10th SummerSOC
29. June 2016, Crete

Situation Model as Interface between
Situation Recognition and Situation-
Aware Applications

SATCPT

Mathias Mormul, Pascal Hirmer, Matthias Wieland, and Bernhard Mitschang
Institute of Parallel and Distributed Systems

University of Stuttgart
University of Stuttgart Stu ttga rt' Germa ny |%

** Germany

Motivation — The Challenge of The Internet of Things

-

— Setup applications or trigger
actors manually

The user has to process the
huge amounts of data

Sensors providing context Actors for changing the
data about the environment environment

intechopen.com, CC intechopen.com, CC

© Matthias Wieland

Motivation — Situation Model for Decoupling

© Matthias Wieland

If a specific situation occurs in my smart
environment then trigger the following action.

Situation Model for management of: Things, Sensors, Actuators, Situations

Sensors providing context Actuators for changing the
data about the environment environment

intechopen.com, CC intechopen.com, CC

Paper Contribution and Agenda

m Situation Model for modeling and management of
Situations in Internet of Things environments

m Optimized integration of Situation Recognition and
Situation-aware Applications

m Agenda
(1) Problem Statement and “Industrie 4.0” Scenario
(2) Definition of the Situation Model

(3) Extended SitOPT Architecture
(1) Situation Model Management (SMM)
(2) Situation Management Layer Architecture

(4) Implementation and Evaluation of the SMM
(5) Summary and Future Work

© Matthias Wieland

Problem Statement — Situation Recognition in “Industrie 4.0”

If a specific situation occurs in my smart
environment then adapt my workflow

Production Manufacturing
System Execution
Layer System

Manufacturing
Monitoring
Control

Manufacturing

Services

> = - e
N\
>3
oShoesabo EE B335
Infzar:;c;t(\i/on Situation: machine failure > SA.\\TOPT
Layer Situation Situation Situation

template: template: template:

worn out ower loss machine

tool overheated
S

Sensor
Layer \ Tool Transport Material

© Matthias Wieland 5

Machine

What is a Situation? Context Based Knowledge Generation

1. Register situation

Application Level: Workflows recognition for machine
2. Trigger actions based

on situations occurring

Situation-Model,

Knowledge Level: Situation e.g. state of machine
“OK” or “Failure”

Context-Model,
Information Level: Observable Context e.g. Machine Temp
Basic data types,
Data Level: Sensor Data e.g. °C of Sensor
observation fnotification
[Smart Environment Level: Observable Objects (Things) J %‘ ﬂ

© Matthias Wieland 6

Modeling of Situations as Situation Templates

m Use
: ; Situation:
_S|tuat|fons as Machine High-Level Situation
Input tor failure
rules

Advantage:
High-level
rule

modelling

possible Operations

o

=,worn out Conditions

Low-Level Events

© Matthias Wieland 7

Complete Method for Situation Recognition

Adaption of
Situation Workflow
Notification and/or
Application

Register .MOd.EI Situation
Situation "

Sensors Recognition
Template

Create Optimization
Situation of Smart
History Environment

Register
Situation
Recognition for
concrete Thing

Deregistration Transformation
of Situation of Situation
Recognition for Template to
Thing Executable

sub method executed for
each situation recognition

Start Execution

in Execution S for each thing
Environment Eaaurasle
(Esper CEP, —

Node Red, ...)

© Matthias Wieland

Definition of the Situation Model — Relationships

Object SituationTemplate
{abstract}
A T A DAL

Actuator

defines

belongs to @ Machine failure A

n Observed object: Optimum CNC milling machine
F 210 TC-CNC
48.743057,9.091363
1416489737
Machine is not available for
production and has to be repaired.
ST632 — “power loss”

stem: NodeRed
{ uality: 95%

I n

owns

1 describes state

© Matthias Wieland

Definition of the Situation Model — Attributes

“ Object SituationTemplate
{abstract}

. Situation (string)
SensorType (string) . .
ObjectID (string) XML (string)
URL (string) ObjectType (string)
Quality (int[0,100]) Location (string GeoJSON)

Name (string)

Description (string)

? Thing (string)
Context (object)

Quality (int [0, 100])

SituationTemplate (string)

