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Stream mining 

Stream mining – learning from streams 
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Data stream 
management 

Data Mining / 
Machine Learning 

• Introduction 1 • Introduction 2 

• Why is it difficult? 
• How can it be done? 
• Example 

(Frequent Pattern Mining) 



1. Introduction to Data Stream 
Managmenent 

• Terms and definitions 
• Challenges 
• Main concepts: windows, operators, query plans 
• Systems : Odysseus, Spark, Flink 
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3. Stream mining 

2. Machine 
Learning 

1. Data stream 
management 



Introduction (Terms) 

 Data  
- Digital representation of something  (001011010010111000) 
- With semantic: information 
- With interpretation: knowledge 

 Data Stream 
- "A data stream is a real-time, continuous,  ordered (implicitly by arrival 

time or explicitly by timestamp) sequence of items."  
Golab und Özsu [Gola03b] 

 Event 
- An event is an occurence within a particular system or domain; it is 

something that has happend, or is contemplated as having happend in that 
domain. The word event is also used to mean a programming entity that 
represents such an occurrence in a computing system. 

 Complex Event 
- An event that is defined by the occurance of a certain pattern of events 
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a fish 

<salmon, 32> data 

"A salmon with a length of 32cm" information 

<salmon, 32, 2014-05-20-20:29:23> more data;  
event "We have seen a salmon with a 

length of 32cm on the 5th of May 
2014 at 20:29:23 

GoFishing:  
more than 10 salmons  
with length > 30  
within one minute 

complex event 
definition / 
pattern 

<GoFishing, 2014-05-20-20:29:23> complex event 

fish 
sensor 



More terms 

 (Complex) event processing 
- A form of computing that performs operations on events 

 Data stream processing 
- Continuous computing on data streams 
- Immediate action 
- Push-based (reacts on incoming data) 
- Optimized for low latency 

 Data stream management 
- Support for data stream processing applications 
- Provides higher-level interfaces (e.g., queries or script languages) 
- Optimized for many sources, many applications / queries 
- Goal: reduce development effort / increase maintainability 
- Realizes data stream processing by operators 

 Data stream management system (DSMS) 
- A system that provides data stream management features 
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 Continuously arriving data  Potential infinite 
- Blocking behaviour of query operators not adequate for stream processing 

• E.g., how to compute the average? 
 unblocking by windows 

- Temporal relationship of streaming data 
 Heterogeneity of data to be processed 

- need support for different data models, formats, data schemata 
 Many stream-based applications deal with sensor data 

- need support for uncertainty and vagueness of information 
- high input / throughput rates, low latency of data tuples 

 Changing input rates 
- need for ressource planning or for burst adaptions 

 prioritazation, load shedding 

DSM – Challenges 
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CQL example 

PQL example 
trackingdata_rssi_test =  
KEYVALUETOTUPLE({schema=[['data.eventtype', 
'Integer'],['data.epocutc', 
'Integer'],['data.zone', 
'String'],['data.mac_address', 'String'], 
['data.battlevel', 'String'],['data.Major', 
'String'],['data.Minor', 
'String'],['data.techtype', 
'Integer'],['data.RSSI', 'String']], 
type='Beacon', keepinput='false'}, 
ACCESS({source='Source', 
wrapper='GenericPush', 
transport='HTTPServer', protocol='JSON', 
datahandler='KeyValueObject', 
options=[['path', '/'],['port', 
'8080'],['schedule.delay', '2000']]})) 

SELECT ego.pos FROM ego 
RANGE 10 seconds, 
radar RANGE 15 seconds 
WHERE ego.speed > 30 AND 
radar.speed > 30  
AND s2.pos - ego.pos < 15 

Features of Data Stream Management Systems 

 Programming Abstraction 
- declarative: query (e.g., CQL) 
- functional: flow graph (e.g., SPL) 
- enables optimizations  

• query rewriting, parallelization, … 
- better maintanance of systems 
"Using a DSMS on data streams is like  
using a DBMS instead of files" 

 
 Data flow vs. event bus  

as in many complex event processing 
(CEP) engines 

- DSMS offers early filtering to scale up 
event pattern processing 
 

 Data streams can be unbounded: 
- issues with sorting, joins, aggregation 
- approximate answers 
- window semantics 

Pipe Pipe Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

Pipe 

Sink 

Router Source 

Sink 

Source 

CEP 

Some DSMS 
provide CEP 

operators 

executable query plan 
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Window definitions 

 Monotone window operator to split stream into segments 
- Needed for all stateful operators 
 By definition needed for mining, too 

 Window size can be based on: 
- number of elements (e.g., last 100 elements) 
- time (e.g., last 5 seconds) 

• Application time: defined by data (e.g., observation) 
• System time: defined by processor clock 
 Non-deterministic, network latency influences results! 

