
Srinath Perera

VP Research, WSO2

Member, Apache Software Foundation

srinath@wso2.com, @srinath_perera

The State of the Art in Integration
Technology: An Industry Perspective

mailto:srinath@wso2.com

Part 1: Walk down the
Integration Memory

Lane

My Memory Lane (15 years)

3

Worked in a J2EE
Server

Wrote two SOAP
Engines and

worked in one more

ESB (Apache
Synapse)

WSO2 (Opensoure
middleware company 500+
employees, 300+ customers
including BNY, TFL, Boeing,

Fidelity, Ebay ..)

Application Server
Message
Broker

Identity ServerWorkflow Engine
(Apache Ode)

5-10 release each

@WSO2: Has helped design,
worked, debugged

Stream
Processor

Enterprise Systems

(e.g. Book a flight that involve two airlines)
4

Interoperability

5

1st try: Proprietary
protocols (RMI, COM)

Agreeing on the wire via XML
worked

2nd Try: CORBA

3rd Try: Web Service

Back to binary
protocols? Thrift,
Protobuf, Avro

Lessons

6

Simplicity Wins
(as you need developers to understand it)

UX can decide
technology fate

Middleware: SOAP Engines

7

e.g. GSoap, Apache Axis, Apache
Axis2, Apache CXF, .NET

Service
authoring and

Hosting

Code first
vs. contract
(WSDL) first

Later JAX-WS Specification for Java

REST/ Mircoservices Frameworks
(DropWizard, SpringBoot, WSO2 MSS4J

SOA vs. ROA

After lot of battles we kind of agreed to use one
that is natural to the use case

Build the architecture by recomposing loosely
coupled Units

Enterprise Integration

Integration is mediation

Enterprise Integration

(See EIP patterns (http://www.enterpriseintegrationpatterns.com/patterns/) for details)

Gregor Hohpe and Bobby Woolf

http://www.enterpriseintegrationpatterns.com/patterns/

Middleware: ESB

11

Keep backend simple by
terminating security etc

Simple script language to code
mediation logic

Abstract service via proxies

One place to all
integration
Logic (Avoid

Spaghetti)

e.g. WSO2 ESB, Mule, Boomi, Apache Camel

Async Persistent Messaging

12

ESBs learnt to work with
Message brokers (mainly
JMS) and added operators

like message stores and
processors

Decoupling: Time,
Space,

Synchronization

Composition

We use
workflows

for long
running

Others done
via Code

Recomposition part of SOA/ROA

Most
done via
UI Code

Think a home loan, which will last longer than servers
it will run on

ESB can
do it also

Short running

APIs/ API Management

14

Crossing
Trust boundaries
adds complexity

• Secure the
endpoint

• User
provisioningAlso it acts as

the API
Registry

API
management
provided a

packaged solutions

Enterprise Architecture in 2014

15

Most service has
more than one

client

Had lot of
services

Services are recomposed at
higher levels

They shared
data bases

Deployment was complicated. Services couldn’t evolve
independently (although SOA always thought about

them that way).

Services are developed as
one big system, or several

big systems

Microservices

Services
are versioned

and
backward

simple, lightweight, loosely coupled services that
can be developed and released independently of

each other.

No shared
database

Avoid dependency hell
• Composition

• Security

It is mostly set of good practices to build large systems

I have written about this topic in details in https://medium.com/systems-architectures/
walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a

https://medium.com/systems-architectures/walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a
https://medium.com/systems-architectures/walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a
https://medium.com/systems-architectures/walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a

No Shared Databases

Merge two
Microservices

To remove coupling
between service
implementations

Use
asynchronous

messaging

Use two and deal with
Consistency

• Use distributed transactions

• Use compensation or lesser
guarantees

What if two microservices
share data?

Service Evolution

Backward and
forward

compatible
(time bounded)

Point of microservices
is new release of a

service must not break
other services

Services
should be
versioned

In most cases this is a matter of
adding optional parameters

and never renaming or
removing existing parameters.