States [string] Occured (boolean)

Sensors [string]

Monitored (boolean)

Owners [string]

URL (string)

State (string) MeasuredAttributes (object) Actions [string]

© Matthias Wieland 10

SitOPT Architecture Without Extension

Application and
Actuator Layer

Situation
Recognition
Layer

Thing and
Sensor Layer

production
workflow

notify

A

machine

management

1

recognize situation
MachineFailure

recognize situation
ProductionLineFailure

recognize situation
MachineFailure

recognize situation
ProductionLineFailure

Situation Recognition Service

t
loT platform / sensor gateway
A
material \ tool transport
sensor sensor sensor

contain

A

A

o

things, e.g., production machines

11

Extended Architecture — New Situation Management Layer

decoupling
achieved

© Matthias Wieland

Application and ‘%é;"}'} production machine

Actuator Layer v workflow ¢, management
\. A A y

registration notification registration notification
\ 4 A\ 4
()
Situation .]
Management Situation Model Management
Layer
\ J
y y 3

situation provisioning context provisioning

é — — v)
recognize situation recognize situation ~
MachineFailure ProductionLineFailure
Situation . ion R . .
Recognition . Situation Recognition Service)
Layer 1 sensor data provisioning
loT platform
sensor data provisioning | sensor registration
(\ tool material transport R
sensor sensor ' sensor
Thing and
Sensor Layer

_ ’ - production machines)

12

Architecture of the Situation Management Layer

=

é N\ [
Management Tools
Application and Situation-
Actuator Layer | | Context Situation aware
Dashboard Dashboard Applications
\. = J \
& A
visualize start] [manage register notif
context recognition| | data & y
4 vy v
S Public API R

Situation . .
- - Situation
Management Situation Model :
Registry
Layer Database

Situation Model Management

\ \ﬁv[System API —

[Context ﬁ Situation
(
Situation Situation Recognition Service
Recognition Sensor Data
Layer loT platform

© Matthias Wieland _

Situation Dashboard

m List all things
m Show available Situation Templates

m Start situation recognition using different systems

Things

Things are objects that can be monitored. All things
contain at least one sensor and return information which
can then be combined within an executed situation
template to derive the situation of the thing.

Name: Machine-X49

Monitored: false

Location: Factory1

ID: 576a76e35ef248843bca373c
URL: string

Description: string

Situation Templates: MachineFailure 5763788e5e1248843bca$73d

Situation Recognition System: NodeRed

Store every situation (when occured attribute does not change) (not implemented)
Start situation recognition

Situations:

© Matthias Wieland

14

Distributed Implementation of the SMM

Application Layer containing Actuators like Workflows, Applications and the Dashboard

A S
situations T context registration | notification
ﬁ Public REST-API (subscription for situation occurrence, query data) \
POS/ ‘V;:& POST
Ve :itg(:‘rage GET History Storage Situation
Performance J Versioning & Replication Registry

registered_situations: [
,machineFailure”: [
<callback_url>,
<callback_url2>

MongoDB

POST Data Thr:eshold Time]
GET \) \)

Situation Model Management (SMM) j

k System REST-API (referential integrity, schema validation)

a a

Context Situation

Situation Management Layer

Situation Recognition Layer containing loT platform (RMP) and Situation Recognition Service (SRS)

15

© Matthias Wieland

Public and System API Definition Using Swagger

¢} swagger hitp://192.168.209.211:10010/swagger apikey M

SitOPT API Reference

actuator

owner

bl /owners

o /owners

sensor

blha M /sensors/{name}

GET

GET /sensors

o /sensors

situation
situation template
thing

[BASE URL: /, API VERSsION: 1.0.2]

© Matthias Wieland

Show/Hide | List Operations = Expand Operations

Delete Owner

Get all Owner

Save Owner

Show/Hide | List Operations = Expand Operations

Delete sensor by ID

Get sensors by name

Get all sensors

Stores sensors

16

Web-Based Testing and Debugging Provided

swagger http-//192 168.209 211-10010/swagger
SitOPT API Reference

actuator

owner Show/Hide | List Operations | Expand Operations
Ll /owners Delete Qwner

ﬂ fowners Get all Owner
fowners Save Owner

sensor Show/Hide | List Operations | Expand Operations
/sensors/{name} Delete sensor by ID
ﬂ /sensors/{name} Get sensors by name
/sensors Get all sensors
/sensors Stores sensors