- predicates of elements (e.g., value between two thresholds) 
 

 Window stride: how it moves 
- jumping or tumbling (no overlaps, data processed once) 
- sliding (continously, overlaps, data processed more than 

once) 
- sampling (no overlaps but gaps, some data is not processed) 
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More window types (by [JiAg07]) 

 Landmark window: 
- window from a starting point i to the current time-point t : W[i, t] 
- special case: i = 1 (from the beginning, entire data stream) 
- require efficient single-pass mining algorithm 
- each time-point is equally important 

 Damped window model: 
- assign more weight to the recently arrived transactions 
- e.g.: define a decay rate [ChLe03] and use it to update the previously 

arrived transactions (by multiplication); count of item set is also defined 
based on the weight of each transaction 

 Tilted-time window: 
- freqent itemsets over a set of windows corresponding to different time 

granularities 
- e.g.: Last hour: every minute; previous hour: every five minutes; … 
- Basis for FP-stream [GHPY02] 
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Window implementation: interval approach 

 Processing model: 
- each data element has an validity interval 
- only elements that are concurrently valid are processed together 

 Enables so-called snap-shot reducability 
- logical equivalence to non-stream operators, e.g., relational algebra 
- logical data stream: Sl = { (e,t,n) }   

• (each element can occur n times at time t) 
- equivalent physical data stream: Sp =  { (e, [ts, te)}  : 
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ts te 
e 

te is not 
included 

time snap-shot with two elements 



Operators (in DSMS) 

 Operator 
- building block for stream application computing,  

e.g., a relational operator or a function 
- consumes one or multiple data streams, produces one 

or multiple data streams 
- Examples: 

• SELECT/FILTER (filters data by predicates) 
• JOIN (joins data from two streams) 
• MY_OP (user defined operator) 
• In some DSMS: WINDOW 

 Operator graph or query plan 
- A directed graph G = (E,V) where 

• E (edges) are operators and 
• V (vertices) are data flow connections between 

operators 
- Data stream queries are translated to query plans / 

operator graphs by a DSMS  
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Example: Data Stream Management by Odysseus 

 Flexibe Open Source Data Stream Management Framework [AGG+12] 
 

 Time intervals as stream model 
- Semantically defined and deterministic processing 
- System time independent 
- Robust against race conditions or bursts 

 Built-in optimization techniques 
- Reduction of system load and latencies 

 Framework architecture (OSGi) 
- Extensible for new requirements,  

operators, scheduling  strategies,  
… 

- Adaptable even at runtime 
 

- Provides a machine learning plugin 
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Download and Information: 
http://odysseus.informatik.uni-oldenburg.de 

 
 
 

Apache 2.0 License 



Odysseus DSMS: Architecture and basic functions 
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Operator architecture 

 Operator: building blocks for data stream processing 
 Provide interface to connect to and from other operators 

- like a Lego brick 
 If the set of implemented operators of a DSMS 

is not sufficient, a new operator needs to be implemented 
- often called "UDO" (user defined operator) 

 Design decision:  
- how to separate concerns? One big operator or many small operators? 
- big operators: less overhead, small operators: more re-use and optimization 

 To implement an UDO, you always need to … 
- implement functionality of the UDO in a programming language supported by 

the DSMS 
 Depending on the DSMS, you might also need to … 

- implement the window / validity management of the tuples 
- implement buffer management  
- implement load shedding 
- implement encryption / security mechanisms 
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2. Introduction to Machine 
Learning 
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3. Stream mining 

• Data mining, machine learning, and the KDD process 
• Knowledge-base systems vs. Learning systems 
• Top 10 Data mining algorithms 

1. Data stream 
management 

2. Machine 
Learning 
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Data mining and machine learning as part of the KDD process 

 KDD = Knowledge discovery in databases 

19 
[FaPS96]  FAYYAD, USAMA ; PIATETSKY-SHAPIRO, GREGORY ; SMYTH, PADHRAIC: The KDD process for extracting useful knowledge from volumes of 
data. In: Communications of the ACM Bd. 39 (1996), Nr. 11, S. 27–34 

"A wide variety and number of data mining algorithms are 
described in the literature—from the fields of statistics, pattern 
recognition, machine learning, and databases." [FaPS96] 

[FaPS96]  

 Data mining and machine learning are often used as synonyms 



Knowledge and Learning 
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Learning as Induction 
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Inductive Learning Hypothesis 

22 



Window of training examples 
 

Sample hypotheses: 

• Blue fish are bigger than black fish 

• Blue fish have two visible vertical fins 

• Blue fish taste better 
 

(First) application to stream learning 
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Application of hypotheses 
("Prediction")  

Some hypotheses do not hold 
• How (and when) do we know? 
What can we do? 
• Accept some errors 
• Re-learning (including statistics, 

"92% of blue fish are bigger than 
black fish") 

• Adaptive learning  
(continues re-learning) 

 
 

 
 
 



Machine learning approaches 

 There are MANY machine learning approaches 
 In this tutorial (and in general), we need to focus! 

 
 
 
 

 Top 10 algorithms: 
- identified by the IEEE international conference on 

Data Mining (ICDM) 2006 
- experts nominiated up to 10 best-known algorithms 

with name, brief justification, reference (publication) 
- nominations with less than 50 citations were 

removed 
- remaining 18 nominations were organized in 10 

topics: association analysis, classification, clustering, 
statistical learning, bagging and boosting, sequential 
patterns, integrated mining, rough sets, linkmining, 
and graph mining 

- more experts were asked to vote, resulting in this 
top 10 list. 
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http://en.wikipedia.org/wiki/Machine_learning, 
27.4.2015: 

http://www.cs.uvm.edu/~icdm/algorithms/CandidateList.shtml 



Top 10 algorithms of data mining (1-5) 

1. C4.5:  
- generates classifiers as decision trees or rulesets 

2. k-Means 
- partitions a dataset into user-specified number (k) of clusters 

3. SVM (support vector machines) 
- two-class learning, find the "best" (geometrically) classification function to 

distinguish between members of the two classes 
4. Apriori 

− finds frequent itemsets from a transaction dataset and derives association 
rules 

