
Theory of
Programming

Prof. Dr. W. Reisig

Tutorial
Foundations of SOC

Fundamentals of

the SOC Paradigm

Wolfgang Reisig

Humboldt-Universität zu Berlin

SUMMERSOC

Hersonissos, June 29, 2016. 9.30 – 10.30

Fundamentals of the SOC Paradigm

1. Aspects that exceed classical Theoretical Informatics

2. Towards a Theory of Services

3. Composing many services

2

1. Aspects that exceed classical Theoretical Informatics

2. Towards a Theory of Services

3. Composing many services

3

Fundamentals of the SOC Paradigm

4

2012

celebrated as the greatest computer scientist of the 20th century.

Basics of theoretical informatics:

Turing Machines (1936)

Classical Theoretical Informatics

alphabet ; finitely many symbols a, b, c, … ,z

words *; countably many ab, ca, aca, …

functions f: * *; uncountably many

Some of those functions are “computable” (countably many).

Each computable function can effectively be computed

• by a computer (with unbounded store)

• by an amazingly simple kind of machine, a Turing machine.

Yet, no computer can compute more functions.

5

Theoretical Informatics in a nutshell

 ---

useful, undisputed:

• equivalence,

• composition

• complexity

• logical characterizations

• deep theoretical results

• famous open problems.

So, the theory of computable functions

is frequently considered THE theory of informatics.

6

… lots of concepts

How establish reliable communication?
By sending acknowledgements, copies, etc. ,
i.e. by means of distributed algorithms (“protocols”).

1. Informatics comprises
communication

Complexity is not in computation but in communication.

7

2. Informatics comprises
non-ending behavior

classical view:

terminating behavior is intended,

infinite behavior is mistaken.

SOC “always on”

cloud

elevator control

business informatics “24/7”

new view:
infinite behavior is intended.
terminating behavior is mistaken.

8

c

a b

c

a b

c

a b

3. Informatics comprises
causal independence

a b a b a a c c c b
…

d e d e d d f f f e
…

c

a b

9

f

e d

e

d

f e

d

f e

d

f

e

a

a

b
c

b

d
e

d

a

d

f

c b
e

…

…
…

…
…

…
…

+ fairness assumption

b
…

motivated by
“observation”

10

c

a b

c

a b

c

a b

e

d

f e

d

f e

d

f
c

a b

f

e d

3. Informatics comprises
causal independence

11

Distributed Systems and Distributed Runs

a b a b a a c c c b
…

d e d e d d f f f e
…

c

a b

f

e d

a b a b a a c c c b
…

d e d e d d f f f e
…

12

a variant: i-th b before i-th f

a deterministic system
no alternatives
one behavior (run, execution)

c

a b

f

e d

more general …
the beer hall pattern:

“ … so that people are continuously criss-crossing

from one to another.” … to click their glasses

what is this formally?
… a partially ordered set of events

A B

C

D E

F

This talk:

1. Aspects that exceed classical Theoretical Informatics

2. Towards a Theory of Services

3. Composing many services

15

The World of Software
Classical Programming:
Concepts Languages Implementations

Java
C**

very many

f: * *
termination is undecidable
one while-loop suffices
Algorithms
Semantics of Progr. Lang.
Verification

 ---

the world of SOC:

BPEL
BPNM bpel-g

open ESP …
as outlined by
Jörg Lenhard

Concepts Languages Implementations

standards,
“technical
neutrality”

deadlock,
lifelock,
simulation,
abstraction,
refinement,
equivalence,
instantiation
correctness

The World of Software
Classical Programming:
Concepts Languages Implementations

Java
C**

very many

f: * *
termination is undecidable
one while-loop suffices
Algorithms
Semantics of Progr. Lang.
Verification

 ---

the world of SOC:

BPEL
BPNM bpel-g

open ESP …
as outlined by
Jörg Lenhard

Concepts Languages Implementations

standards,
“technical
neutrality”

deadlock,
lifelock,
simulation,
abstraction,
refinement,
equivalence,
instantiation
correctness

18

Semantics should be mathematics!

Requirement:

In analogy to programming languages:

The semantics of a service is a mathematical object!

True, this is presently not the case.

BUT WE SHOULD spend effort into this!

19

Requirements:

The – elementary – notion of composition of services

is a (simple!) mathematical (or logical!) operation.

For services S and T,

the composition S  T

is a service again.

(Frequently, S  T does not interact any more.)

ticketing =def

sell_ticket  buy_ticket

Interaction is represented as composition

20

Given:

• a set S of services,

• a composition operator  : S  S  S,

This yields the algebraic structure

 (S; ).

