
Theory of 
Programming 

Prof. Dr. W. Reisig 

Tutorial 
Foundations of SOC 

 
Fundamentals of  

the SOC Paradigm 
 

Wolfgang Reisig 

Humboldt-Universität zu Berlin 

SUMMERSOC 

Hersonissos, June 29, 2016.  9.30 – 10.30 



Fundamentals of the SOC Paradigm 
 

1.  Aspects that exceed classical Theoretical Informatics 

2. Towards a Theory of Services 

3.  Composing many services 

2 



1.  Aspects that exceed classical Theoretical Informatics 

2. Towards a Theory of Services 

3.  Composing many services 

3 

Fundamentals of the SOC Paradigm 
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2012 

celebrated as the greatest computer scientist of the 20th century.  

 

Basics of theoretical informatics: 

Turing Machines (1936)  

Classical Theoretical Informatics 



alphabet     ;                   finitely many symbols     a, b, c, … ,z 

words          *;                 countably many                ab, ca, aca, … 

functions f: *         *;   uncountably many 

 

Some of those functions are “computable”  (countably many). 

 

Each computable function can effectively be computed  

• by a computer (with unbounded store) 

• by an amazingly simple kind of machine, a Turing machine. 

 

Yet, no computer can compute more functions. 
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Theoretical Informatics in a nutshell 

 --- 



useful, undisputed: 

 

• equivalence,  

• composition 

• complexity 

• logical characterizations 

 

• deep theoretical results  

• famous open problems. 

 

So, the theory of computable functions 

is frequently considered THE theory of informatics.  
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… lots of concepts 



How establish reliable communication? 
By sending acknowledgements, copies, etc. , 
i.e. by means of distributed algorithms  (“protocols”). 

1. Informatics comprises 
communication 

Complexity is not in computation but in communication. 
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2. Informatics comprises  
non-ending behavior 

classical view:  

terminating behavior is intended,  

infinite behavior is mistaken. 

SOC  “always on” 
 
cloud 
 
elevator control 
 
business informatics “24/7” 
 
 
new view:         
infinite behavior is intended. 
terminating behavior is mistaken. 
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causal independence 
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Distributed Systems and Distributed Runs  

a b a b a a c c c b 
… 

d e d e d d f f f e 
… 

c 

a b 

f 

e d 



a b a b a a c c c b 
… 

d e d e d d f f f e 
… 
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a variant: i-th b before i-th f 

a deterministic system 
no alternatives 
one behavior (run, execution) 

c 

a b 

f 

e d 



more general … 
the beer hall pattern: 

“ … so that people are continuously criss-crossing  

from one to another.”  … to click their glasses 



what is this formally? 
… a partially ordered set of events 

A B 

C 

D E 

F 



This talk: 

1.  Aspects that exceed classical Theoretical Informatics 

2. Towards a Theory of Services 

3.  Composing many services  
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The World of Software  
Classical Programming: 
Concepts Languages Implementations 

Java  
C** 

very many 

f: *          * 
termination is undecidable 
one while-loop suffices 
Algorithms 
Semantics of Progr. Lang. 
Verification 

  --- 

the world of SOC: 

BPEL 
BPNM bpel-g 

open ESP … 
as outlined by 
Jörg Lenhard  

Concepts Languages Implementations 

standards, 
“technical 
neutrality” 

deadlock,  
lifelock, 
simulation, 
abstraction, 
refinement, 
equivalence,  
instantiation 
correctness   
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Semantics should be mathematics! 

Requirement: 
 
In analogy to programming languages: 
 
The semantics of a service is a mathematical object! 
 
True, this is presently not the case. 
 

BUT WE SHOULD spend effort into this! 
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Requirements: 

 

The – elementary – notion of composition of services  

is a (simple!) mathematical (or logical!) operation. 

 

For services  S  and  T,   

the composition  S  T   

is a service again. 

 

(Frequently,  S  T  does not interact any more.) 

 

ticketing   =def    

sell_ticket  buy_ticket 

 

Interaction is represented as composition 
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Given: 

• a set  S  of services, 

• a composition operator  : S  S  S, 

 

This yields the algebraic structure   

                         (S;   ). 

 

 

The algebraic structure of services 
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... a transition system  

with channels 

for asynchronous communication 

with its environment. 

Semantics of  S:   
During a computation, each 
channel funnels a stream of data. 
 
technically: 
a relation on – infinite – streams 

S 

a 

b 

c 

Models of services 



How to compose services? 

22 

Composition  S  T  
has pending channels. 
… is a service again. 
 

T b 

e 

d 
S  T 

S 

a 

b 

c 



Requirements at composed services 
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S  and  T  communicate boundedly 

S  and  T  communicate responsively 

 

With target states: 

S  T weakly terminates  

S  T is deadlock free 

S  T is lifelock free 

 
 

… as CTL*  formulas: 

S  T  AG n-bounded 

S  T  AGEF responsive 

 

 

S  T  AGEF terminal 

S  T  AG (terminal  target) 

S  T  AGEF target 

T b 

e 

d 
S  T 

S 

a 

b 

c 

Together, services may  
accomplish a requirement, r.  



