

Collective Utility in Hierarchical Structures of Collective Adaptive Systems: an Application in Transportation Systems

¹Transformation Services Laboratory University of Crete Heraklion, 70013, Greece

²Department of Informatics Athens University of Economics and Business Athens, 10434, Greece M. Bitsaki¹, M. Dramitinos², George Koutras¹, Dimitrios Plexousakis¹, Alina Psycharaki¹

bitsaki@tsl.gr

Outline

- Introduction
 - The ALLOW Ensembles Model
 - Contributions
- Collective utility
- Hierarchical model
- Application
 - Urban Mobility System
 - Maximization
 - Experiments
- Conclusions

The ALLOW Ensembles Model

- Example: urban mobility system
- Entities collaborate with each other to fulfill specific goals in the scope of ensembles
 - Entities' individual goals can impact other's satisfaction
 - Examples: Bus Driver, Passenger, Route Manager, FlexiBus Manager
- Cells encapsulate a functionality that the entity offers to the system
 - Examples: Passenger Trip Booking, Credit Card Payment, Route Control
- **Ensemble** is a set of cells from different entities collaborating with each other to fulfill some of the goals of the entities
 - Example: Route

Contributions

- Define the <u>collective utility</u> of an ensemble
- Propose a hierarchical structure to calculate the collective utility
 - Suitable in environments of incomplete information
 - Facilitates computations
- Apply collective utility in urban mobility system for making decisions

- Maximization problems

- The *utility* of an entity is a measure of satisfaction experienced by the entity for using a service
 - Entities make choices to maximize their utility
- The collective utility of an ensemble is a measure of the welfare of <u>all</u> entities that participate in the ensemble

 $v_E(a, w_1, \dots, w_k) = f_1(w_1, \dots, w_k)u_1(a, w_1) + \dots + f_k(w_1, \dots, w_k)u_k(a, w_k)$

a: utility parameters w_i : entity *i* preferences u_i : individual utility for entity *i* f_i : weight for entity *i*

- Evaluate ensembles
- Make collective decisions
- Improve the performance of service systems

A Utility Model for Ensemble Hierarchies

- A <u>hierarchy of ensembles</u> considers smaller ensembles being part of larger ensembles in terms of management and operation
- Accordingly, we consider a <u>hierarchy of the utilities</u> of the ensembles of the various levels in order to manage the required information in a scalable way

•
$$v_i = g_i(u_{i1}, ..., u_{ik_i}), i = 1, ..., n$$

• $v = g(v_1, ..., v_n)$

 u_{ij} : utility of entity *ij* g_i, g : aggregation functions Complementarities among Entities

- A factor that plays an important role in the <u>determination</u> of functions g, g_i is the existence of complementarities between the sets of the entities of the ensembles in the lower levels
 - entities collaborate with more than one ensembles in the lower level
 - each entity collaborates with only one ensemble in the lower level
 - all entities collaborate with all ensembles in the lower level

Smart City

- Passengers
 - Objectives
 - Preferences
- Buses
 - Fixed Capacity
- Dynamic Routes
 - Based on bookings
 - Context
- Environmental Changes
 - Traffic
 - Breakdowns
- Urban Mobility System
 - High service quality
 - Cost Optimization
 - Eco friendly

- A multi-modal transport system
 - Supervises various means of transportation:
 Regular bus, FlexiBus, Car pooling, etc.
 - Smart services
 - provide the passengers with a universal tool for planning complex trips involving more than one means
 - create integrated notification and support system
 - exploit related services on the go (ticket purchase, car pool reservation, ...)

FlexiBus Scenario: Entities

Passengers

Make requests specifying origin, destination, desired arrival time and other preferences

Bus driver

- is assigned a precise route
- communicates with an assigned Route Manager to ask for the next pick-up point and to communicate information

FlexiBus Manager

- collects necessary information (i.e. traffic, closed roads, events, etc.) and available resources (i.e. available buses)
- generates alternative routes

First Case: Multiple Routes for a Destination

• We consider a FlexiBus company that provides two routes for transporting passengers from pick-up point A to B and B to C respectively

- w_i: maximum travel time of passenger i
- k_i : risk tolerance

 u_i : utility

 S_j : set of passengers in route R_j

$$S'_1 = S_1 - (S_1 \cap S_2)$$
 and $S'_2 = S_2 - (S_1 \cap S_2)$

$$u_i(t) = e^{\left(-\frac{k_i t}{w_i}\right)}$$

$$v_1 = \frac{w_1 u_1 + w_2 u_2 + w_{31} u_3 + w_{41} u_4}{w_1 + w_2 + w_{31} + w_{41}}$$

$$v_2 = \frac{w_5 u_5 + w_6 u_6 + w_{32} u_3 + w_{42} u_4}{w_5 + w_6 + w_{32} + w_{42}}$$

$$v = \frac{|S'_1|}{|S'_1 \cup S'_2|} v_1 + \frac{|S'_2|}{|S'_1 \cup S'_2|} v_2$$

