HOCHSCHULE

FURTWANGEN ‘ H FU
UNIVERSITY ‘

Access Control For Services

Ulf Schreier
Based on Ph.D. work of Marc Huffmeyer

SummerSoc 17: Access Control For Services 1

HOCHSCHULE

Access Control (Authorization) i HFU 2

A\ —4
user Client Server
What services E Permit for
are permitted? ' service?
4 N

Access Control Management
N\ /
- < 1AM

|dentity Management

\ J

Focus on general ideas, but with

view on RESTful Web services

SummerSoc 17: Access Control For Services 2

Objectives Of Talk i HFU 2

+ Review of AAA concepts

* Authentication
* Authorization (Delegation)
* Access Control (Authorization)

< How does access control get its data?

< Customization of access control towards RESTful web
services

SummerSoc 17: Access Control For Services 3

: ey HEU @
Overview ‘QJ,

1. Basics of access control
2. Authentication, authorization and access control
3. ABAC for REST: RESTACL

4. (If time: loT-oriented applications of ABAC for REST)

5. Conclusions

SummerSoc 17: Access Control For Services 4

HOCHSCHULE

Basic Access Control Model ‘il HFU &)

\—4
o O _ w
Action Resource
~_ ~ J

Subject

Has subject S permit to access resource R by action A?

Categories: Subject, Action, Resource

SummerSoc 17: Access Control For Services 5

Variations of Access Control: ACL i HFU)
< Access Control List (ACL)

<+ Structure: (Ri, Ai, {Si, ..., Sj})

< Example:

An user 1 has permit to read heating data for sensor 1.

SummerSoc 17: Access Control For Services 6

Variations of Access Control: RBAC HFU:)J

< Role Based Access Control (RBAC)
<~ Each subject has one or more roles RO
<+ Structure: (Ri, Ai, {ROi, ..., ROj})

< Example:
A user with role ,heating control service® can read data

for sensor 1.

SummerSoc 17: Access Control For Services 7

Variations of Access Control: ABAC HFU:-)J

< Attribute Based Access Control (ABAC)

<+ Structure: (conditions on R, A, S and other categories)

+ Example:

A staff member of heating control service H

can read heating data from 9am to 5pm for appartment

A, if there is an agreement for A with H.

SummerSoc 17: Access Control For Services 8

ABAC implementations T HF 2)

< |IAM systems with XACML (OASIS standard)
< Microsoft Dynamic Access Control

<+ Cloud platforms with restricted forms:
Amazon Web Services, Open Stack

&~ RESTACL: customized to RESTful services

<+ Reality for many business applications:

e procedural programming inside transactions

SummerSoc 17: Access Control For Services 9

Policy Administration With XACML

policyset {
apply denyOverrides
target clause URLresource ==
policy {
apply permitOverrides
target clause actionMethod ==
rule {
target clause subjectName == "Alice”
permit

"hitps://smarthome.com/building"

llG ET“

} - =

To summarize: Nested sequence of If-statements

SummerSoc 17: Access Control For Services

HOCHSCHULE
FURTWANGEN
UNIVERSITY

HFU &)

=

* ALFA syntax
e axiomatics.com
e OASIS draft

10

XACML Policies, Sets And Combining Strategies " HFU)

< Nested policy sets

* Controlled by target conditions
< Complex nested combining strategies

 Deny-override: first deny rule evaluation decides
Permit-override: first permit decides

First-applicable: first applicable rule decides (either
permit or deny)

Only-one-applicable: if not only one, result is
“Indeterminate”

Each set has its own combining

SummerSoc 17: Access Control For Services 11

: e HFU @
Overview ‘QJ,

1. Basics of access control
2. Authentication, authorization and access control

3. ABAC for REST: RESTACL

4. Conclusions

SummerSoc 17: Access Control For Services 12

HOCHSCHULE

Access Control In The Context Of Distributed Services' HFUS),

user —{ Client App } { Server App }

A 4
A How does
M%%eaSSement access control get
its data?
\ |
Authorization Identity
Server Management

SummerSoc 17: Access Control For Services 13

HOCHSCHULE

. P s HFU @
1. Authentication And User Info ,QJ,

. W Delegation of
user C-D_{ Client App J { SERETAS } identity management

as microservice

get user info OIDC standard for REST
with id) v

. Access
redirect / @ @ @ Management J

delegation

put user token
(with id)

