"! ".A 4
'l o _ '~ '- x" ¢
Y e 11 § - : o
ol P - N ! = ie g R :l ! iy A kgt (: ! . ' o A
B e . ."-".' -l;‘ ey 4 '- “A. "l : R ¢ P o? ,h'
. : . o

%‘l"'i"_ A gl "\.-E' -':}. ‘ l\ l[!“ .‘:..ni ";-'1-:"‘1 3

X : : " : d B . -
.\jf-- B .‘00“"' :)“ ..'_l.v ¥ "",;‘i‘.—,‘_ MR TSR | '."_'l I 2 S o ".:._ . fl' . '> Wi o0’y L;@ v

‘ The State of the Art in Integraton |
Techn()l()gy An Industry Perspective

1
.

Srinath Perera
i VP Research, WSO2
Member, Apache Software Foundation

srinath@wsoz'.com, @srinath_perera

| A - . - . Tl
L= a8 :_\E%f » T, TN,
.ﬂ - ’ e SN ,
.

¥ - = g '
= "
:] &‘ » 2 v 6.
v \ 2 (. P o . amme g‘.” V q} - A

AL

mailto:srinath@wso2.com

Part 1: Walk down the
Integration Memory

l.ane

My Memory Lane (15 years)

@WSQO2: Has helped design,
worked, debugged Server
Workflow Engine

(Apache Ode)

Wrote two SOAP

Engines and

worked in one more

Application Server
Message
Broker
Stream
Processor middleware company 500+
ESB (Apache employees, 300+ customers
Synapse) 5-10 release each including BNY, TFL, Boeing,

Fidelity, Ebay ..)

WSO2 (Opensoure

Enterprise Systems

Business Logic

System 2
(Vendor1)

(e.g. Book a flight that involve two airlines)

<

Interoperability

Ist try: Proprietary

protocols (RMI, COM)

2nd Try: CORBA
3rd Try: Web Service

Agreeing on the wire via XML Back to binary
protocols? Thrift,

Protobuf, Avro

worked

l.essons

Simplicity Wins

(as you need developers to understand it)

UX can decide
technology fate

Middleware: SOAP Engines

Service Code first

authoring and vs. contract
Hosting (WSDL) first

e.g. GSoap, Apache Axis, Apache
Axis2, Apache CXE .NET

Later JAX-WS Specification for Java

REST / Mircoservices Frameworks
7

(DropWizard, SpringBoot, WSO2 MS54]

SOA vs. ROA

f - ™ —
Noun
. I I J

T+ttt

Noun

4 N N N\ [
[- s s
3 = =5
=] o Q
=z = =
" J J J
J

GET, POST, DELETE, PUT

L

Build the architecture by recomposing loosely
coupled Units

After lot of battles we kind of agreed to use one
that is natural to the use case

Enterprise Integration

.
Org 1
O .
N N
(4 8] o Org 2
Business Logic
Org 3
\)
System 1
(Vendorl) Ol'g 4
. J . _J

Integration 1s mediation

Enterprise Integration

Message Construction

Message

Command Message Message
Document Message Message Routing Transformation
Event Message Pipes-and-Filters Aggregator Message Translator
Request-Reply Message Router Resequencer Envelope Wrapper
Return Address Content-Based Router Composed Msg. Processor Content Enricher
Correlation Identifier Message Filter Scatter-Gather Content Filter
Message Sequence Dynamic Filter Routing Slip Claim Check
Message Expiration Recipient List Process Manager Normalizer

Format Indicator Splitter Message Broker Canonical Data Model

.~ Endpoint

Message Router Translator ~
Application Fhanrel ' Application
pp e : PP
A —0 . B

Messaging Channels

Endpoint

Messaging Endpoints

Systems Management

Message Endpoint Competing Consumers Message Channel Control Bus
Messaging Gateway Message Dispatcher Paint-to-Point Channel — Detour
Messaging Mapper Selective Consumer Publish-Subcr. Channel Monitoring Wire Tap
Transactional Client Durable Subscriber Datatype Channel Message History
Polling Consumer ldempotent Receiver Invalid Message Channel Message Store
Event-Driven Consumer Service Activator Dead Letter Channel Smart Proxy
| Guaranteed Messaging Test Message

Channel Adapter Channel Purger

Messaging Bridge

Message Bus

(See EIP patterns (http://www.enterpriseintegrationpatterns.com/patterns/) for details)