For a requirement r … 
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S  and  T  communicate boundedly 

S  and  T  communicate responsively 

 

With target states: 

S  T weakly terminates  

S  T is deadlock free 

S  T is lifelock free 

 
 

Def.: Let r be a requirement        
          on services. 
(i) S and T are r -partners 
      iff  S  T  r 
 
(ii) S is substitutable by T   
       iff for all U, 
      S  U  r implies T  U  r 
 
 
 
(iii) U is a r -adapter for S and T     
     iff  S  U  T  r 
 
 

T b 

e 

d 
S  T 

S 

a 

b 

c 
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properties of services  

Quests at the partners of a service,  S , 

w.r.t a requirement r : 

 

Does  S  have r -partners at all ?                 

Is  T  a r -partner of  S  ? 

How construct a  canonical r -partner of  S ? 

How characterize  all r -partners of  S ? 

Controllability 

Composability 

“most liberal” 

Operating Guideline 



26 

a general goal 

Description of  

semantics and (in particular) composition of services: 

  

- on a high level of business logic. 

- not on a low level of implementation details. 

 

Describe system properties ! 
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Given: 

• a set  S  of services, 

• a composition operator  : S  S  S, 

• a set Q of requirements r1, ... , rn   S. 

This yields the algebraic structure   

                         (S;   ,   ). 

 

For  S, T  S,  rQ, 

T  is a r - partner  of  S, 

iff  S  T  r.       

 

Let  semr(S)  =def  the set of  

                               all r - partners of  S. 

 

The algebraic structure of services 

the “classical” requirement 
r : weak termination 

 

derived notions 

(w.r.t some r ): 

 

S  may be substituted by S‘ :        
semr(S)  semr(S‘ ) 

 

S  and  T  are equivalent:                       
semr(S) = semr(T) 

 

U adapts  S  and  T:                             
S  U  T  r 

 Q  



This talk: 

1.  Aspects that exceed classical Theoretical Informatics 

2. Towards a Theory of Services 

3.  Composing many services 
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Example:  a supply chain 
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 RM  Su  Ma  Di  C u  Co 



Example: an adapter 
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socket  adapter  plug 

  ( ) 



Given: 

• a set  S  of services, 

• a 

• a set Q of requirements r1, ... , rn   S. 

This yields the algebraic structure   

                         (S;   , Q).  

composition operator  : S  S  S, 

The algebraic structure of services 

 n associative 



A generic notion of “Service” (component) such that: 

 

• A service  S  has an interface and an inner part. 

• Two services  S  and  T  may be composed 

      along their interfaces, yielding a service  ST. 

• The interfaces of  S  and  T  have fitting elements. 

• Fitting elements of the interfaces of  S  and  T   

     turn into inner elements of ST. 

 

Problem: a minimal set of requirements at such services   

                  and their composition   

                  such that    is total and associative. 

 

Wanted 



T 

a b 

a naïve composition 
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c 

S 

a b 

U 

b c 

T 

a b c 

S 

a b 

U 

b c 

(S  T)  U 

S   (T  U) 

= 



A fundamental idea: 
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A services’  S  interface is partitioned 
into a left and a right port Sl and Sr ! 

  
RM  Su  Ma  Di  C u  Co 

input            and    output 

customer    and    supplier 

provider      and    requester 

producer     and    consumer 

buy side       and    sell side 

 



right 
port Tr 

right 
port Sr 
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S 

a 

b 

c 

T b 

e 

d 

b 

e 

f 

U b 

e 

d 

b 

e 

f 

left 
port Tl 

Idea:  
A services’  S  interface is partitioned 
into a left and a right port Sl and Sr ! 

For S  T,  
compose 
Sr with Tl  . 

two Ports 



composition along ports 
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S 

a 

b 

c 

T b 

e 

d 

b 

e 

f 

U b 

e 

d 

b 

e 

f 

(S  T)  U 



… is associative! 
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S 

a 

b 

c 

T b 

e 

d 

b 

e 

f 

U b 

e 

d 

b 

e 

f 

S   (T  U) (S  T)  U = 



R1 
L1 

… more detailed 
C1 

a 
C 

B 

A 

D 
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R1  and  L2  fit perfectly 
C1 

a 
C 

B 

A 

D 

C2 

R2 L2 

b 
E 

D 

C 

F 
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R1 
L1 



R1 
L1 

Composition  C1 $ C2 
C1 

a 
C 

B 

A 

D 

40 

C2 

b 
E 

D 

C 

F 

L12 

C12 

R2 R12 



R1 L1 

… it is not always that simple 
C1 

a 
C 

B 

A 

D 

G 
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R2 L2 

C2 

b 
E 

D 

C 

F 



L1 

Composition  C1 $ C2 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

C12 

L12 R12 

42 

G 



R1 L1 

This works nicely: 
C1 

a 
C 

B 

A 

G 

R2 L2 

C2 

b 
E 

D 

C 

F 
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C 



R1 L1 

… unfortunately 
C1 

a 
C 

B 

A 

D 

E 
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R2 L2 

C2 

b 
E 

D 

C 

F 



L1 

Port with multiple label 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

C12 

L12 R12 
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E 

Two nodes of R12  
are labelled alike! 