Authorization W @ |dentity
Server J check Management
credentials

SummerSoc 17: Access Control For Services 14

HOCHSCHULE

2: Delegation (Authorization) e HF@

W @ Client access on server
user Client App v Server App on behalf of user
(1) - on OWN DATA

FOSOUIEe without password
A 4
Access
redirect / @ [Management J OAuth for REST
delegation
put access token
® X
Authorization W |dentity
Server J check Management
credentials

SummerSoc 17: Access Control For Services 15

HOCHSCHULE

Authentication and Authorization: Same flow i HFU 2

Same flow =
user C-D_’[Client App

A

same protocol >
OAuth with two profiles

dCCess
resource

O

Resource } Server app or

redirect / @ @ Server Identity management
delegation
put accesss token
Authorization W @ |dentity
Server J check Management
credentials

SummerSoc 17: Access Control For Services 16

OAuth 2.0 Quick Facts ‘it HFU &)

< OAuth = Open Authorization Framework
< For RESTful environments
< Security as simple as possible

< Similar ideas with
Ticket (Token)

* SAML (SOAP services) nEelhg
* Kerberos (local (Windows) networks)
< EQ. Google applications

<& References: IETF standard 6749

SummerSoc 17: Access Control For Services 17

OpenlD Connect (OIDC) Quick Facts s HFU :)J

<+ Standard of OpenID Foundation
< Using OAuth

* |dentity management as resource server
 Specialised token (user token with user id)

< EQ. Login with Facebook, Google, etc. account

SummerSoc 17: Access Control For Services 18

HOCHSCHULE

3: Access control (Authorization) e HFU:)J

_ get resource data
user Client App Server App @

A .
get permission

@ parameters: some key-value pairs

(eg user id, resource id)

v
Access W @ Environ-
Management Jget some current data |~ Ment

(eg current time)
get user info
A 4

Authorization |dentity
Server Management

SummerSoc 17: Access Control For Services 19

Architecture Of Attribute Based Access Control 4 HFU &)

(extended form standardized as part of XACML)

Application Eo!cicy :
nforcemen Resources
(server app) Point a

Application level

Access Control
Policy
Context Handler Information
Point

I
|
|
|
|
: [Environment }

(Policy store) !
:
|
|
|

Policy Policy
Administration Decision
Point Point

Subject
(Identity Management)

SummerSoc 17: Access Control For Services 20

Architecture Of Access Control ‘il HFU &)

V
Application W @ Policy
Enforcement
Example:

(server app) | Point

_________________________________ action : host = hitp://localhost

@ action : name = GET
resource : file-id = 4711

{ Context HandIerJ

1. Application - Policy Enforcement Point (PEP) 2. PEP - Context handler
 Standardized by XACML

— XML or SAML or JSON format
» Could be — REST endpoint

— application logic dependent library call « (Category, Key, Value) triples
— generic filtering of http request by server

SummerSoc 17: Access Control For Services 21

subject : userid = 42

* no standardized interface

Architecture Of Access Control ‘it HFU &)

0. load policies (out-of-band)

1. get policy decision

2. if further information needed

3. ask information sources

Policy
Context Handler Information
@ Point

Environment
O, .
Policy (o) Policy (3) (3) |
Administration Decision ' Other sources
Point Point :

Subject
(Identity
Management)

SummerSoc 17: Access Control For Services 22

: ey HEU @
Overview ‘QJ,

1. Basics of access control

2. Authentication, authorization and access control for

services

3. ABAC for REST: RESTACL

4. Conclusions

SummerSoc 17: Access Control For Services 23

Uniform Interfaces of RESTful Web Service HFU:-)J

<+ Unique identification of resources
<+ Generic actions

< Manipulation of resources through representations

<+ Self-descriptive messages

<+ Mainly HTTP protocol | GET /building/b1 HTTP/1.1

with URL Host: smarthome.com
th U Authorization: Bearer mF_9.B5f-4.1JgM

SummerSoc 17: Access Control For Services 24

Sample URL Resource Trees for a Smart Home ~ “# HFU 8y

< [building/{bid}/appartment/{aid}/room/{rid}/sensor/{sid}
< [building/{bid}/appartment/{aid}/room/{rid}/actor/{}
< [building/{bid}/appartment/{aid}/resident/{uid}

sensor/s1
room/r1 sensor/s2
appartment/a1
s resident/1 actor/1
building/1
appartment/a2 room/r2 sensor/s3

