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Research Question:

How to approach the decision problem?

requirements database



 „NoSQL“ term coined in 2009

 Interpretation: „Not Only SQL“

 Typical properties:
◦ Non-relational

◦ Open-Source

◦ Schema-less (schema-free)

◦ Optimized for distribution (clusters)

◦ Tunable consistency

NoSQL Databases

NoSQL-Databases.org:
Current list has over 150 

NoSQL systems



 Two common criteria:

NoSQL System Classification

Data
Model

Consistency/Availability
Trade-Off

AP: Available & Partition 
Tolerant

CP: Consistent &  
Partition Tolerant

Graph

CA: Not Partition 
Tolerant 

Document

Wide-Column

Key-Value



 Data model: (key) -> value

 Interface: CRUD (Create, Read, Update, Delete)

 Examples: Amazon Dynamo (AP), Riak (AP), Redis (CP)

Key-Value Stores

{23, 76, 233, 11}users:2:friends

[234, 3466, 86,55]users:2:inbox

Theme → "dark", cookies → "false"users:2:settings

Value: 
An opaque blob

Key



 Data model: (rowkey, column, timestamp) -> value

 Interface: CRUD, Scan

 Examples: Cassandra (AP), Google BigTable (CP), 
HBase (CP)

Wide-Column Stores

com.cnn.www crawled: …
content : "<html>…"

content : "<html>…"content : "<html>…" title : "CNN"

Row Key Column
Versions (timestamped)



 Data model: (collection, key) -> document

 Interface: CRUD, Querys, Map-Reduce

 Examples: CouchDB (AP), Amazon SimpleDB (AP), 
MongoDB (CP)

Document Stores

order-12338 {
order-id: 23,
customer: { name : "Felix Gessert", age : 25 }
line-items : [ {product-name : "x", …} , …]

}

ID/Key JSON Document



 Data model: G = (V, E): Graph-Property Modell

 Interface: Traversal algorithms, querys, transactions

 Examples: Neo4j (CA), InfiniteGraph (CA), OrientDB
(CA)

Graph Databases

company: 
Apple
value:

300Mrd

name: 
John Doe

WORKS_FOR
since: 1999
salary: 140K

Nodes

Edges

Properties
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Search Platforms (Full Text Search):
◦ No persistence and consistency guarantees for OLTP

◦ Examples: ElasticSearch (AP), Solr (AP)

Object-Oriented Databases:
◦ Strong coupling of programming language and DB

◦ Examples: Versant (CA), db4o (CA), Objectivity (CA)

XML-Databases, RDF-Stores:
◦ Not scalable, data models not widely used in industry

◦ Examples: MarkLogic (CA), AllegroGraph (CA)

Soft NoSQL Systems
Not Covered Here



Only 2 out of 3 properties are
achievable at a time:
◦ Consistency: all clients have the same 

view on the data

◦ Availability: every request to a non-
failed node most result in correct
response

◦ Partition tolerance: the system has to
continue working, even under
arbitrary network partitions

CAP-Theorem

Eric Brewer, ACM-PODC Keynote, Juli 2000

Gilbert, Lynch: Brewer's Conjecture and the Feasibility of 
Consistent, Available, Partition-Tolerant Web Services, SigAct News 2002

Consistency

Availability
Partition 
Tolerance

Impossible



Data Models and CAP provide high-level 
classification.

But what about fine-grained
requirements, e.g. query capabilites?



Outline

• Techniques for Functional
and Non-functional
Requirements
• Sharding
• Replication
• Storage Management
• Query Processing

NoSQL Foundations and
Motivation

The NoSQL Toolbox: 
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree



Functional Techniques Non-Functional
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Query Planning
Analytics Framework
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Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk
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Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Sharding

Elasticity

Write Scalability

Read Scalability

Data Scalability

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk



Sharding (aka Partitioning, Fragmentation)

 Horizontal distribution of data over nodes

 Partitioning strategies: Hash-based vs. Range-based

 Difficulty: Multi-Shard-Operations (join, aggregation)

Shard 1

Shard 2

Shard 3

[G-O]
FranzPeter



Hash-based Sharding
◦ Hash of data values (e.g. key) determines partition (shard)
◦ Pro: Even distribution
◦ Contra: No data locality