L@:-C;u Gregor Hohpe and Bobby Woolf

http://www.enterpriseintegrationpatterns.com/patterns/

Middleware: ESB

Abstract service via proxies

Simple script language to code
mediation logic

One place to all
integration
Logic (Avoid

Spaghetti) Keep backend simple by

terminating security etc

e.g. WSO2 ESB, Mule, Boomi, Apache Camel

11

Async Persistent Messaging

Number of messages in inter

\
\

RPC

\
\

action

s

- e o e e e - - b e

4
!
/
’
/
<
\
\
\
Y
AN
\
\
\
\
\

Asynchronous -

Synchronous

——— e ——— —————

Persistant

12

Transient

Decoupling: Time,
Space,
Synchronization

Oneway

ESBs learnt to work with
Message brokers (mainly
JMS) and added operators

like message stores and
Processors

Request
Response

Composition

Recomposition part of SOA /ROA

Most We use
done via Others done ESB can workflows
UI Code via Code do it also for long

running

Short running

Think a home loan, which will last longer than servers
it will run on

APIs/ APl Management

Crossing
Trust boundaries
adds complexity

Secure the
endpoint

API User

Also it acts as provisioning
the API
Registry

management

provided a
packaged solutions

Enterprise Architecture in 2014

Most service has .
Had lot of Services are recomposed at

. more than one Hiohor level
SEervices Client 1gNer levels

Services are developed as
one big system, or several
big systems

They shared
data bases

Deployment was complicated. Services couldn’t evolve
independently (although SOA always thought about

them that way).

Microservices

simple, lightweight, loosely coupled services that
can be developed and released independently of
each other.

[t is mostly set of good practices to build large systems

Services Avoid dependency hell
No shared are versioned

database and
backward * Security

» Composition

[have written about this topic in details in https:/ /medium.com /systems-architectures /
walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a

https://medium.com/systems-architectures/walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a
https://medium.com/systems-architectures/walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a
https://medium.com/systems-architectures/walking-the-microservices-path-towards-loose-coupling-few-pitfalls-4067bf5e497a

No Shared Databases

MicroService 1

MicroService 2

l

What if two microservices
share data?

Use
asynchronous
messaging

Merge two
Microservices

To remove coupling
between service
implementations

Use two and deal with
Consistency

Use distributed transactions

Use compensation or lesser
guarantees

Service Evolution

Service 1 @_,
P \ Point of microservices

is new release of a

‘ service must not break
Service 2 .
(: s : }—’{ v3 } other services

Services Backward and | |In most cases this is a matter of
should be forward adding optional parameters
compatible and never renaming or
(time bounded) removing existing parameters.

versioned

Avoid Dependency Hell
_ 9 o ()

Client —*@ —
- Perf and security
p >)) concerns
Don’t do Spagheth Client (UI) Driven
this

T :l\ Event Broker RX
ien o e.g. ava,
™ ;ﬁ@/,Q) / \ " gnoderS
Workflow/ ZO bt / \ model
ESB/ Code i Cliont (/ .1 sz> [54
Hard to get
Centerlized Choreography

it right

No ESB allowed??

“Arallying cry” in

Microservices movement

Not sure what is the solution

Mico

Client .
Integration

driven

Model (One integration
per server)

20

Now you have truly built a
distributed System

* You can only justify this if
* Team > Iwo Pizza team

e If you do > 1000s TPS

* If not may be you should go
back to small web app you had
not stop making your life hard

If yes, now you have new

problems
* Keep it running

* Find and debug problems

T'racing

* Need a distributed tracing
infrastructure to find out when
things go wrong

* One option is Elasticsearch,
that let you collect logs, search

them via text indexing, and
visualize them

* Can use analytics infrastructure
as we will discuss next

23

APls are Great Data Collection Points

Business
APIs & Apps

E

Customers

Customer
Service @

i

@

HR Infrastructure
(a8
-~ A0
as® 000
Internal Operations
APIs & Apps

E;

{25

Value Chain

Supply @ Partners

Chain

Media

Analytics

al o8

N I |
Alerts
Dashboard

ML Models
Action Recommendations

—

Includes images by Lizzy Gregory, Favel Paviov, Mirko Velimirovic, Phil Laver, Alvaro Ramis, Anbileru adaleru

Blake Thompson, Nirmal Ra), Andrew Was, Hemy Medard, Gregor Cresnér trom Noun Project

24

e In a architecture
done around APIs,
all key

functionalities

captured by APIs

* Data collected at
these points can be
used to understand
business

Part 2: Can we
rethink middleware
for Integration?

API composition

"i ‘ —
We must ;?sqeasier to }}@ﬁceand consume

FWre Apps are built (most

network Services
“, .

A oy 'zhf
AT

R

e

L 1D

Integration

Parallel

(as that only format that work Program by people
across systems) with limited

XML/ JSON based

programming

knowledge

Inherently distributed

* Built with messages over the network Glued with data
manipulations and

mapping

* Needs security

Integration is often done in a

Second Class Way

Parallelism

need to be
explicitly
handled

Concurrency is
poorly handled

Users need to
think through the
security model

Need lot of

plumbing for
testing

Network communications

need to be explicitly
handled

XML/ JSON conversions
manually done

What 1s Wrong with DSLs?

Type system

Poor is weak Concurrency is poorly handled

performance
in non
obvious Painful when actual
scenarios complex logic is
needed

Editors and tooling are
not native

Debugging is painful

Ballerina

Textual and graphical parity on
sequence diagram metaphor

First class programming language
Strongly and

statically
typed with

with tools, debugging etc

pOWQI‘ful Designed for network
with JSON, XML, SQL,
MIME with HTTP, JMS

Natively parallel
type system

Key Concepts

|°8 @ FullTripService
Service

Variables) ®

Resource

@http:POST {}
@http:Path {

Main Worker

@ Add Anngghition

@ & esne T Connectors
Statements

message airlineServiceReq = {}

Ne——7

message response = hitp:.ClientConnector.p...