The algebraic structure of services

21

... a transition system

with channels

for asynchronous communication

with its environment.

Semantics of S:
During a computation, each
channel funnels a stream of data.

technically:
a relation on – infinite – streams

S

a

b

c

Models of services

How to compose services?

22

Composition S  T
has pending channels.
… is a service again.

T b

e

d
S  T

S

a

b

c

Requirements at composed services

23

S and T communicate boundedly

S and T communicate responsively

With target states:

S  T weakly terminates

S  T is deadlock free

S  T is lifelock free

… as CTL* formulas:

S  T  AG n-bounded

S  T  AGEF responsive

S  T  AGEF terminal

S  T  AG (terminal  target)

S  T  AGEF target

T b

e

d
S  T

S

a

b

c

Together, services may
accomplish a requirement, r.

For a requirement r …

24

S and T communicate boundedly

S and T communicate responsively

With target states:

S  T weakly terminates

S  T is deadlock free

S  T is lifelock free

Def.: Let r be a requirement
 on services.
(i) S and T are r -partners
 iff S  T  r

(ii) S is substitutable by T
 iff for all U,
 S  U  r implies T  U  r

(iii) U is a r -adapter for S and T
 iff S  U  T  r

T b

e

d
S  T

S

a

b

c

25

properties of services

Quests at the partners of a service, S ,

w.r.t a requirement r :

Does S have r -partners at all ?

Is T a r -partner of S ?

How construct a canonical r -partner of S ?

How characterize all r -partners of S ?

Controllability

Composability

“most liberal”

Operating Guideline

26

a general goal

Description of

semantics and (in particular) composition of services:

- on a high level of business logic.

- not on a low level of implementation details.

Describe system properties !

27

Given:

• a set S of services,

• a composition operator  : S  S  S,

• a set Q of requirements r1, ... , rn  S.

This yields the algebraic structure

 (S;  ,).

For S, T  S, rQ,

T is a r - partner of S,

iff S  T  r.

Let semr(S) =def the set of

 all r - partners of S.

The algebraic structure of services

the “classical” requirement
r : weak termination

derived notions

(w.r.t some r):

S may be substituted by S‘ :
semr(S)  semr(S‘)

S and T are equivalent:
semr(S) = semr(T)

U adapts S and T:
S  U  T  r

 Q

This talk:

1. Aspects that exceed classical Theoretical Informatics

2. Towards a Theory of Services

3. Composing many services

28

Example: a supply chain

29

 RM  Su  Ma  Di  C u  Co

Example: an adapter

30

socket  adapter  plug

  ()

Given:

• a set S of services,

• a

• a set Q of requirements r1, ... , rn  S.

This yields the algebraic structure

 (S;  , Q).

composition operator  : S  S  S,

The algebraic structure of services

 n associative

A generic notion of “Service” (component) such that:

• A service S has an interface and an inner part.

• Two services S and T may be composed

 along their interfaces, yielding a service ST.

• The interfaces of S and T have fitting elements.

• Fitting elements of the interfaces of S and T

 turn into inner elements of ST.

Problem: a minimal set of requirements at such services

 and their composition 

 such that  is total and associative.

Wanted

T

a b

a naïve composition

33

c

S

a b

U

b c

T

a b c

S

a b

U

b c

(S  T)  U

S  (T  U)

=

A fundamental idea:

34

A services’ S interface is partitioned
into a left and a right port Sl and Sr !

 
RM  Su  Ma  Di  C u  Co

input and output

customer and supplier

provider and requester

producer and consumer

buy side and sell side

right
port Tr

right
port Sr

35

S

a

b

c

T b

e

d

b

e

f

U b

e

d

b

e

f

left
port Tl

Idea:
A services’ S interface is partitioned
into a left and a right port Sl and Sr !

For S  T,
compose
Sr with Tl .

two Ports

composition along ports

36

S

a

b

c

T b

e

d

b

e

f

U b

e

d

b

e

f

(S  T)  U

… is associative!

37

S

a

b

c

T b

e

d

b

e

f

U b

e

d

b

e

f

S  (T  U) (S  T)  U =

R1
L1

… more detailed
C1

a
C

B

A

D

38

R1 and L2 fit perfectly
C1

a
C

B

A

D

C2

R2 L2

b
E

D

C

F

39

R1
L1

R1
L1

Composition C1 $ C2
C1

a
C

B

A

D

40

C2

b
E

D

C

F

L12

C12

R2 R12

R1 L1

… it is not always that simple
C1

a
C

B

A

D

G

41

R2 L2

C2

b
E

D

C

F

L1

Composition C1 $ C2
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

C12

L12 R12

42

G

R1 L1

This works nicely:
C1

a
C

B

A

G

R2 L2

C2

b
E

D

C

F

43

C

R1 L1

… unfortunately
C1

a
C

B

A

D

E

44

R2 L2

C2

b
E

D

C

F

L1

Port with multiple label
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

C12

L12 R12

45

E

Two nodes of R12
are labelled alike!