Range-based Sharding
◦ Assigns ranges defined over fields (shard keys) to partitions
◦ Pro: Enables Range Scans and Sorting
◦ Contra: Repartitioning/balancing required

Entity-Group Sharding
◦ Explicit data co-location for single-node-transactions
◦ Pro: Enables ACID Transactions
◦ Contra: Partitioning not easily changable

Sharding

MongoDB, Riak, Redis, 
Cassandra, Azure Table, 
Dynamo

Implemented in

BigTable, HBase, DocumentDB
Hypertable, MongoDB, 
RethinkDB, Espresso

Implemented in

G-Store, MegaStore,
Relation Cloud, Cloud SQL 
Server 

Implemented in

David J DeWitt and Jim N Gray: “Parallel database systems: The future of high performance 
database systems,” Communications of the ACM, volume 35, number 6, pages 85–98, June 1992.



Functional Techniques Non-Functional

ACID Transactions

Conditional or Atomic Writes
Replication

Consistency

Read Latency

Read Availability

Write Availability

Write Latency

Read Scalability

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere



 Stores N copies of each data item

 Consistency model: synchronous vs asynchronous

 Coordination: Multi-Master, Master-Slave

Replication

DB Node

DB Node

DB Node

Özsu, M.T., Valduriez, P.: Principles of distributed database systems. 
Springer Science & Business Media (2011)



Asynchronous (lazy)
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: When

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Asynchronous (lazy)
◦ Writes are acknowledged immdediately

◦ Performed through log shipping or update propagation

◦ Pro: Fast writes, no coordination needed

◦ Contra: Replica data potentially stale (inconsistent)

Synchronous (eager)
◦ The node accepting writes synchronously propagates

updates/transactions before acknowledging

◦ Pro: Consistent

◦ Contra: needs a commit protocol (more roundtrips), 
unavaialable under certain network partitions

Replication: When

Dynamo , Riak, CouchDB, 
Redis, Cassandra, Voldemort, 
MongoDB, RethinkDB

Implemented in

BigTable, HBase, Accumulo, 
CouchBase, MongoDB, 
RethinkDB

Implemented in

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Master-Slave (Primary Copy)
◦ Only a dedicated master is allowed to accept writes, slaves are

read-replicas

◦ Pro: reads from the master are consistent

◦ Contra: master is a bottleneck and SPOF

Multi-Master (Update anywhere)
◦ The server node accepting the writes synchronously

propagates the update or transaction before acknowledging

◦ Pro: fast and highly-available

◦ Contra: either needs coordination protocols (e.g. Paxos) or is
inconsistent

Replication: Where

Charron-Bost, B., Pedone, F., Schiper, A. (eds.): Replication: Theory and 
Practice, Lecture Notes in Computer Science, vol. 5959. Springer (2010)



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).
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Either version-based or 
time-based. Both not 
highly available.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).
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Writes in one session are 
strictly ordered on all 
replicas.
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Versions a client reads in 
a session increase
monotonically.
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Clients directly 
see their own 
writes.
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Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

If a value is read, any causally 
relevant data items that lead to 
that value are available, too.



Consistency Levels

Writes 
Follow Reads

Read Your 
Writes

Monotonic
Reads

Monotonic
Writes

Bounded 
Staleness

Lineari-
zability

PRAM

Causal
Consistency

Achievable with high availability
Bailis, Peter, et al. "Bolt-on causal 
consistency." SIGMOD, 2013.

Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).



Consistency Levels

Writes 
Follow Reads
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Causal
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Bailis, Peter, et al. "Highly available transactions: Virtues and 
limitations." Proceedings of the VLDB Endowment 7.3 (2013): 181-192.

Viotti, Paolo, and Marko Vukolić. "Consistency in Non-
Transactional Distributed Storage Systems." arXiv (2015).

Strategies:
• Single-mastered reads and 

writes
• Multi-master replication with 

consensus on writes



Functional Techniques Non-Functional

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Read Latency

Write Throughput

Durability



NoSQL Storage Management
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Promotes durability of 
write operations.

Increases write 
throughput.

Is good for 
read latency.

Improve 
latency.