SummerSoc 17: Access Control For Services 25

XACML For REST Resource Trees

policyset {
policyset {
target clause URL == “/building/1/.*"
policyset {
target clause URL =="/building/1/appartment/1/.*”
policyset {
target source URL == “/building/1/appartment/1/room/1/.*”
policy for sensors

SummerSoc 17: Access Control For Services

L)

&

26

RestACL

= Policy Repository
= Collection of ABAC policies
« Domain

= Customized for RESTful services
» |ndex based structure to quickly map from requested resources to policies
= Evaluation Engine

= Simple priority based combining strategy (but equivalent to XACML)

References

= Marc Hiffmeyer und UIf Schreier, Analysis of an Access Control System for RESTful Services, ICWE'16

= Marc Huffmeyer und UIf Schreier, Formal Comparison of an Attribute Based Access Control Language for RESTful Services
with XACML, SACMAT 16

SummerSoc 17: Access Control For Services 27

Architecture Of ABAC for REST (+ RESTACL) i HFU 2y

@ @ Application
AP| Gateway

(server app)

Domain
_ Repository e (T T N

(Resources) \L

Policy
Context Handler Information Environment
0 @ Point

©

I
| Policy ! Resources
Eollcy 't Decidion : (eg identity mgmt)
epository 0 E I (eg server app)
1

SummerSoc 17: Access Control For Services 28

RestACL — Domain

Domain
host: http://example.org

Resource
path: /employees

Access
methods: GET, POST
policies: P1, P2

Resource
path: /1

Access
methods: GET, PUT
policies: P3, P4

Resource
path: /departments

Access
methods: POST

policies: P5

SummerSoc 17: Access Control For Services

Adjusting to SWAGGER representation

HOCHSCHULE
FURTWANGEN ‘
UNIVERSITY

"host": "http://example.org",
"resources": [{
"path": "/employees",
"access": [{
"methods": ["GET, POST"],
"policies": ["P1","P2"]
I

"resources": [{
"path": 11/111’
"access": [{

"methods": ["GET, PUT"],
"policies": ["P3","P4"]

}]
}]

b
"path": "/departments",

"access": [{
"methods": ["POST"],
"policies": ["P5"]

29

RestACL — Policy HHHFU Y

{

"policies": [{
"id": "Pl"’
. "effect": "Permit",
‘Pd?llpf].y "priority": "l",
G-) "compositeCondition": {
effect: Permit "operation": "AND",
priority: 1 "conditions": [{

N L. "function": "greater",
Composﬂ;eCondntmn "arguments": [{
operation: AND "category": "subject",

Condition Condition | cesonarenty fage
function: greater function: equal woalue®: "1

Argument Argument | 1]

cate.gory: subject cate.gory: resource "function": "equal",

designator: age designator: type "arguments": [{

A . A . "category": "resource",

rgumen rgumen "designator": "type"
value: 21 value: basic b o
"value": "basic"
}]
]
}
)) . }]
Logical expressions and priorities }

SummerSoc 17: Access Control For Services

30

RestACL - Implementation

Domain: Hash table

« Hash: resource address

* Bucket: Access elements
pointing to policies

HOCHSCHULE
FURTWANGEN
UNIVERSITY

HFU &)

Hash (Resource add.) |Access

h(/employees) [GET, POST

h (/departments) [POST cffoct

=
Policy Pl
effect permit
priority 1
condition

P3

deny
priority 3
condition

SummerSoc 17: Access Control For Services

31

HOCHSCHULE

Summary on ABACAREST/RESTACL HHFU D)

RestACL Constant Growing like hashing
Intuitive XACML rule sets Far slower Linear growth

Nested optimized XACML Constant (but far slower) Growing like a data tree
policy sets

« ABACA4REST: Adaption of general access control architecture
« RESTACL:

» Special language for REST applications

» Fast resource-oriented implementation

SummerSoc 17: Access Control For Services 32

Overview i HFU &)

1. Basics of access control

2. Authentication, authorization and access control for

services
3. ABAC for REST: RESTACL

4. (loT-oriented applications of ABAC for REST)

5. Conclusions

SummerSoc 17: Access Control For Services 33

HOCHSCHULE

inati e HFU @
0T Applications of ABAC4REST)