5. EM (expectation maximization) 
- for data observing a random phenomen: estimate the underlying density 

function (e.g., sensor accuracy) 
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Top 10 algorithms of data mining (6-10) 

6. PageRank ("the algorithm that made Google a success") 
- Search ranking algorithm using hyperlinks on the Web; learns the 

relevance of a search result for the user 
7. AdaBoost 

− Ensemble learning: employs multiple learner to solve problem, weighs the 
learners to create result 

8. kNN: k-nearest neigbor classification 
- finds a group of k objects in training set that are closest to the test object 

(labelled), computes distance of objects to labelled objects 
9. Naive Bayes (aka idiot’s Bayes, simple Bayes, independence Bayes) 

- classification: based on given set of objects that belong to a known class 
with known vector of variables, constructs a rule to assign future objects 
to a class, with given probability. Naïve because it assumes independence. 

10. CART: Classification and Regression Trees 
- Decision trees, tree-structured data analysis; binary recursive partitioning 

procedure 
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3. Stream mining 

• Challenges 
• Concept drift / Change detection 
• Instance selection vs. Aggregation 
• Frequent pattern mining as example 
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3. Stream mining 

2. Machine 
Learning 

1. Data stream 
management 

With input and slides by Ute Schmid, Machine Learning/Lernende Systeme. Thank you! 
http://www.uni-bamberg.de/kogsys/services/teaching/courses/lernende-systeme/ 



Comparison – Static data mining vs. Stream mining 

28 
M. S. B. PhridviRaja und C. V. GuruRao, „Data mining : past present and future - a typical survey on data 
streams“, CoRR, Bd. abs/1605.01429, 2016. 



Stream mining challenges 

 Scalability 
- increasing number of data, processing time must match input time  

• process a data item at most once (single-pass) 
• or limit the amount of data to be processed to allow fast multi-passes 

 Temporal order 
- often, there is an inherent temporal component 
- data evolves over time (= concept drift) 
 focus on evolution of the underlying data, recognize evolution (= change 

detection) 
 Distribution 

- often, data occurs at different locations, and limited bandwiths prohibits 
the transfer to a central server before mining 

- still, distributed processors may have limited resources, too  
(e.g., small embedded systems in sensor networks) 
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Stream mining requirements 

 Avoid congestion: 
- process each data element in constant time 
- average processing time needs to be less or equal to the average update 

rate 
 Avoid memory overflow: 

- process data element with constant memory usage 
 Adaptive:  

- adapt to changing characteristics of the data stream and/or phenomenon 
"constant": does not increase over time 
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✓ok for streams 

Will not work 
on streams 



Concept drift  

 Concept of interest: the hypothesis / thing to be predicted 
- e.g., the weather 

 Concept depends on context; some context is observable  
- e.g., current temperature at the location 

 Other context is hidden  
- (e.g., the weather 100km west of us) 

 Concept drift: change of concept 
- often due to hidden context 

 Two main classes of concept drift: 
1. sudden concept drift 

• e.g., a wind eddy 
2. gradual concept drift 

• e.g., change in seasons 
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Virtual concept drift 

 Concept drift causes change in the underlying data distribution  
  necessity of revising the current model,  
 = "virtual concept drift" 
 Virtual concept drift and real concept drift often occur together 
 However, virtual concept drift may occur alone: 

- e.g.: understanding of unwanted message stays the same, 
but distribution of different types of spam may change significantly over 
time 

 
 In both cases (virtual and real), the model needs to be changed 
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Approaches to handle concept drift 

 Instance selection 
- select instances relevant to current concept 
- often window-based, sometimes with changing window sizes 

 Instance weighting 
- process weighted instances,  

e.g., according to age and competence with regard to current concept 
- however, sensitive to overfitting 

 Ensemble learning 
- maintain a set of concept descriptions 
- combine with voting / weighted voting 
- often incremental approaches 

 
 When to update the model? 

- can be costly, should be done only if evitable 
- different criteria can be used, e.g., average confidence or number of instances 

instances under a given confidence threshold 
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[Tsym04]  Tsymbal, Alexey: The problem of concept drift: definitions and related work. In: Computer Science 
Department, Trinity College Dublin Bd. 106 (2004) 



Learning on Data Streams: Approaches 

 (Potentially) update model with every new element 
 Two main approaches: 

- Aggregation / synopses / histograms 
• aggregate learned knowledge 
• Pro: can span longer time periods 
• Con: does not deal well with concept drift, accuracy drops over time 

- Window-based 
• e.g.: clustering over the last 10 minutes 
• Pro: robust with respect to concept drifts 
• Con: re-learns with every window, forgets old knowledge 

 And: 
- Hybrid approaches / tilted time frames: 

• Adapt to time:  younger data  more details, older data  less data 

34 



Example: Frequent Pattern Mining 
on Streams 
1. With landmark windows and aggregation 
2. With tilted time windows and aggregation 
3. With sliding time windows, no aggregation 
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Frequent pattern mining: problem definition 

 Collection of objects: Dataset  
D = {o1, o2, …, o|D|} 

 Set of all possible interesting patterns occuring in D: 
P = {p1, p2, …, pn} 

 Counting function: 
g : P x O  ℕ 
g(p, o) returns the number of times p occurs in o 