Functional Techniques Non-Functional

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Query Processing

Read Latency

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views



Local Secondary Indexing
Partitioning By Document

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).
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Local Secondary Indexing
Partitioning By Document
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Indexing is always 
local to a partition.• MongoDB

• Riak
• Cassandra
• Elasticsearch
• SolrCloud
• VoltDB

Implemented in
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Global Secondary Indexing
Partitioning By Term

Kleppmann, Martin. "Designing data-intensive 
applications." (2016).
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Targeted Query

Consistent Index-
maintenance requires 
distributed transaction.• DynamoDB

• Oracle Datawarehouse
• Riak (Search)
• Cassandra (Search)

Implemented in



 Local Secondary Indexing: Fast writes, scatter-gather
queries

 Global Secondary Indexing: Slow or inconsistent writes,
fast queries

 (Distributed) Query Planning: scarce in NoSQL systems
but increasing (e.g. left-outer equi-joins in MongoDB
and θ-joins in RethinkDB)

 Analytics Frameworks: fallback for missing query
capabilities

 Materialized Views: similar to global indexing

Query Processing Techniques
Summary



How are the techniques from the NoSQL
toolbox used in actual data stores?
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• Overview & Popularity
• Dynamo & Riak
• HBase
• Cassandra
• Redis
• MongoDB

NoSQL Foundations and
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The NoSQL Toolbox: 
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Decision Guidance: NoSQL
Decision Tree



NoSQL Landscape

Document

Wide Column

Graph

Key-Value

Project Voldemort

Google
Datastore



Popularity
http://db-engines.com/de/ranking

Scoring: Google/Bing results, Google Trends, Stackoverflow, job
offers, LinkedIn

# System Model Score

1. Oracle Relational DBMS 1462.02

2. MySQL Relational DBMS 1371.83

3. MS SQL Server Relational DBMS 1142.82

4. MongoDB Document store 320.22

5. PostgreSQL Relational DBMS 307.61

6. DB2 Relational DBMS 185.96

7. Cassandra Wide column store 134.50

8. Microsoft Access Relational DBMS 131.58

9. Redis Key-value store 108.24

10. SQLite Relational DBMS 107.26

11. Elasticsearch Search engine 86.31

12. Teradata Relational DBMS 73.74

13. SAP Adaptive Server Relational DBMS 71.48

14. Solr Search engine 65.62

15. HBase Wide column store 51.84

16. Hive Relational DBMS 47.51

17. FileMaker Relational DBMS 46.71

18. Splunk Search engine 44.31

19. SAP HANA Relational DBMS 41.37

20. MariaDB Relational DBMS 33.97

21. Neo4j Graph DBMS 32.61

22. Informix Relational DBMS 30.58

23. Memcached Key-value store 27.90

24. Couchbase Document store 24.29

25. Amazon DynamoDB Multi-model 23.60



 Developed at Amazon (2007)

 Sharding of data over a ring of nodes

 Each node holds multiple partitions

 Each partition replicated N times

Dynamo (AP)

DeCandia, Giuseppe, et al. "Dynamo: Amazon's
highly available key-value store."



Reading and Writing

 An  arbitrary node acts as a coordinator
 N:  number of replicas

 R:  number of nodes that need to confirm a read

 W: number of nodes that need to confirm a write

N=3
R=2
W=1



 Open-Source Dynamo-Implementation

 Extends Dynamo:
◦ Keys are grouped to Buckets

◦ KV-pairs may have metadata and links

◦ Map-Reduce support

◦ Secondary Indices, Update Hooks, Solr Integration

◦ Riak CS: S3-like file storage, Riak TS: time-series database

Riak (AP) Riak

Model:

Key-Value

License:

Apache 2

Written in:

Erlang und C

Consistency Level: N, R, W, DW

Storage Backend: Bit-Cask, Memory, LevelDB

BucketData: KV-Pairs



Dynamo and Riak
Classification
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 Remote Dictionary Server

 Rich Key-Value model

 Asynchronous Master-Slave Replication

 Tunable persistence: logging and snapshots

 Optimistic batch transactions (Multi blocks)

 Very high performance: >100k ops/sec per node

 Redis Cluster (sharding) still in the early stages

Redis (CA) Redis

Model:

Key-Value

License:

BSD

Written in:

C



 String, List, Set, Hash, Sorted Set

Redis Data structures

"<html><head>…"String

{23, 76, 233, 11}Set

web:index

users:2:friends

[234, 3466, 86, 55]List users:2:inbox

Theme → "dark", cookies → "false"Hash users:2:settings

466 → "2", 344  → "16"Sorted Set top-posters

"{event: 'comment posted', time : …"Pub/Sub users:2:notifs
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 Published by Google in 2006

 Original purpose: storing the Google search index

 Data model also used in: HBase, Cassandra, HyperTable, 
Accumulo

Google BigTable (CP)

A Bigtable is a sparse, 
distributed, persistent 

multidimensional sorted map. 