<+ Proof of concept with two case studies

* Qutsourcing access control from loT

- loT device as OAuth resource server
- ABAC instead of user based permissions

* Integration with loT situation rule system SitOPT
(University Stuttgart)

RestACL
"\ == | PolicyR posnowﬂl
’—)| Domain
#| ttribute Pro:

>
)

o | /7
m
4 Evaluatio

3 Engine

SummerSoc 17: Access Control For Services

HOCHSCHULE

Outsourcing Access Control from loT Device i HFU Y

< Assumption: loT device

* small system
* weak capacity
<+ Access control as

* an external service
e providing permit tickets

SummerSoc 17: Access Control For Services 35

Outsourcing Access Control from loT Device

[Client App

A

dCCess
resource

O
O

put user token

HOCHSCHULE
FURTWANGEN
UNIVERSITY

HFU &)

Using OAuth Client
Credential workflow

Resource
Server

} loT Device

®

check

)C ABAC4REST]

[Authorization W

Server J

permission

Philipp Montesano, Marc Huffmeyer
und UIf Schreier, Outsourcing
Access Control for a Dynamic
Access Configuration of loT
Services, loTBDS '17

SummerSoc 17: Access Control For Services

36

Results s HFU :)J

< Advantages

* Less memory consumption at loT device
* Central administration of policies
<+ Disadvantages

* More communication time
* Decryption of signed tickets needs time

SummerSoc 17: Access Control For Services 37

Situation based access control: Idea

fSituation \

* |d
Introduce Situation Category . gme
 Occurred

e Accessinterval

_ J

SituationAPl | | Device API |
| 1 RestACL
Integrate ABAC with Sit. Recog. > | R | SitopT
2| | == [PolicvRepostoy B | SitRS RMP
d Evalu‘atlon > (Doman S| !
o Engine)
) w— | AtributeProv. & l g sit. DB Sensor | Sensor | Sensor

Marc Huffmeyer, Pascal Hirmer, Bernhard Mitschang, Ulf Schreier und Matthias Wieland, SitAC -
- A System for Situation-Aware Access Control - Controlling Access to Sensor Data, ICISSP '17

SummerSoc 17: Access Control For Services 38

SItOPT (University Stuttgart)

Situation API ’ Device API

SitOPT

SitRS RMP

Sit. DB Sensor Sensor Sensor

@

. /

Situation Recognition Service (SitRS)

= Periodically checks if a situation occurred based on sensor values.
Resource management platform (RMP)

= Provides a uniform interface for sensors.
Situation Database (SitDB)

= Changes to the situation (occurred/not occurred) are written into the SitDB.
= For every change a situation callback can be alerted.

SummerSoc 17: Access Control For Services 39

SitAC: Architecture

4
A

Client
@
— Yoo T,
Camera API Access/Situation Admin. API Device API
~) 4 “
Enforce. 5 5 Enforce.
Security O3 D
@ = @ RestACL 9 | - @
Layer . .
2 2
.) .
© Situation Callback API l@ \9
Service Camera API 1@ Situation API Device API
Layer SitOPT

Real ' P
iy (o @ [smon@ (oo) § O

SummerSoc 17: Access Control For Services 40

'

HOCHSCHULE

ABAC4REST Architecture For SITOPT i HFU O

@ SitOPT
AP| Gateway (server app)

[oo S ON. ORI
Reposﬂory

Environment }

Policy
Context Handler Information

@ Point
[

Policy
Decision
Point

ok

Policy
Repository @
J

SummerSoc 17: Access Control For Services 41

Results i HFU 9)

< Successful integration of two complex systems

 Test of ABAC4REST architecture
* Test of RESTACL language and engine

SummerSoc 17: Access Control For Services 42

Conclusions HFU:)J

<+ Clarification of sometimes confusing and intersecting AAA concepts

* Authentication
* Authorization (Delegation)
* Access Control (Authorization)

< Workflow of access control

« Black box (access control and environment)
 White box (inside)

< (Customization towards RESTful services:

« ABAC4REST architecture
« RESTACL language and engine

SummerSoc 17: Access Control For Services 43

HOCHSCHULE

FURTWANGEN ‘ H FU
UNIVERSITY ‘

Thank You!

SummerSoc 17: Access Control For Services 44