 Indicator function: 
I: ℕ  {0, 1} 
if g(p, oj) > 0 : I(g(p, oj)) = 1 else 0 fi 

 Support of pattern p ∊ P in dataset D: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠 =  �𝐼𝐼(𝑔𝑔 𝑠𝑠, 𝑠𝑠𝑗𝑗 )
|𝐷𝐷|

𝑗𝑗=0
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Popular example: 
Basket analysis, 
Beer and diapers are 
often bought together 



Stream pattern mining: challenges 

 Scalability: 
- Search space grows exponential with number of elements, 

and number of elements can be potentially infinite 
- Cardinality of answering set can be very large 
 Need for approximate answers and memory-efficient algorithms 

 Efficiency: 
- Frequent pattern mining relys on down-closure property to prune 

infrequent pattern 
• this can be compute-intensive 

 Algorithm needs to keep up the space with high-speed data streams 
 Quality: 

- Algorithms can only deliver approximate answers. But: how good is it? 
 Need for user-controllable quality parameters 
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Frequent itemset mining  
by Jin et al. [JiAg07] 
• Basis: find frequent elements by Karp et al. [KaSP03]  
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Basis: algorithm to find frequent elements 

 Based on work by Karp, Papadimitriou and Shenker to find frequent 
elements [KaSP03]: 

 Problem: 
- given a sequence of length N and a threshold Ѳ (0 < Ѳ < 1): 

determine elements that occur with frequency > N Ѳ 
 Example: (a,n,a,l,y,t,i,c,a,l) 

- sequence of length 10, Ѳ = 0.2 
- frequent elements with frequence > 10*0.2 = 2: {a, l} 

 Trivial algorithm: 
- count frequency of all distinct elements 
- check if any of them has the desired frequency 
- requires O(n) memory 
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Find frequent elements by Karp et al. [KaSP03] 

 Finding the majority element in a sequence 
= appears more than half the time in an entire sequence (Ѳ > 0.5) 
- find two distinct elements and eliminate them from the sequence 
- repeat this process only one distinct element remains 
- if there is a majority element, it will remain (but not vice versa) 

 Generalization: 
- Find any 1/Ѳ distinct elements in the sequence and eliminate them 

together 
- Repeat until no more than 1/Ѳ distinct elements remain in the sequence 
- This can be only done at most N / (1/Ѳ) = NѲ times 
Any element that appears more than NѲ times will be left in the sequence 
− however, the elements left do not necessarily appear with frequency 

greater than NѲ 
 Requires only O(1/Ѳ) memory 
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Issues in frequent itemset mining  

… as addressed by Jin et al. [JiAg07] 
 Dealing with transaction sequences 

- Karp et al. [KaSP03] assumes that a sequence compromises single elements 
(1-items) 

- For frequent itemset mining, each transaction has a number of items 
- Length of transactions can be different, but easier with fixed length 

 Providing an accuracy bound 
- Karp et al. [KaSP03] can provable find a superset of frequent items 
- However, no accuracy bound is provided for the item(set)s in the superset 

 Dealing with k-itemsets 
- Karp et al. [KaSP03] only finds the frequent items, or 1-itemsets 
- For frequent itemset mining, we need to find all k-itemsts, k ≥ 1, in a single 

pass 
 extending the algorithm step by step to cope with all challenges 
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Providing an accuracy bound 

 Bound: user-defined parameter e, with 0 < e <= 1 
 Reported frequent itemsets do occur more than  

(1-e)*Ѳ*|D|  
times in the data set 

 Properties: 
1. if an itemset has frequency more than Ѳ, it will be reported 
2. if an itemset is reported as a potential frequent itemset,  

it must have a frequence more than Ѳ(1-e) 
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Lattice and basic routines 

 Keep frequent itemsets in Lattices  
(because of down-closure property) 
- L = L1 ⋃ L2 ⋃ … ⋃ Lk 
- k: largest frequent itemset,  

Li are the potential frequent i-itemsets 
 

 Subroutines (used by all extensions of the algorithm): 
define update(transaction t, Lattice L, i): 
 for all i-subsets s of t: 
  if s in Li: s.count++ 
  elif i <= 2: Li.insert(s) 
  elif all i–1-subsets of s in Li-1: Li.insert(s) 
 
define ReducFreq(Lattice L, i): 
 foreach i itemsets s ∊ Li: 
  s.count-- 
  if s.count == 0: Li.delete(s) 
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CC-BY-SA,  
Xodarap00 



Deal with variable length transactions 

 Variable f: 
- weighted average of the number of 2-itemsets in each transaction 

processed so far 
- recent transactions get higher weights 

 Algorithm for f: 
define TwoItemsetPerTransaction(Transaction t): 
 global X # number of 2 itemset 
 global N # number of Transactions 
 local f 
 N++ 
 X = X + |𝒕𝒕|

𝟐𝟐   
 f = ⌈X/N⌉ 
 if |L2| >= ⌈1/Ѳ * e⌉ * f: 
  N = N - ⌈1/Ѳ * e⌉ 
  X = X - ⌈1/Ѳ * e⌉ * f  
 return f 
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Binomial coefficient: 
  