Chang, Fay, et al. "Bigtable: A distributed storage system 
for structured data."



 Storage of crawled web-sites („Webtable“):

Wide-Column Data Modelling

Column-Family:  
contents

com.cnn.www cnnsi.com : "CNN" my.look.ca : "CNN.com"

Column-Family:  
anchor

content : "<html>…"
content : "<html>…"

content : "<html>…"

t5

t3

t6

1. Dimension: 
Row Key

2. Dimension: 
CF:Column

3. Dimension: 
Timestamp

Sparse
Sorted



Architecture

Tablet Server Tablet Server Tablet Server

Master Chubby

GFS

SSTables

Commit
Log

ACLs, Garbage
Collection, 
Rebalancing

Master Lock, Root 
Metadata Tablet

Stores Ranges,
Answers client
requests

Stores data and
commit log



 Goal: Append-Only IO when writing (no disk seeks)

 Achieved through: Log-Structured Merge Trees

 Writes go to an in-memory memtable that is periodically
persisted as an SSTable as well as a commit log

 Reads query memtable and all SSTables

Storage: Sorted-String Tables

Variable Length

Key Value Key Value Key Value

Sorted String Table

Key Block

Key Block

Key Block

Block Index

...

...

Block (e.g. 64KB)

Row-Key



Storage

Key cf1:c1 cf1:c2 cf2:c1 cf2:c2

r1

r2

r3

r4

r5

r1:cf2:c1:t1:<value>

r2:cf2:c2:t1:<value>

r3:cf2:c2:t2:<value>

r3:cf2:c2:t1:<value>

r5:cf2:c1:t1:<value>

r1:cf1:c1:t1:<value>

r2:cf1:c2:t1:<value>

r3:cf1:c2:t1:<value>

r3:cf1:c1:t2:<value>

r5:cf1:c1:t1:<value>

File cf2

File cf1

 Logical to physical mapping:
Key Design – where to store data:
r2:cf2:c2:t1:<value>
r2-<value>:cf2:c2:t1:_
r2:cf2:c2<value>:t1:_

George, Lars. HBase: the definitive guide. 2011.

In Value

In Key

In Column



 Open-Source Implementation of BigTable

 Hadoop-Integration
◦ Data source for Map-Reduce

◦ Uses Zookeeper and HDFS

 Data modelling challenge: key design, tall vs wide
◦ Row Key: only access key (no indices)  key design important

◦ Tall: good for scans

◦ Wide: good for gets, consistent (single-row atomicity)

 Interface: REST, Avro, Thrift

Apache HBase (CP) HBase

Model:

Wide-Column

License:

Apache 2

Written in:

Java
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 Published 2007 by Facebook

 Idea:
◦ BigTable‘s wide-column data model

◦ Dynamo ring for replication and sharding

 Cassandra Query Language (CQL): SQL-like query- and
DDL-language

 Compound indices: partition key (shard key) + clustering
key (ordered per partition key)  Limited range queries

 Secondary indices: hidden table with mapping
queries with simple equality condition

Apache Cassandra (AP) Cassandra

Model:

Wide-Column

License:

Apache 2

Written in:

Java



Architecture

Cassandra Node
Thrift

Session
Thrift

Session
Thrift RPC

or CQL

set_keyspace()
get_slice()

TCP Cluster 
Messages

Column 

Family Store
Row Cache

MemTable
Local 

Filesystem Key Cache

Storage 

Proxy

Stores SSTables
and Commit Log

Replication, 
Gossip, etc.

