PORTABILITY OF PROCESS-AWARE AND SERVICE-ORIENTED SOFTWARE

EVIDENCE AND METRICS

COMPUTER SCIENCE

JÖRG LENHARD

AFFILIATION – THEN

Distributed Systems Group

University of Prof. E Bamberg, Germany W

Prof. Dr. Guido Wirtz

Simon Harrer Matthias Geiger

Stefan Kolb

AFFILIATION – NOW

Software Engineering Research Group

University of Karlstad, Sweden

SERVICE-ORIENTATION

Uniform Interfaces Technological Neutrality Loose Coupling Location Transparency

Service composition through process models

Explicit representations Easier communication with stakeholders

5

LANGUAGES FOR PROCESS-AWARENES

6

PROCESS MODELS AND ENGINES

7

ER SCIENCE

BPMN 2.0

"One of the main goals of this specification is to provide an interchange format ... to enable portability of process diagrams" – p. 9

BPEL 2.0

XPDL 2.2

8

BPMN 2.0

"... the language effectively defines a portable execution format for business processes ... "-p. 7

XPDL 2.2

9

BPMN 2.0

BPEL 2.0

XPDL 2.2

"... One goal of XPDL is to promote portability of abstract activity flow models between tools ..." – p. 42

TOSCA 1.0

COMPUTER SCIENCE

BPMN 2.0

BPEL 2.0

XPDL 2.2

TOSCA 1.0

"... the specification relies on existing languages like BPMN or BPEL. Relying on existing standards in this space facilitates portability ... "-p. 12

PORTABILITY IS BASED ON STANDARDS

COMPUTER SCIENCE

EVIDENCE Investigation of standards-based portability

MEASUREMENT

Development of a measurement framework for assessing portability

ER SCIENCE

EVALUATION OF STANDARD CONFORMANCE

Engine-independent test cases

Comprehensive overview of standard conformance

ER SCIENCE

TEST CASES AND ENGINES

TEST AUTOMATIZATION WITH BETSY

COMPUTER SCIENCE

BPEL 2.0 – STATE OF IMPLEMENTATION

COMPUTER SCIENCE

BPMN 2.0 – STATE OF IMPLEMENTATION

COMPUTER SCIENCE

FEATURE INTERSECTION

BPMN 2.0 – SHARED LANGUAGE CONSTRUCTS

EVIDENCE FOR PORTABILITY ISSUES

Diverse state of implementation

- Standardization goal not reached at the moment
- Portability difficult to achieve in this situation

COMPUTER SCIENCE

ISO/IEC SQUARE MODEL

COMPUTER SCIENCE

MEASUREMENT FRAMEWORK METHODOLOGY

Theoretical validation

Practical / experimental evaluation

- 1. Implementation of measurement tool
- 2. Setting of hypotheses
- 3. Collection of test data
- 4. Statistical analysis

ER SCIENCE

MEASUREMENT OF PORTABILITY

$Portability = 1 - \frac{Effort of porting}{Effort of rewriting}$

COMPUTER SCIENCE

PORTABILITY METRICS

Weigthing	Severity			
Support in Engines	Basic metric	Weighted metric	Control-flow	Communi- cation-flow
Engine A Engine B Engine C	Classic, only LOC	Weigthed by number of engines	Limited to activities, events, gateways	Limited to constructs that define, send, or receive messages

COMPUTER SCIENCE

TEST DATA FOR PORTABILITY EVALUATION

Origin		No. Models
Active Endpoints	endpoints	22
Apache ODE	Ý	25
Oracle	ORACLE	82
Explorative search		86
Repository Crawling	BLACKDUCK Open HUB	1427

Validity checks:

- Syntactical correctness
- Basic requirements for executable models

SELECTED HYPOTHESES

Library (selected)	Basic	Weighted	Control-flow	Communication-flow
Oracle	0.72	0.87	0.68	1
Explorative search	0.84	0.99	0.59	0.53

Repeated execution of the experiment does not result in significantly different values. The measurement framework is stable

Metric	Discriminative power
Basic metric	0.23
Weighted metric	0.32

A weighting by engines increases discriminative power

SUMMARY