- es e e e es e s e e e e es s e e e e e s =

Visual and Textual Parity

WE CCme-pape echoServica.bal ac 3 chainbal
Conslructs 8 @ esho mMessonem »
T Servizz LF Fzeource
hotelService airlineService
J} Furction () MainFunciior
4 Connacte Actan message arlineSendns Ren = {
= Struct £ Worke- l
.) mezesge responze = htta CliemConnectonp.. g 4
) Anncvivior l
j5c arlineServiceRes - messages:getlson.. #htto:BusePuth {
L If = Azsignmen: FullTripService {
l Bhtep:POST{}
@ varatk fio Funclion nvoka At g airline = <atrings airdinaSeniaces airine #tip:Path { ¥
~ 2utun ¢ Raply l echo (message m) {
— I e LY N
e - ClientConnector hotelService = ClientConnector (
£ Wile @ Break aysten o nizaiing” + airline) ClientConnector airlineService = ClientConnector (
Try-Cazl vl Thiow [messcge airlineServiceReq = {};
' message hotelServiceReq = {} = - - oy - = oo
4o S & Reccix - kit i messuge response = ClientConnector.post{airlineService, , airline
| ST v s : : B
l json airlineServiceRes = getJsonPayload(response);
L-._ Transferm .:.. Uik r€3parse = htie Cller-Cannecter pn_c].:jn(pj ‘ Stf“ir‘g O'Lr‘li'\C - <5t’in9 nir‘llncscﬁvICd{cS.Gil"'linC;
printin(+ airline);
&2 At 2 Tmnsaatios I
jgcn Fosel3evizeRes - mzssagzsgetJecr P messcge hotelServiceReq = {};
| response - ClientConnecteor.postChotelService, , hotelServiceReq);

json hotelServiceRes = getlsonPayload(response);
strirg hotel = <strirg> hotelServiceRes hotel;
println{ + hotel);

messcge fulltripRes « {};

json tripData = { :

tripData.airline =airline;

tripDota.hotel =hotel;
setlsonPaylcad(fulltripRes,tripbData);

fulltripRes;

Functions and Annotation

n TransformAddress (Address add)(Address) {

* Let you compose the program in term of decomposable
units which is the key to scale the visual representation

@http:GET {3}
@http:Path { S
EchoResource (message m) {

message ml = {};
:setStringPayload(ml,
ml;

* Annotations let you
* Separate configurations from logic

 Externalize configurations to files without code

95

Ballerina knows XML, and J]SON

* Include XML and JSON as native types that can be
casted to and from ballerina structs

message ml = {};
json response = { :

setJsonPayload(ml,response);
ml;

» Language include native type mapping support, with
type mapping drag and drop editor

B ad” : Addrass = ad2: Address?

amne .l

{

—-Streeladdress ; sting - {
City : string

adZ.name = adl.name;

ad2 .address = adl,streetAddress:

Connectors

]
message mediumResponse = http:ClientCo... }‘, __________________________________ "

Support
HTTP, Web

Socket, JMS
etc built into

xml feedXML = messages:getXmlPayload(m...

string title = xmis:getString(feedXML,’/rss/c...

string oauthHeader = constructOAuthHeader...

I

ClientConnector mediumkEP = ClientConnector (
message mediumResponse = ClientConnector.get(mediumEP,
kml feedXML = getXmlPayload(mediumResponse);

the language

Call external APIs via Connectors

Security: Web APlIs: Twitter, Tool: Swagger -
BasicAuth, GMail, LinkedIn, > connector make
OAuth, Facebook, Lambda recomposing

receive

events via

. . Resources
AmazonAuth Functions ballerina services

When to use Ballerina?

* Write micro (integration)
services:80-20 rule

e 80%. - work with other
services

* 20% - your logic

* Recompose existing services to
an API backend (very similar
to central ESB

* Integration scripts, scripts for
Web API programming (main)

It1s open source

under Apache License

Find us through

Users: ballerina-
user@googlegroups.com

Slack: #ballerinalang

Twitter: @ballerinalang
StackOverflow: #ballerinalang
Developers: ballerina-
dev@googlegroups.com

Ballerina

Hacka/t_hin Jull

/\/ Colombo 2017

VAl

Ballcrina DocuTentation

Ballerinais a gznerel purpose, concurren: and strongly typed
pregrammng language with both textuzl and grashical syntaxes,
optimizec fcr integration.

heloANorld.bal

import
DalL.erina.lanjy.system;

fonsetion main(atring|)
argse) {

syaten:pristin(‘Haello
Worldl"®)3
)

Download
Cabscribe for updates

mailto:ballerina-user@googlegroups.com
mailto:ballerina-user@googlegroups.com

(Juestions?