You can not avoid this!

L2 R1 L1

… what to do here ???
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

Idea:
n equally labelled
nodes in one port
are indexed 1, … n .

C

graphical convention:
lower < upper.

46

Glue
equally labelled and
equally indexed nodes.

1

2

1

L2 R1 L1

… what to do here ???
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

Idea:
Equally labelled nodes
in one port
are ordered.

C

graphical convention:
lower < upper.

47

Glue
equally labelled nodes
both n-th in their order.

1

2

R1 L1

An extreme case
C1

a
A

A

A

A

A

48

all labels alike.

1

2

1

2

3

1

2 R2 L2

C2

b
A

A

A

1

R1 L1

An extreme case
C1

a
A

A

A

A

A

49

all labels alike.

1

2

1

2 R2 L2

C2

b
A

A

A

1 1

2

3

L1

An extreme case
C1

a
C

A

A

D

R2

C2

b
A

A

A

C12

L12 R12

50

A

all labels alike.

1

2

1

2

… another extreme case

a
C

B

A

D

b
G

F

E

H D

51

a
C

B

A

D

b
G

F

E

H

D

all labels different.

results in

… a tricky property

dad pays, mom selects,

tea!

juice!

mom dad

coin coin

tea!

juice!

beverage

vend. mach

52

coin

tea!

juice!

beverage

beverage

kid

tea!

juice!

mom dad

coin

… a tricky property

dad pays, mom selects, kid drinks.

vend. mach

53

juice!

tea!

mom

coin

juice!

tea!

beverage

dad

coin

kid

A variant of the vending machine

dad pays, mom selects, kid drinks.

beverage

vend. mach

54

N2

requester

R1

Ports may overlap!

N1

provider

55

N2

requester

R1

exclusive requester

N1

provider

56

N2

requester

R1

sharing requester

N1

provider

57

N2

requester

R1

sharing requester

N1

provider

58

N2‘

requester

N2

requester

second sharing requester

N1

provider

59

N2‘

requester

N2

requester

second sharing requester

N1

provider

60

N2‘

requester

N2

requester

third sharing requester

N2‘‘

requester

skip the primes:

 N1 $ N2 $ N2$

N2

N1

provider

61

generic sharing requesters

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

P $ Q

$ Q

P $ Q

$ Q$

Q

P $ Q

generic

reques-

ter Q :
Q

requester

D

M

R

L

62

prefer this variant?

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester
P $ Q

$ Q$

Q

P $ Q

A

A

A

A

A

A

63

P $ Q

$ Q

generic

reques

ter Q :
Q

requester

D

M

R

L

prefer this variant?

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

P $ Q

$ Q

P $ Q

$ Q$

Q

P $ Q

A

64

A

generic

reques

ter Q :
Q

requester

D

M

R

L
just make

a member of L

2 1

Cyclic composition: The philosophers

A

3 2 B 4 3 C 5 4 D 1 5 E

This is A$ B $ C$ D$ E

The problem: How glue ?
Construct the closure (A$ B $

C$ D$ E)c
65

2 3 2 B 4 3 C 5 4 D 1 5 E 1

Cyclic composition: The philosophers

A

This is A$ B $ C$ D$ E

The problem: How glue ?
Construct the closure (A$ B $

C$ D$ E)c
66

... with a generic philosopher

r l p

algebraic form: (p$ p $ p$

p$ p)c

67

r p r p r p r p

Given:

• a set S of services,

• an associative composition operator  : S  S  S,

• a unary closure operator, ()c

• a set Q of requirements r1, ... , rn  S.

This yields the algebraic structure

 (S;  , ,Q).

Study its algebraic laws!

Extend/refine the structure conservatively!

Build your systems accordingly!

Squeeze it all into tools!

The algebraic structure of services

()c

69

… on your request
Don’t like labels at all?

Prefer one interface instead of two ports?

However:

Order without labeling,

interface without two ports:

both not too expressive!

Do with ordered ports.

Take L = R.

The algebraic structure of clouds

70

Theory of
Programming

Prof. Dr. W. Reisig

Service Orientation as
a paradigm of computing

Wolfgang Reisig

Humboldt-Universität zu Berlin

ICTERI

Kiev, June 24, 2016