Stateful
Communication

Stores Rows

Stores Primary Key Index 
(Seek Position)

Random Partitioner

MD5(key)

Order Preservering
Partitioner

key

Snitch: Rack, Datacenter, 
EC2 Region Information

Hashing:
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 From humongous≅ gigantic

 Tunable consistency

 Schema-free document database

 Allows complex queries and indexing

 Sharding (either range- or hash-based)

 Replication (either synchronous or asynchronous)

 Storage Management:
◦ Write-ahead logging for redos (journaling)

◦ Storage Engines: memory-mapped files, in-memory, Log-
structured merge trees (WiredTiger)

MongoDB (CP) MongoDB

Model:

Document

License:

GNU AGPL 3.0

Written in:

C++



Data Modelling

Tweet

text

coordinates

retweets

Movie

title

year

rating

director

Actor

Genre

User

name

location

1

n

n

n 11

{
"_id" : ObjectId("51a5d316d70beffe74ecc940")
title : "Iron Man 3",
year : 2013,
rating : 7.6,
director: "Shane Block",
genre : [ "Action",

"Adventure",
"Sci -Fi"],

actors : ["Downey Jr., Robert",
"Paltrow , Gwyneth"],

tweets : [ {
"user" : "Franz Kafka",
"text" : "#nowwatching Iron Man 3",
"retweet" : false,
"date" : ISODate("2013-05-29T13:15:51Z")

}]
}

Movie Document

Denormalisation instead
of joins

Nesting replaces 1:n  
and 1:1 relations

Schemafreeness: 
Attributes per document

Unit of atomicity: 
document

Principles



Sharding:
-Sharding attribute
-Hash vs. range sharding

Sharding und Replication

Client

Client

configconfigconfig

mongos

Replica Set

Replica Set

Master

Slave

Slave

Master

Slave

Slave

-Receives all writes
-Replicates asynchronously

-Load-Balancing
-can trigger rebalancing of
chunks (64MB) and splitting

mongos

Controls Write Concern:
Unacknowledged, Acknowledged, 
Journaled, Replica Acknowledged
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How can the choices for an appro-
priate system be narrowed down?



Outline

• Decision Tree
• Classification Summary
• Literature

Reommendations

NoSQL Foundations and
Motivation

The NoSQL Toolbox: 
Common Techniques

NoSQL Systems

Decision Guidance: NoSQL
Decision Tree



Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

NoSQL Decision Tree



Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

NoSQL Decision Tree

Purpose:
Application Architects: narrowing down the potential 
system candidates based on requirements

Database Vendors/Researchers: clear communication and
design of system trade-offs
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According to the NoSQL Toolbox
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Redis x x x
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Riak x x

Cassandra x x x x x

MySQL x x x x x x x x

 For fine-grained system selection:



System Properties
According to the NoSQL Toolbox
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MySQL x x x

 For fine-grained system selection:
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According to the NoSQL Toolbox

Techniques
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 For fine-grained system selection:



 Select Requirements in Web GUI:

 System makes suggestions based on data from
practitioners, vendors and automated benchmarks:

Future Work
Online Collaborative Decision Support

Read Scalability Conditional Writes Consistent

4/5
4/5
3/5

4/5
5/5
5/5



Future Work
Polyglot Persistence Mediator

99,99999% up

Annotated
Schema

Real-time

User Account and 

Login information

Clickstream data 

from E-commerce 

application



Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann, 
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

www.baqend.com



Approach: API as a Superset
For Web-Apps and Mobile

Content-Delivery-
Network

Polyglot Storage



Approach: API as a Superset
For Web-Apps and Mobile

Content-Delivery-
Network

Backend-as-a-Service Middleware:
Caching, Transactions, Schemas, 
Invalidation Detection, …



Approach: API as a Superset
For Web-Apps and Mobile

Content-Delivery-
Network

Standard HTTP Caching



Approach: API as a Superset
For Web-Apps and Mobile

Content-Delivery-
Network

Unified REST API



 High-Level NoSQL Categories:
 Key-Value, Wide-Column, Docuement, Graph

 Two out of {Consistent, Available, Partition Tolerant}

 The NoSQL Toolbox: systems use similar techniques
that promote certain capabilities

 Decision Tree

Summary

Techniques
Sharding, Replication,

Storage Management, 
Query Processing 

Functional
Requirements

Non-functional
Requirements

promote





Thank you!

gessert@informatik.uni-hamburg.de

www.baqend.com
www.scdm2016.com
vsis-www.informatik.uni-hamburg.de