Second Case: Multiple Passengers with the Same Goal

 We consider a city planner who coordinates the transportation of many passengers from <u>different origins</u> to the <u>same destination</u> at the same arrival time (e.g. to attend a concert) with different modes of transportation

 w_i^1 : maximum travel time of passenger i

 w_i^2 : preference of passenger i for taking the FlexiBus

u_i: utility of passenger i

 S_1 : set of passengers in FlexiBus

$$u_i = w_i^2 u_i^F + (1 - w_i^2) u_i^T$$

$$v_1 = \frac{w_1^1 u_1 + w_2^1 u_2 + w_3^1 u_3 + w_4^1 u_4}{w_1^1 + w_2^1 + w_3^1 + w_4^1}$$

$$v_2 = \frac{w_5^1 u_5 + w_6^1 u_6}{w_5^1 + w_6^1}$$

$$v = \frac{|S_1|}{|S_1 \cup S_2|} v_1 + \frac{|S_2|}{|S_1 \cup S_2|} v_2$$

Third Case: FlexiBus Failure

We consider a FlexiBus company that provides a route for transporting passengers from point A to B. At some point, a failure occurs and the FlexiBus manager searches for alternatives

$$v_1 = \frac{w_1 u_1 + w_2 u_2 + w_3 u_3}{w_1 + w_2 + w_3}$$
$$v_2 = \frac{w_1 u_1' + w_2 u_2' + w_3 u_3'}{w_1 + w_2 + w_3}$$

$$v = \max\{v_1, v_2\}$$

Decision Making in First Scenario

- Consider that the FlexiBus Manager has received a number of requests for trip A to B, a number of requests for trip B to C and a number of requests for trip A to C (path passengers)
- <u>Decision</u> to be made: which passengers to serve so that the collective utility is maximized

Maximization Problem

 $\max_{K\subseteq N} u_K$

$$s.t. |N_1 \cup N_3| \le C_1$$
$$|N_2 \cup N_3| \le C_2$$

$$\begin{split} w_{i1} + w_{i2} &\leq w_i \text{ for each } i \in N_3 \\ T_1 &\leq w_i \text{ for each } i \in N_1 \\ T_2 &\leq w_i \text{ for each } i \in N_2 \\ T_1 + T_2 &\leq w_i \text{ for each } i \in N_3 \end{split}$$

 u_K : collective utility of set of passengers K

 $N = N_1 \cup N_2 \cup N_3$ set of all passengers

 C_1, C_2 bus capacities

 w_i : maximum travel time

 T_i , i = 1,2 expected travel time

- We consider that the FlexiBus manager has access only to path requests which then forwards to the lower level route managers with the additional information of how to split the preference w_i for each such request
- Each route manager has access to the information related to the requests made for his own route
- Each route manager solves the above mathematical problem considering only passengers of his own route
 - some passengers that want both routes may be accepted by route 1 but may not be accepted by route 2
 - path passengers that have won in both links are accepted. The available seats are offered to single route passengers provided that overall collective utility is maximized

Experiments

Route characteristics

	Route 1	Route 2
Start time	8:00	9:00
Travel time (min)	[30,40]	[20,30]
Capacity	20	20

• Passenger profile

Preference	Type 1	Type 2	Туре З
Desired travel time (min)	[35, 45]	[25, 35]	[80, 100]
Risk tolerance	[0.5, 0.8]	[0.5, 0.8]	[0.2, 0.4]

• where w denotes the weight given to path passengers

Results (I)

Comparison of hierarchical and central approaches for w = 1.1

bitsaki@tsl.gi

Results (II)

Comparison of hierarchical and central approaches for w = 1.2

bitsaki@tsl.g

Results (III)

Comparison of hierarchical and central approaches for w = 1.3

-max -----decentralized

bitsaki@tsl.gi

Conclusions

- In this paper, we provided models for calculating the collective utility of an ensemble and hierarchical structures for calculating upper level utilities from lower level utilities
- The success of this approach depends on
 - the way utility functions are selected (so that preferences of entities are appropriately represented)
 - how well the consecutive levels in the hierarchy coordinate to take into account complementarities, interdependencies and knowledge aggregation so that a scalable model is built.