Implementation Notes
Sensors produce sensor values. They each have a sensor quality. ID optional

Response Class (Status 200)
Model Schema

"message”: "string"

b

Response Content Type |applicationfjson v

Parameters

Parameter Value Description -'?;'::’"““” Data Type

body { input body Model Schema

“name”: "string",

“string”,
string®

“descriptio
“location”

E ¥

Parameter content type: |application/json
Click to set as parameter value

Response Messages
HTTP Status Code Reason Response Model Headers

default Error Model Schema

Try it outt

situation
situation template

© Matthias Wieland

Example Instance of the Scenario for Document Store

ObjectID: ,ToolSensor_1“

:Alnl
’-l

ObjectType: ,Sensor”

"

] SensorType: ,ToolSensor

|—|

Name: ,ToolSensor”

—

URL:,192.168.199.209“

—

Quality: 100

ObjectID: ,,Machine_1“

ObjectType: ,Thing”

describes
Name: ,Machine-X49“ <

States:[,,MachineFailure”]

Sensors: [
»1oolSensor_1

belongs
to

v

»MaterialSensor_1°,
»TransportSensor_1“

]

Monitored: true

owns

ObjectID: ,,Supervisor_1“

ObjectType: , Agent”

Name: ,James Newman”

State: , At work”

© Matthias Wieland

v

Owners: [,,Supervisor_1“]

MeasuredAttributes: {Abrasion: "91%,,}

ObjectID: , Actuator_1“

ObjectType: ,Actuator”

Name: ,,MachineManagement”

Actions: [
»ReplaceTools”,
,RefillMaterial”

Situationstemplate

ObjectID: ,SitTemplate_1“

ObjectType: ,Situationtemplate”

Name: ,,MachineFailure “

Situation: ,MachineFailure “

XML: *XML string*

defines

ObjectID: ,,Situation_1“

ObjectType: ,Situation”

Name: ,,MachineFailure “

Thing: ,,Machine_1“

Context: {
ToolSensor_1:"91%",
MaterialSensor_1: 11,
TransportSensor: false

}

Quality: 94

Situationtemplate: ,SitTemplate_1“

Occured: true

18

Evaluation of Situation Model Management

Runtimes (ms) Min Max Avg
MongoDB (Live) 5ms 66 ms 21.87 ms
CouchDB (History) 124 ms 300 ms 246.13 ms

Situation object data / day LEYEWATCE]
with #context

10 33,8 MB 12 GB
50 103 MB 36,6 GB
200 370,7 MB 131,8 GB
1000 1,74 GB 625,9 GB

© Matthias Wieland

19

Summary and Outlook

SATOPT
SitOPT is a general purpose, situation-aware, A\\ v

and adaptive workflow-system that can be
used in different use-cases

B Summary

m Situation Model for modeling and management of Situations in
Internet of Things and for defining Situation Objects characterizing the
state of the environment

m Optimized integration of Situation Recognition and Situation-aware
Applications with new Situation Management Layer

m SitOPT is capable of integrating different processing technologies
m Data streaming, Complex Event Processing, Internet of Things technologies

m Provides decoupling of workflow-modeling and its adaption logic from the
situation recognition

m Planned future work
m High quality in manufacturing needed - No unnecessary downtime
m Model quality throughout the recognition = sensors, values, process
m Prediction of situations based of created context and situation history

© Matthias Wieland 20

Dr. rer. nat. Matthias Wieland

Contact
Phone +49 711 685 88235
Fax +49 711 685 88424

Email Matthias.Wieland@ipvs.uni-stuttgart.de

Address Universitatsstrafle 38

D-70569 Stuttgart

Situation Model as Interface between Situation
Recognition and Situation-Aware Applications

Mathias Mormul, Pascal Hirmer, Matthias Wieland, and Bernhard Mitschang
Institute of Parallel and Distributed Systems

University of Stuttgart
University of Stuttgart StUttga rt; Germany | 1 1 r

ermany