You can not avoid this! 



L2 R1 L1 

… what to do here ??? 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

Idea: 
n equally labelled 
nodes in one port  
are indexed 1, … n . 

C 

graphical convention: 
lower < upper. 
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Glue  
equally labelled and 
equally indexed nodes. 

1 

2 

1 



L2 R1 L1 

… what to do here ??? 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

Idea: 
Equally labelled nodes 
in one port  
are ordered. 

C 

graphical convention: 
lower < upper. 
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Glue  
equally labelled nodes 
both n-th in their order. 

1 

2 



R1 L1 

An extreme case 
C1 

a 
A 

A 

A 

A 

A 
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all labels alike. 

1 

2 

1 

2 

3 

1 

2 R2 L2 

C2 

b 
A 

A 

A 

1 



R1 L1 

An extreme case 
C1 

a 
A 

A 

A 

A 

A 
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all labels alike. 

1 

2 

1 

2 R2 L2 

C2 

b 
A 

A 

A 

1 1 

2 

3 



L1 

An extreme case 
C1 

a 
C 

A 

A 

D 

R2 

C2 

b 
A 

A 

A 

C12 

L12 R12 
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A 

all labels alike. 

1 

2 

1 

2 



… another extreme case 

a 
C 

B 

A 

D 

b 
G 

F 

E 

H D 
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a 
C 

B 

A 

D 

b 
G 

F 

E 

H 

D 

all labels different. 

results in 



… a tricky property 

dad  pays,  mom  selects, 

tea! 

juice! 

mom dad 

coin coin 

tea! 

juice! 

beverage 

vend. mach 
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coin 

tea! 

juice! 

beverage 

beverage 

kid 

tea! 

juice! 

mom dad 

coin 

… a tricky property 

dad  pays,  mom  selects, kid  drinks. 

vend. mach 
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juice! 

tea! 

mom 

coin 

juice! 

tea! 

beverage 

dad 

coin 

kid 

A variant of the vending machine 

dad  pays,  mom  selects, kid  drinks. 

beverage 

vend. mach 
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N2  

requester  

R1 

Ports may overlap! 

N1  

provider 
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N2  

requester  

R1 

exclusive requester 

N1  

provider 
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N2  

requester  

R1 

sharing requester 

N1  

provider 
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N2  

requester  

R1 

sharing requester 

N1  

provider 
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N2‘  

requester  

N2  

requester  

second sharing requester 

N1  

provider 
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N2‘  

requester  

N2  

requester  

second sharing requester 

N1  

provider 
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N2‘  

requester  

N2  

requester  

third sharing requester 

N2‘‘ 

requester  

skip the primes: 

 N1 $ N2 $ N2$ 

N2 

N1  

provider 

61 



generic sharing requesters  

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  

P $ Q 

$ Q 

P $ Q 

$ Q$ 

Q  

P $ Q 

generic 

reques- 

ter Q : 
Q 

requester  

D 

M 

R 

L 
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prefer this variant? 

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  
P $ Q 

$ Q$ 

Q  

P $ Q 

A 

A 

A 

A 

A 

A 
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P $ Q 

$ Q 

generic 

reques 

ter Q : 
Q 

requester  

D 

M 

R 

L 



prefer this variant? 

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  

P $ Q 

$ Q 

P $ Q 

$ Q$ 

Q  

P $ Q 

A 

64 

A 

generic 

reques 

ter Q : 
Q 

requester  

D 

M 

R 

L 
just make  

a member of  L 
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Cyclic composition: The philosophers 

A 

3 2 B 4 3 C 5 4 D 1 5 E 

This is  A$ B $ C$ D$ E 

The problem:  How glue      ? 
Construct the  closure  (A$ B $ 

C$ D$ E)c 
65 
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Cyclic composition: The philosophers 
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This is  A$ B $ C$ D$ E 

The problem:  How glue      ? 
Construct the  closure  (A$ B $ 

C$ D$ E)c 
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... with a generic philosopher 

r l p 

algebraic form:  (p$ p $ p$ 

p$ p)c 

67 

r p r p r p r p 



Given: 

• a set  S  of services, 

• an associative composition operator  : S  S  S, 

• a unary closure operator, ( )c 

• a set Q of requirements r1, ... , rn   S. 

This yields the algebraic structure   

                         (S;   ,      ,Q).  

 

Study its algebraic laws! 

Extend/refine the structure conservatively! 

Build your systems accordingly! 

Squeeze it all into tools! 

The algebraic structure of services 

( )c 



69 

… on your request 
Don’t like labels at all?   

                                                

 

Prefer  one interface  instead of  two ports?   

                                                        

 

However: 

Order without labeling,  

interface without two ports: 

both not too expressive! 

Do with ordered ports. 

Take  L = R. 



The algebraic structure of clouds 
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