

Experiment-Driven Evaluation of Cloud-based Distributed Systems

Markus Klems, Information Systems Engineering, TU Berlin 11th Symposium and Summer School On Service-Oriented Computing

Agenda

- Introduction
- Experiments
- Experiment Automation
- Trade-offs
- Conclusion

- Many modern applications integrate distributed system software that runs on cloud infrastructure.
- Cloud-based distributed systems promise to deliver on multiple desirable objectives:
 - performance,
 - scalability,
 - elasticity,
 - low cost,
 - high availability,
 - (and certain consistency guarantees).

Problem

How can we find out if a specific cloud-based distributed system really delivers on its promises?

Possible approach	Weakness
Rely on the opinion of experts	Opinions might be biased or wrong
Use published experiment results as a basis for decision making	Experiment results might not be applicable to the specific use case
Simplified simulation or experiment	Potentially disregards important aspects of complex systems
Experimentally evaluate only a single system objective	Many objectives are desirable and could be conflicting

Research Question & Contributions

Research Question: How can experiments be utilized to evaluate multiple objectives of cloud-based distributed systems?

Question	Contribution
How well can we reproduce related experiments?	Results of new experiments and experiment reproductions.
How can we automate experiments?	A new approach and system implementations for experiment automation in compute clouds.
How can we describe and evaluate practical trade-off problems between conflicting objectives?	An experiment-driven trade-off evaluation method with 2 instantiations of the method.

Agenda

- Introduction
- Experiments
- Experiment Automation
- Trade-off Evaluation
- Conclusions

Related Work

Selected Related Work		S	Ε	A	С
Cooper, et al. (2010): Benchmarking Cloud Serving Systems with YCSB.	x	x	x	x	
Bodík, et al. (2010): Characterizing, Modeling, and Generating Workload Spikes for Stateful Services.	x				
Trushkowsky, et al. (2011): The SCADS Director: Scaling a Distributed Storage System under Stringent Performance Requirements.	x	x	x		
Patil, et al. (2011): YCSB++: Benchmarking and Performance Debugging Advanced Features in Scalable Table Stores.	x				x
Rabl, et al. (2012): Solving big data challenges for enterprise application performance management.	x	x			
Fior, et al. (2013): Under Pressure Benchmark for DDBMS Availability.	X			x	

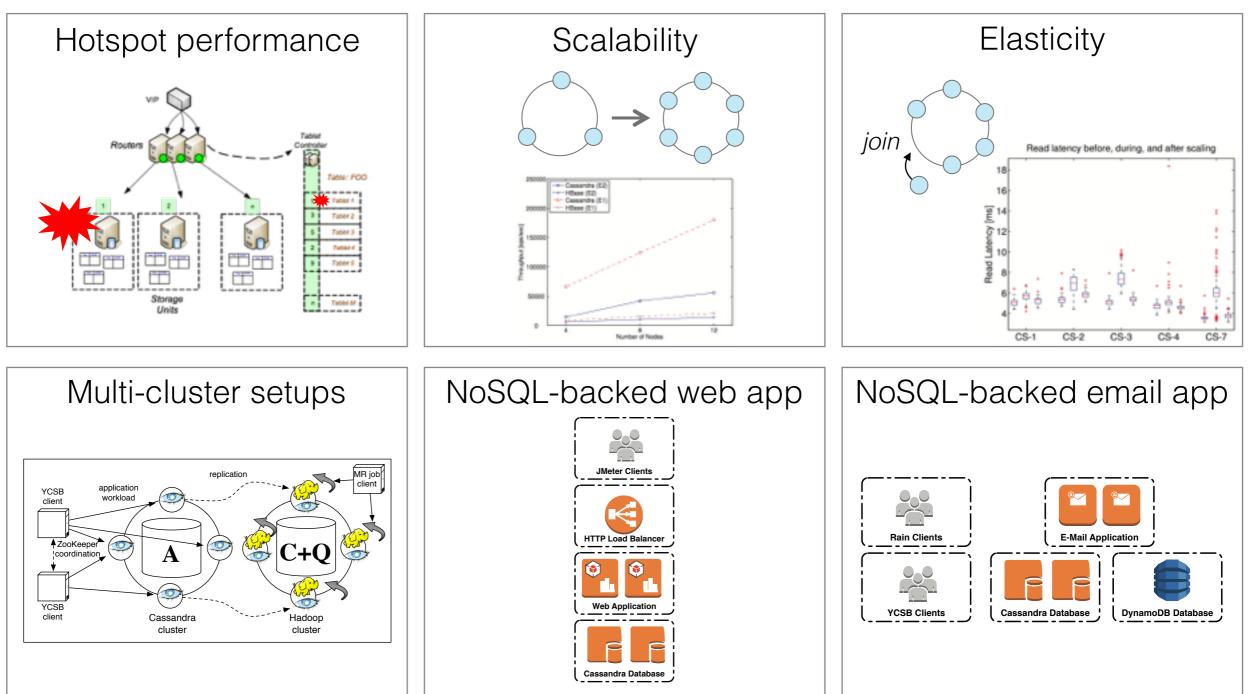
Legend: P (Performance), S (Scalability), E (Elasticity), A (Availability), C (Consistency)