Avoid Dependency Hell

Don’t do
this

e.g. RXJava,
node.js
model

Hard to get
it right

Not always possible

Perf and security
concerns

No ESB allowed??

20
The Anger of Achilles, by Giovanni Battista Tiepolo

Mico
Integration

(One integration
per server)

“A rallying cry” in
Microservices movement

Client
driven
Model

Not sure what is the solution

May you get to build
a Distributed System

and manage it

As in “May you live in interesting
times”

Now you have truly built a
distributed System

• You can only justify this if

• Team > Two Pizza team

• If you do > 1000s TPS

• If not may be you should go
back to small web app you had
not stop making your life hard

22

If yes, now you have new
problems

• Keep it running

• Find and debug problems

Tracing
• Need a distributed tracing

infrastructure to find out when
things go wrong

• One option is Elasticsearch,
that let you collect logs, search
them via text indexing, and
visualize them

• Can use analytics infrastructure
as we will discuss next

23

APIs are Great Data Collection Points

• In a architecture
done around APIs,
all key
functionalities
captured by APIs

• Data collected at
these points can be
used to understand
business

24

Part 2: Can we
rethink middleware

for Integration?

We are entering the age of APIs

• Future Apps are built (mostly) with API composition

• We must make it easier to produce and consume
networked services

Integration

27

Inherently distributed
• Built with messages over the network

• Needs security

XML/ JSON based

(as that only format that work
across systems)

Parallel

Program by people
with limited

programming
knowledge

Glued with data
manipulations and

mapping

Integration is often done in a
Second Class Way

28

Parallelism
need to be
explicitly
handled

XML/ JSON conversions
manually done

Concurrency is
poorly handled

Users need to
think through the

security model

Network communications
need to be explicitly

handled

Need lot of
plumbing for

testing

What is Wrong with DSLs?

29

Type system
is weakPoor

performance
in non

obvious
scenarios

Concurrency is poorly handled

Editors and tooling are
not native

Debugging is painful

Painful when actual
complex logic is

needed

Ballerina

30

Natively parallel

First class programming language
with tools, debugging etc

Textual and graphical parity on
sequence diagram metaphor

Strongly and
statically

typed with
powerful

type system
Designed for network
with JSON, XML, SQL,
MIME with HTTP, JMS

Key Concepts

Visual and Textual Parity

• Make it easier to produce and consume networked
services

32

Functions and Annotation

• Let you compose the program in term of decomposable
units which is the key to scale the visual representation

• Annotations let you

• Separate configurations from logic

• Externalize configurations to files without code
33

Code vs. Biz

34

Visual Parity and functions
should let the Geeks implements
detail functions which can be
recomposed by Business Analysts

Ballerina knows XML and JSON

• Include XML and JSON as native types that can be
casted to and from ballerina structs

• Language include native type mapping support, with
type mapping drag and drop editor

35

Connectors

36

receive
events via
Resources

Support
HTTP, Web
Socket, JMS
etc built into
the language

Tool: Swagger -
> connector make

recomposing
ballerina services

Web APIs: Twitter,
GMail, LinkedIn,

Facebook, Lambda
Functions

Security:
BasicAuth,

OAuth,
AmazonAuth

Call external APIs via Connectors

When to use Ballerina?

• Write micro (integration)
services:80-20 rule

• 80%. - work with other
services

• 20% - your logic

• Recompose existing services to
an API backend (very similar
to central ESB

• Integration scripts, scripts for
Web API programming (main)

It is open source
under Apache License

Find us through
• Users: ballerina-

user@googlegroups.com
• Slack: #ballerinalang
• Twitter: @ballerinalang
• StackOverflow: #ballerinalang
• Developers: ballerina-

dev@googlegroups.com

mailto:ballerina-user@googlegroups.com
mailto:ballerina-user@googlegroups.com

Questions?