𝒏𝒏
𝒌𝒌  = 𝒏𝒏 − 𝟏𝟏

𝒌𝒌 − 𝟏𝟏  + 𝒏𝒏 − 𝟏𝟏
𝒌𝒌  

 
𝒏𝒏
𝟎𝟎 = 𝒏𝒏

𝒏𝒏 = 𝟏𝟏 



Full algorithm for itemset mining 

define StreamMining (Stream D, Ѳ, e): 
 global Lattice L = ⌀ 
 global Buffer T = ⌀ 
 local Transaction t = "next arriving transaction" 
 f = 0 # weighted average of 2-itemsets in transaction 
 c = 0 # number of ReducFreq invocations 
 foreach (t in D) 
  T = T ⋃ {t} 
  Update(t, L, 1)      
  Update(t, L, 2)      
  f = TwoItemsetPerTransaction(t)    
  if |L2| >= ⌈1/Ѳ e⌉ * f: 
   ReducFreq(L, 2)      
   c++ 
   i = 2 
   while Li != ⌀: 
    i++ 
    foreach (t in T): update (t, L, i) 
    ReducFreq(L, i)       
   T = ⌀ 
 # remove all items whose reported frequency is too low  
 foreach s in L: 
  if s.count <= Ѳ*|D| - c: Li.delete(s)  

 return(L) 
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FP-stream by Giannella [GHPY02] 
 
• Basis: FP-Tree [HaPY00] 
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FP-Stream - Overview 

 Stream-based algorithm for finding frequent itemsets by Giannella et al. 
[GHPY02] 

 Hybrid: approach based on both instance selection and aggregation 
 Main concepts: 

- Data structure inspired by FP-tree [HaPY00] 
- Tilted time-window [CDHW02] 

 In contrast to Jin et al. [JiAg07]: 
- no landmark window, but tilted time-window 

more robust to concept drift 
still keeps some history 
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FP-Tree 

• Han, Pei and Yin 2000 [HaPY00] 
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FP-Tree: Overview 

 From FP-Growth, an alternative algorithm to Aprioi [AgSO94], which … 
- mines from stored data 
- uses compressed data base to increase scan performance 
- uses FP-Tree as central data structure 

 Terms: 
- support (or occurence frequency) of an itemset I: absolute number of 

transactions containing I 
- frequent pattern A: Item set with a support no less than predefined 

minimum support threshold ξ 
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FP-Tree: Definition 

 FP-Tree is a tree structure that contains … 
- a root labelled as "null" 
- a set of item prefix subtrees as children of the root 
- a frequent-item header table 

 Nodes in the Item prefix subtree consist of three fields: 
1. item-name: which item is represented? 
2. count: number of transactions represented by the portion of the path 

reaching this node 
3. node-link: points to the next node in the FP-tree carrying the same item-

name, or null if there is none 
 Entries in the Frequent-item header table consist of two fields: 

1. item-name: which item is represented? 
2. head of node-link: points to the first node in the FP-tree carrying the 

item-name 
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FP-Tree: Construction algorithm 

 Input: a transaction database DB and a minimum support ξ 
 Output: its frequent pattern tree FP-tree 
 Method: 

1. scan DB, collect set of frequent items ("1-itemsets") and their supports; 
L = F.sort(descending order of support)  # list of frequent items 
T = new(FP-tree)    # root is labelled as "null" 

2. For each transaction t in DB do: 
• R = select and sort the frequent items in t according to L  
• call insert_tree(R, Tree) 

  insert_tree(R,Tree): 
- r = R[0] 
- if Tree has a child N with N.item-name = r.item-name: N.count++ 

else: create new node N with  
• N.count = 1 
• N.parent-link  Tree 
• node-link  nodes with same item-name 

- if R[1:] is not empty: call insert_tree(R[1:], N) 
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Example: Step 1 

 minimum support ξ = 3.  

52 

t Items 

100 f, a, c, d, g, i, m, p 

200 a, b, c, f, l, m, o 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n 

item-
name 

f 

c 

a 

b 

m 

p 

root T: 

L:  list of frequent items (sorted descending) 

FP-tree  



Example: Step 2.100.1 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0] = 'f' 
• Child? No! 

• create node N 
• R[1:] = [c, a, m, p] 

• not empty: 
call insert_tree(R[1:], N) 

item-name: f 
count: 1 

T 

N node-link 

R: f, c, a, m, p 



Example: Step 2.100.2 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0] = 'c' 
• Child? No! 

• create node N 
• R[1:] = [a, m, p] 

• not empty: 
call insert_tree(R[1:], N) 

f:1 

T 

R: c, a, m, p 

c:1 

N 



Example: Step 2.100.3 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0] = 'a' 
• Child? No! 

• create node N 
• R[1:] = [m, p] 

• not empty: 
call insert_tree(R[1:], N) 

f:1 

R: a, m, p 

c:1 

a:1 
N 

T 



Example: Step 2.100.4 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0] = 'm' 
• Child? No! 

• create node N 
• R[1:] = [p] 

• not empty: 
call insert_tree(R[1:], N) 

f:1 

R: m, p 

c:1 

a:1 

m:1 



Example: Step 2.100.5 

 minimum support ξ = 3.  

57 

t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0] = 'p' 
• Child? No! 