Publications

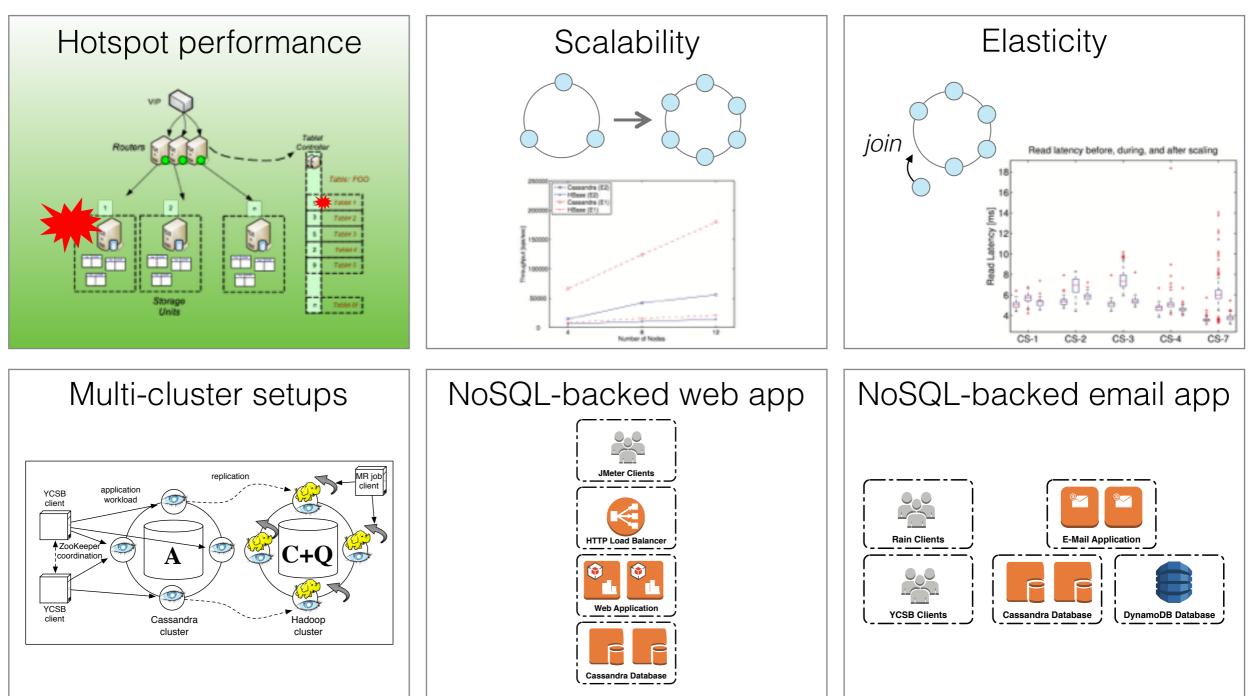
Selected Publications		S	E	A	С
Klems, Bermbach, and Weinert (2012): A Runtime Quality Measurement Framework for Cloud Database Service Systems.	x	x	x	x	x
Klems and Lê (2013): Position Paper: Cloud System Deployment and Performance Evaluation Tools for Distributed Databases.	x	X			
Klems, Silberstein, Chen, Mortazavi, Albert, Narayan, Tumbde, and Cooper (2012): The Yahoo! Cloud Datastore Load Balancer.			x		
Kuhlenkamp, Klems, and Röss (2014): Benchmarking Scalability and Elasticity of Distributed Database Systems.		x	x		

