Mahout's Latent Dirichlet allocation algorithm implementation)
- Yahoo
 - Mail uses Mahout's Frequent Pattern Set Mining for anti-spam filtering

Outline

- Big Data facts
- Hadoop Ecosystem
 - MapReduce
 - Hadoop Distributed File System
 - MapReduce example: Word count
 - HIVE and PIG
 - NoSQL datastores and HBase
 - Apache Mahout

CSLAB Big Data projects

Infrastructure to play with 1/2

- Clusters
 - 32-node dual Intel Xeon E5335 (256 CPUs), Gbit Ethernet / 10Gbps Myrinet
 - 6-node dual Intel Xeon X5650 (72 cores, 144 CPUs), Gbit Ethernet, Infiniband and NVIDIA Fermi FM105 GPUs
 - 8-node, dual Intel Xeon (16 cores, 32 CPUs, SMT enabled), Gbit Ethernet / Myrinet
- Servers
 - 5 Intel Xeon-based servers (various generations) totaling 168 CPUs
 - 2 UltraSparc T1 and T2 servers, totaling 88 CPUs
- Openstack private cloud IaaS
 - big data virtual infrastructures on the fly
 - A total of 160 vCPUS, 368GB RAM on 6 physical servers

In total: more than 650 CPUs , more than 30TB of storage

Infrastructure to play with 2/2

- ~okeanos Public Cloud http://okeanos.grnet.gr
- IaaS resources for the academic community
 ~20 racks
 - 18860 vCPUs

31995.7 GB memory

661077.3 GB storage

On-going Big data projects

- EU and GR funded research programs

 CELAR, ASAP, ARCOMEM, MoDisSENSE, Clarin
- Research works
 - Tiramola, H2RDF, Datix, DBalancer

CELAR

- Elasticity: Ability of a big-data system to expand or contract dedicated resources using cloud infrastructure
- Fully automated, Fine-grained, Real-time
- Use cases: Cloud gaming and cancer detection pipeline

ASAP

- Adaptable Scalable Analytics Platform
- 1 V of Big-data: Variety (data structure, systems, processing models, etc)
- Offer a unified framework for analytics
 - No single engine, datastore
 - Adaptable to user defined settings :cost, time, etc
- Use cases: BI on Telecom Data and Analytics on Web Data

ARCOMEM

- Tools for archivists to crawl the social web and enrich archives with social semantics
- Our contribution: the ARCOMEM Database
 Hbase for raw crawled content

H2RDF for semantic annotations (in the form of rdf triples)

MoDisSENSE

- Big Data from: Social networking footprints and Mobile-related generated content
- Provide personalized user experience
 - socially enhanced queries: "Find restaurants near me that my friends like"
- Extract knowledge from textual/spatial information
 - Find "trending" points of interest (POIs)
 - Auto-augment POI info with user created content
 - Detect new POIs from user trajectories

CLARIN

- Repository for linguistic datasets/services

 Storing, analyzing and processing large datasets
- On top of ~okeanos
- Elastic architecture
 - Web farm for serving queries
 - DB cluster and Solr Cloud for metadata management (~GB scale)
 - Pithos (S3 like storage) for dataset storage (~TB scale)
 - Ansible scripts automate infra deployment
 - Automatic deployment of Hadoop clusters for arbitrary service execution using workflows (CAMEL)

TIRAMOLA

- Unpredictable and variable workloads
 - Sport web-sites, web-apps like taxisnet, etc.
 - Over-provisioning is costly
 - Under-provisioning leads to outages

TIRAMOLA

- Cloud enabled framework that allows apps
 - Define elasticity requirements
 - Monitor performance
 - Adaptively grow/shrink resources (multi-grained elasticity)
- Machine learning detects optimal state
 - Based on reward functions, current and prev.
 system states
- Best Paper award at CCGRID 2013

H_2RDF

- Elastic, Join-Scalable Billion Triple Store
 - Based on Hadoop and Hbase
 - Open sourced at h2rdf.googlecode.com
- Adaptive query planner/executor
 - Centralized (fast) vs MapReduce (scalable) execution
 - MapReduce based executions of multi-way Merge and Sortmerge Join algorithms
- Adding more nodes increase:
 - Both query throughput and execution time
 - Storage space
- Easily scales up to 14B triples (2.5 TB) in a 75-node cluster
- Presented at WWW'2012 and IEEE BIGDATA 2013

DATIX: Scalable network analytics

- Passive sflow IXP traffic data (TB scale)
 - Lines containing ip pairs, payload, protocol info, etc
- External data sources: IP to ASN, DNS, Country, etc
- Distributed processing using HIVE/Hadoop
- Combine sflow/external data to extract lists with:
 - Top contributors for a specific time period
 - Contributors can be unique IPs, ASes with high traffic, most visited Web servers, etc

DBalancer: Balancing NoSQL datastores

- Skewed data access/placement affects NoSQL data-stores
- Current balancing approaches: non automated, system specific, centralized
- DBalancer: Generic, configurable system for real-time on-line adaptive load balancing
 - Support for Cassandra
 - Hooks to support any other NoSQL
 - Implementation of 3 existing algorithms

Questions

01/07/14 Big Data platforms and cloud elasticity: use cases