• create node N 
• R[1:] = [] 

• empty! 

f:1 

R: p 

c:1 

a:1 

m:1 

p:1 



Example: Step 2.200.1 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f, l, m, o f, c, a, b, m 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

R: f, c, a, b, m 

T 



Example: Step 2.200.2 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

R: c, a, b, m 

T 



Example: Step 2.200.3 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 

R: a, b, m 

T 



Example: Step 2.200.4 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 

b:1 

R: b, m 

T 



Example: Step 2.200.5 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: m 

T 

m:1 



Example: Step 2.300.1 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: f, b 

T 

m:1 



Example: Step 2.300.1 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: f, b 

T 

m:1 

f:3 



Example: Step 2.300.2 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: b 

T 

m:1 

f:3 

b:1 



Example: Step 2.400.1 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: c, b, p 

T 

m:1 

f:3 

b:1 

c:1 



Example: Step 2.400.2 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: b, p 

T 

m:1 

f:3 

b:1 

c:1 

b:1 



Example: Step 2.400.3 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: p 

T 

m:1 

f:3 

b:1 

c:1 

b:1 

p:1 



Example: Step 2.500.1 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n f, c, a, m, p root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: f, c, a, m, p 

T 

m:1 

f:3 

b:1 

c:1 

b:1 

p:1 

f:4 



Example: Step 2.500.2 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n f, c, a, m, p root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: c, a, m, p 

m:1 

f:3 

b:1 

c:1 

b:1 

p:1 

f:4 

c:3 

T 



Example: Step 2.500.5 

 minimum support ξ = 3.  
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t Items (Ordered ) frequent items of  t: R 

100 f, a, c, d, g, i, m, p f, c, a, m, p 

200 a, b, c, f,  l, m, o f, c, a, b, m 

300 b, f, h, j, o f, b 

400 b, c, k, s, p c, b, p 

500 a, f, c, e, l, p, m, n f, c, a, m, p root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

insert_tree(R, T): 
• r = R[0]  
• Child?  

• no? create node N 
• yes? N.count++ 

• R[1:] not empty? 
• call insert_tree(R[1:], N) 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

R: p 

m:1 

f:3 

b:1 

c:1 

b:1 

p:1 

f:4 

c:3 

T 

a:3 

m:2 

p:2 



Result 

 Information in FP-tree: 
- for every node: count gives support for the whole path along the FP-Tree 

vertices 
- e.g.: support(fca) = 3 
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root 

item-
name 

head of  
node-links 

f 

c 

a 

b 

m 

p 

f:1 

c:1 

a:1 

m:1 

p:1 

f:2 

c:2 

a:2 
b:1 

m:1 

f:3 

b:1 

c:1 

b:1 

p:1 

f:4 

c:3 

a:3 

m:2 

p:2 



Tilted Time Windows 

• Chen et al. 2002 [CDHW02] 
• Giannella et al. [GHPY02] 
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Tilt time frame (Chen et al. 2002 [CDHW02]) 

 Motivation: 
- in stream data analysis, recent data is often of more interest 
- should be analyzed at a finer scale 
- older data could be more aggregated 

 Natural tilted time frame: 
- aggregation / analysis intervals are aligned with "natural" time intervals 

(i.e., hours, weeks, …) 

74 

[CDHW02] 

t4 t2 t1 t0 

time frames: 



Frequent patterns in tilted-time frames [GHPY02] 

 For each tilted-time window, a set of frequent patterns is maintained 
 Sample queries that can be answered: 

- What is the frequent pattern set over the period t2 and t3? 
- What are the periods when (a,b) is frequent? 
- Does the support of (a) change dramatically in the period from t3 to t0? 

75 

[GHPY02] 



Itemset representation: pattern tree (similar to FP-Tree) 

76 

[GHPY02] 



Extend pattern tree for tilted-time windows 

77 

[GHPY02] 



Logarithmic Tilted-time Frame Windows [GHPY02] 

 Current quarter, next two quarters, next four quarters, … 
 
 
 
 
 
 

 Set of transactions broken into fixed-sized batches 𝑩𝑩𝟏𝟏,𝑩𝑩𝟐𝟐, … ,𝑩𝑩𝒏𝒏 
- Bn is the most current batch, B1 the oldest 

 𝐵𝐵 𝑖𝑖, 𝑗𝑗 =  ⋃ 𝐵𝐵𝑘𝑘𝑖𝑖
𝑘𝑘=𝑗𝑗  , 𝑖𝑖 ≥ 𝑗𝑗 is a set of batches between i and j 

 For a given itemset I: 𝑓𝑓𝐼𝐼(𝑖𝑖, 𝑗𝑗) is the frequency of I in 𝐵𝐵 𝑖𝑖, 𝑗𝑗   
(number of times I occurs in B) 

 In a logarithmic tilted-time window, the following frequencies are kept: 
𝑓𝑓 𝑛𝑛,𝑛𝑛 ;𝑓𝑓 𝑛𝑛 − 1,𝑛𝑛 − 1 ;𝑓𝑓 𝑛𝑛 − 2,𝑛𝑛 − 3 ;𝑓𝑓 𝑛𝑛 − 4,𝑛𝑛 − 7 ; … 

 Growth rate of window size:  
- Ratio r between the size of two neighbor tilted-time windows 

78 

[GHPY02] 



FP-Stream Algorithm 

• Giannella et al. [GHPY02] 
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FP-stream algorithm (init) 

 Constructs and maintains the FP-stream data structure 
- Pattern tree with tilted time window information 

 Is bulky: updates only when enough incoming transaction have 
arrived to form a new batch Bn 
 

 First batch B1 is used for initialization: 
- compute frequencies for all items 
- store transactions in main memory 
- create ordered list f_list with items in decreasing frequency 

(as for the FP-tree) – remains fixed for all remaining batches! 
- all transactions from B1 are used to create an FP-tree 