Legend: P (Performance), S (Scalability), E (Elasticity), A (Availability), C (Consistency)

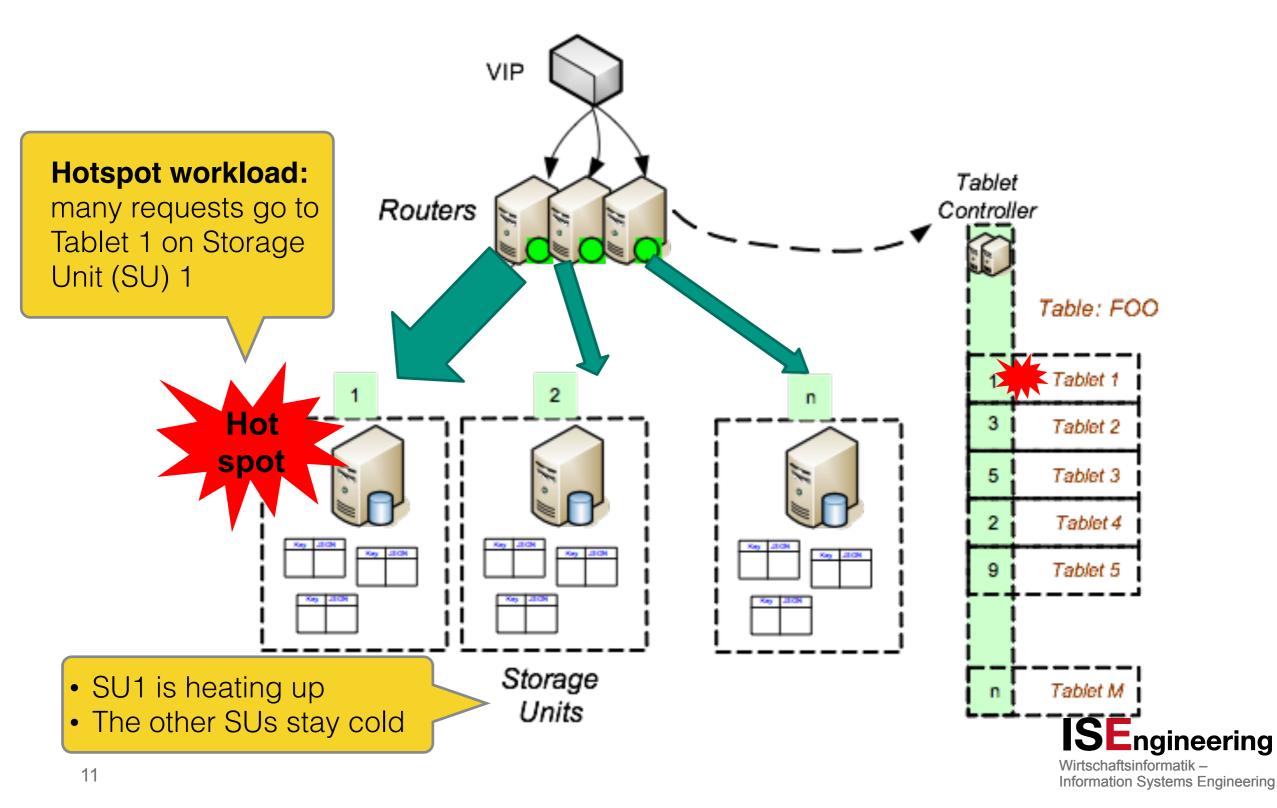
Experiments

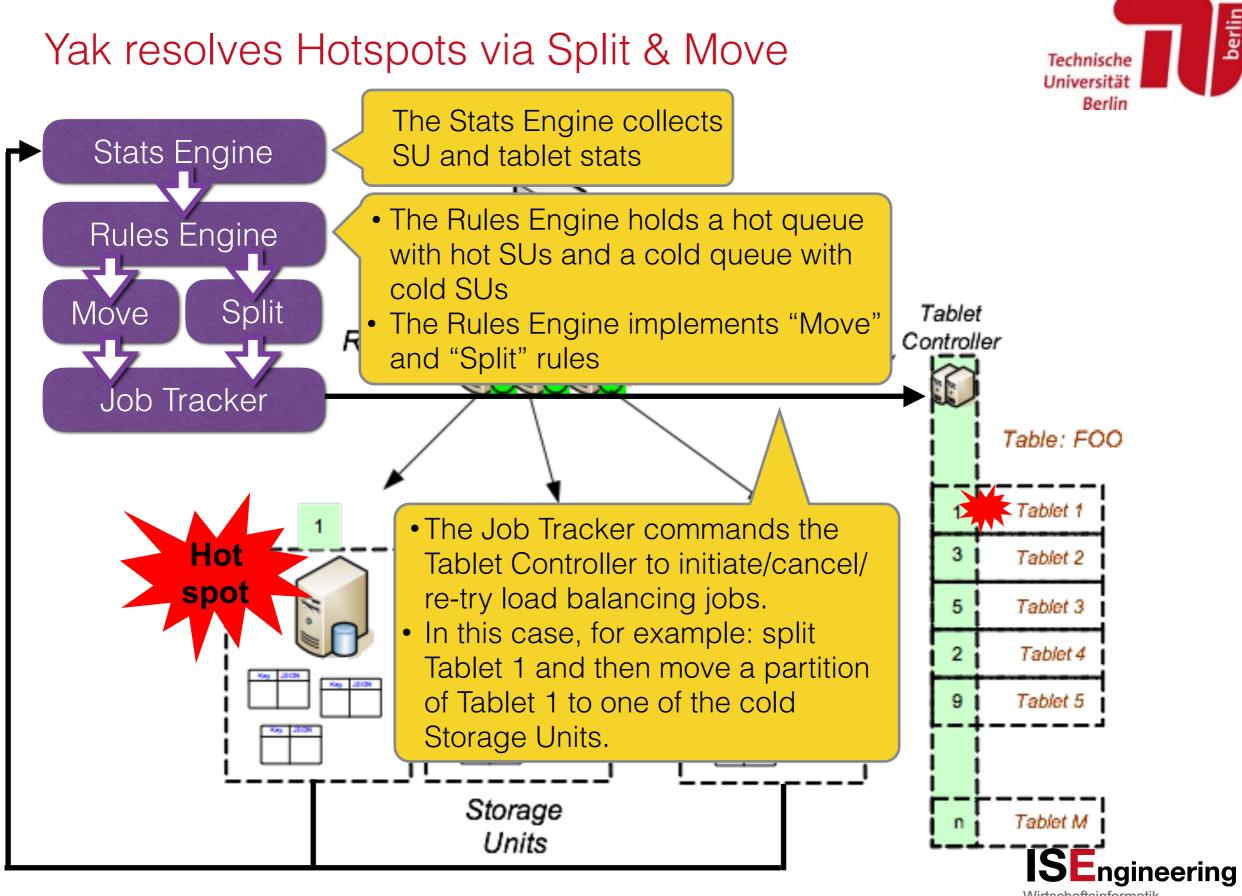


Experiments