• prune all items with frequency less than 𝜀𝜀 𝐵𝐵1   
(error rate * size of B1) 
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FP-stream algorithm (signature of update) 

 Input: 
- an FP-stream structure 
- a min_support  

threshold 𝜎𝜎 
- an error rate 𝜀𝜀 
- a new incoming  

batch Bi 

 Output: 
- the updated FP-stream 

structure 
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[GHPY02] 



FP-stream algorithm (update) 

1. Initialize the FP-tree to empty 
2. Sort each incoming transaction t according to f_list and insert it into 

the FP-tree without pruning 
3. When all 𝑠𝑠 ∈ 𝐵𝐵𝑖𝑖 are accumulated, update the FP-stream structure: 

a) Mine itemsets out of the FP-tree. 
For all Itemset I: 
if I is in the FP-stream structure: 
i. Add 𝑓𝑓𝐼𝐼 𝐵𝐵𝑖𝑖  to the tilted-time window table for I 
ii. Conduct tail pruning 
iii. If the table is empty, stop FP-growth (Type II Pruning); else continue 

with supersets of I 
else:  
  if 𝑓𝑓𝐼𝐼 𝐵𝐵𝑖𝑖  ≥  𝜀𝜀|𝐵𝐵𝑖𝑖|: insert I into structure 
  else stop mining supersets of I (Type I Pruning) 
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FP-stream algorithm (update) (cont). 

b) Scan the FP-stream structure (depth-first search) 
For each itemset I:  
i. if I was not updated in mining Bi: insert 0 into I's tilted-time window 

table (because I did not occur in Bi) 
Prune I's table by tail pruning. 

If I is a leaf that has an empty tilted-time window table: drop the leaf 
If there are siblings:  
  continue with siblings 
else: 
  return to the parent and continue with its siblings 
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Frequent itemset mining in 
Odysseus 
• As datastream operator  
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Incremental Learning on Data Streams 

 Update model with every new element 
 Main approaches: 

- Aggregation / synopses / histograms 
• aggregate learned knowledge 
• Pro: can span longer time periods 
• Con: does not deal well with concept drift, accuracy drops over time 

- Window-based 
• e.g.: clustering over the last 10 minutes 
• Pro: robust with respect to concept drifts 
• Con: re-learns with every window, forgets old knowledge 

- Hybrid approaches / tilted time frames: 
• Adapt to time:  younger data  more details, older data  less data 
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Introduction 

 Approach by Dennis Geesen [Gees13], implemented in Odysseus 
 Idea: extend DSMS to cope with any "traditional" machine learning 

approach 
 Logical data stream: 

 
 
- Logical data stream Sl is a potential infinite multi set of tuples 
- e is the tuple, t the time stamp, n the number of occurences of tuple at 

time t 
- logical view enables snapshot reducability 

 Physical data stream: 
 
 
- Physical data stream (implementation) based on time intervals 
- Physical view enables efficient implementation 
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FREQUENTITEMSET operator in Odysseus 

 Operator that creates frequent item sets from a given stream. 
 The result stream creates a tuple with 3 attributes: 

- id: the number (a simple counter) of the pattern 
- set: the frequent pattern, which is a list of tuples (a nested attribute ~ NF2) 
- support: the support of the pattern 

 Parameter 
- SUPPORT: The minimal support that defines what is frequent. This can be 

either a total number > 1.0 or a double between 0.0 and 1.0. The double 
indicates the percent in terms of the number of transactions. 

- TRANSACTIONS: A number of transactions that should be investigated 
• A transaction is a snap-shot of a window:  

Each time when a window changes, there is a new transaction 
- LEARNER: the algorithm that is used 

Currently implemented: fpgrowth, Weka (which in turn has further 
algorithms) 

- ALGORITHM: A set of options to describe the algorithm 
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Snapshot reducability 
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Logical data stream (validity of elements): 

Each time stamp 
can be viewed a 
static data source 
with the current 
contents 



Examples for logical and physical data streams 
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Logical data stream (validity of elements): 

Physical data stream (implementation: tuples with validity intervals): 

at time 3, we would have already processed 9 elements  not efficient! 

at time 3, we only processed 4 elements 



Example 

/// support is 3 out of 1000 transactions 
fpm =  FREQUENTITEMSET({support=3.0, transactions=1000, learner = 'fpgrowth'}, 
inputoperator) 
  
/// support is 60% out of 1000 transactions, so it is equal to a support of 600.0 
fpm =  FREQUENTITEMSET({support=0.6, transactions=1000, learner = 'fpgrowth'}, 
inputoperator) 
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Example (from [Gees13]) 
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Input tuples Candidates for window size=5 and t=6 



Example (from [Gees13]) 
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Input tuples Result for window size=5 and t=6 and 
min_support = 3 
 



Example (from [Gees13]) 
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Input tuples Result for whole stream (result pattern in NF2) 



Stream mining – summary 
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Stream mining 

Data stream 
management 

Data Mining / 
Machine Learning 

• Introduction 1 • Introduction 2 

• Why is it difficult? 
• How can it be done? 
• Example 

(Frequent Pattern Mining) 



Stream mining – summary 

• Why is it difficult? 
• Unbounded data 
• Bounded memory 
• Concept drift 

 
• How can it be done? 

• Invent new algorithms that aggregate over time 
• Select instances (windows) and perform existing algorithms 

 
• Example 

Frequent Pattern Mining 
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Frequent Itemset Stream Mining – Summary  

 Frequent itemset mining by Jin et al. [JiAg07] 
- Landmark window (from beginning) 
- Aggregations 

 FP-stream by Giannella [GHPY02] 
- Tilted-time windows 
- FP-tree 

 Frequent pattern mining in Odysseus 
- Sliding window! 
- Different learners 

• Can use any non-streaming algorithm 
• Integrates WEKA framework 

 
 

96 



Literature 

[Gees13]  Geesen, Dennis: Maschinelles Lernen in Datenstrommanagementsystemen. Auflage: 1., 
Auflage. Aufl. Edewecht : OlWIR Verlag für Wirtschaft, Informatik und Recht, 2013 —
 ISBN 9783955990015 

[Agga07]  AGGARWAL, C. C. (Hrsg.): Data Streams - Models and Algorithms, Advances in Database 
Systems. Bd. 31 : Springer, 2007 — ISBN 978-0-387-28759-1 

[JiAg07]   Jin, Ruoming ; Agrawal, Gagan: Frequent Pattern Mining in Data Streams. In: Aggarwal, C. 
C. (Hrsg.): Data Streams, Advances in Database Systems : Springer US, 2007 — ISBN 978-0-
387-28759-1, 978-0-387-47534-9, S. 61–84 

[ChLe03]  Chang, Joong Hyuk ; Lee, Won Suk: Finding Recent Frequent Itemsets Adaptively over 
Online Data Streams. In: Proceedings of the Ninth ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, KDD ’03. New York, NY, USA : ACM, 2003 —
 ISBN 1-58113-737-0, S. 487–492 

[GHPY02]  Giannella, Chris ; Han, Jiawei ; Pei, Jian ; Yan, Xifeng ; Yu, Philip S.: Mining Frequent 
Patterns in Data Streams at Multiple Time Granularities, 2002 

[KaSP03]  Karp, Richard M. ; Shenker, Scott ; Papadimitriou, Christos H.: A Simple Algorithm for 
Finding Frequent Elements in Streams and Bags. In: ACM Trans. Database Syst. Bd. 28 
(2003), Nr. 1, S. 51–55 

 

97 


	Stream mining
	Data analytics approaches
	Stream mining – learning from streams
	Introduction to Data Stream Managmenent
	Introduction (Terms)
	Foliennummer 6
	More terms
	DSM – Challenges
	Features of Data Stream Management Systems
	Window definitions
	More window types (by [JiAg07])
	Window implementation: interval approach
	Operators (in DSMS)
	Example: Data Stream Management by Odysseus
	Odysseus DSMS: Architecture and basic functions
	Operator architecture
	Introduction to Machine Learning
	Foliennummer 18
	Data mining and machine learning as part of the KDD process
	Knowledge and Learning
	Learning as Induction
	Inductive Learning Hypothesis
	(First) application to stream learning
	Machine learning approaches
	Top 10 algorithms of data mining (1-5)
	Top 10 algorithms of data mining (6-10)
	Stream mining
	Comparison – Static data mining vs. Stream mining
	Stream mining challenges
	Stream mining requirements
	Concept drift 
	Virtual concept drift
	Approaches to handle concept drift
	Learning on Data Streams: Approaches
	Example: Frequent Pattern Mining on Streams
	Frequent pattern mining: problem definition
	Stream pattern mining: challenges
	Frequent itemset mining �by Jin et al. [JiAg07]
	Basis: algorithm to find frequent elements
	Find frequent elements by Karp et al. [KaSP03]
	Issues in frequent itemset mining 
	Providing an accuracy bound
	Lattice and basic routines
	Deal with variable length transactions
	Full algorithm for itemset mining
	FP-stream by Giannella [GHPY02]�
	FP-Stream - Overview
	FP-Tree
	FP-Tree: Overview
	FP-Tree: Definition
	FP-Tree: Construction algorithm
	Example: Step 1
	Example: Step 2.100.1
	Example: Step 2.100.2
	Example: Step 2.100.3
	Example: Step 2.100.4
	Example: Step 2.100.5
	Example: Step 2.200.1
	Example: Step 2.200.2
	Example: Step 2.200.3
	Example: Step 2.200.4
	Example: Step 2.200.5
	Example: Step 2.300.1
	Example: Step 2.300.1
	Example: Step 2.300.2
	Example: Step 2.400.1
	Example: Step 2.400.2
	Example: Step 2.400.3
	Example: Step 2.500.1
	Example: Step 2.500.2
	Example: Step 2.500.5
	Result
	Tilted Time Windows
	Tilt time frame (Chen et al. 2002 [CDHW02])
	Frequent patterns in tilted-time frames [GHPY02]
	Itemset representation: pattern tree (similar to FP-Tree)
	Extend pattern tree for tilted-time windows
	Logarithmic Tilted-time Frame Windows [GHPY02]
	FP-Stream Algorithm
	FP-stream algorithm (init)
	FP-stream algorithm (signature of update)
	FP-stream algorithm (update)
	FP-stream algorithm (update) (cont).
	Frequent itemset mining in Odysseus
	Incremental Learning on Data Streams
	Introduction
	FREQUENTITEMSET operator in Odysseus
	Snapshot reducability
	Examples for logical and physical data streams
	Example
	Example (from [Gees13])
	Example (from [Gees13])
	Example (from [Gees13])
	Stream mining – summary
	Stream mining – summary
	Frequent Itemset Stream Mining – Summary 
	Literature