Sherpa Ordered Tables under Hotspot Workloads

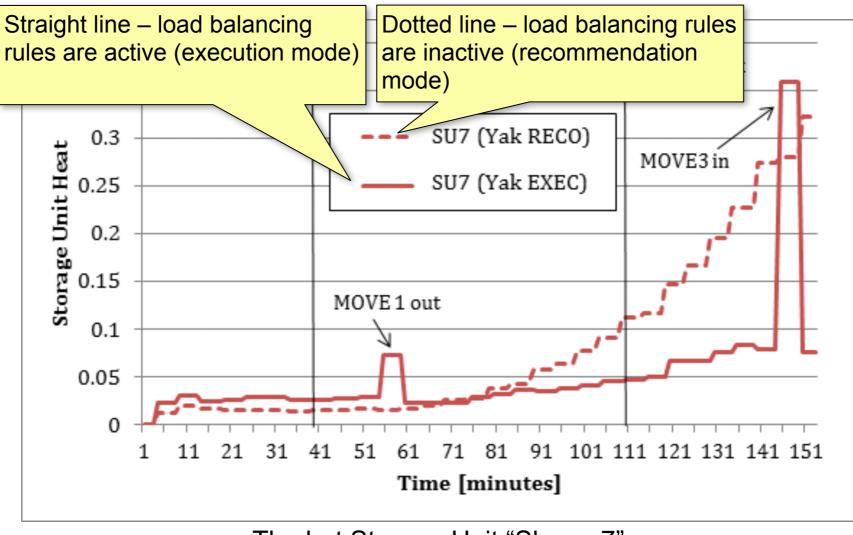




Wirtschaftsinformatik – Information Systems Engineering

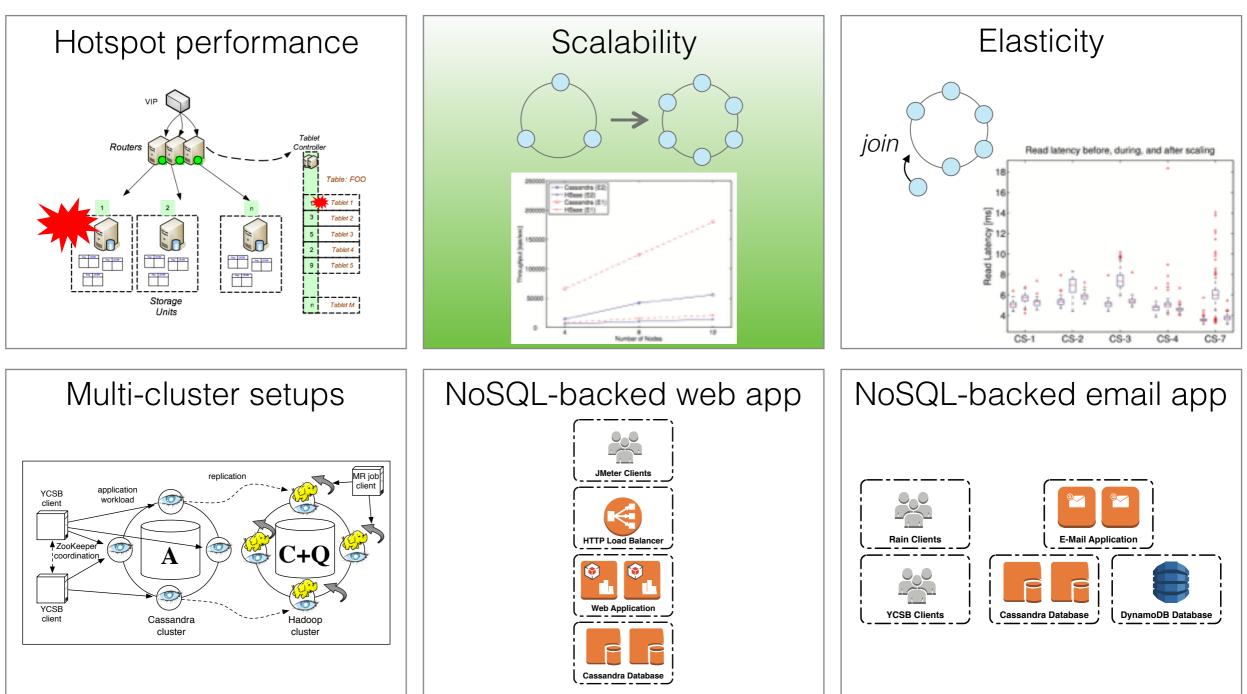
Sherpa hotspot performance results

- Response time degradation in Sherpa with Distributed Ordered Table setup under certain hotspot workloads
- Performance can be improved by online data migration at cost of server load spikes, due to data movement

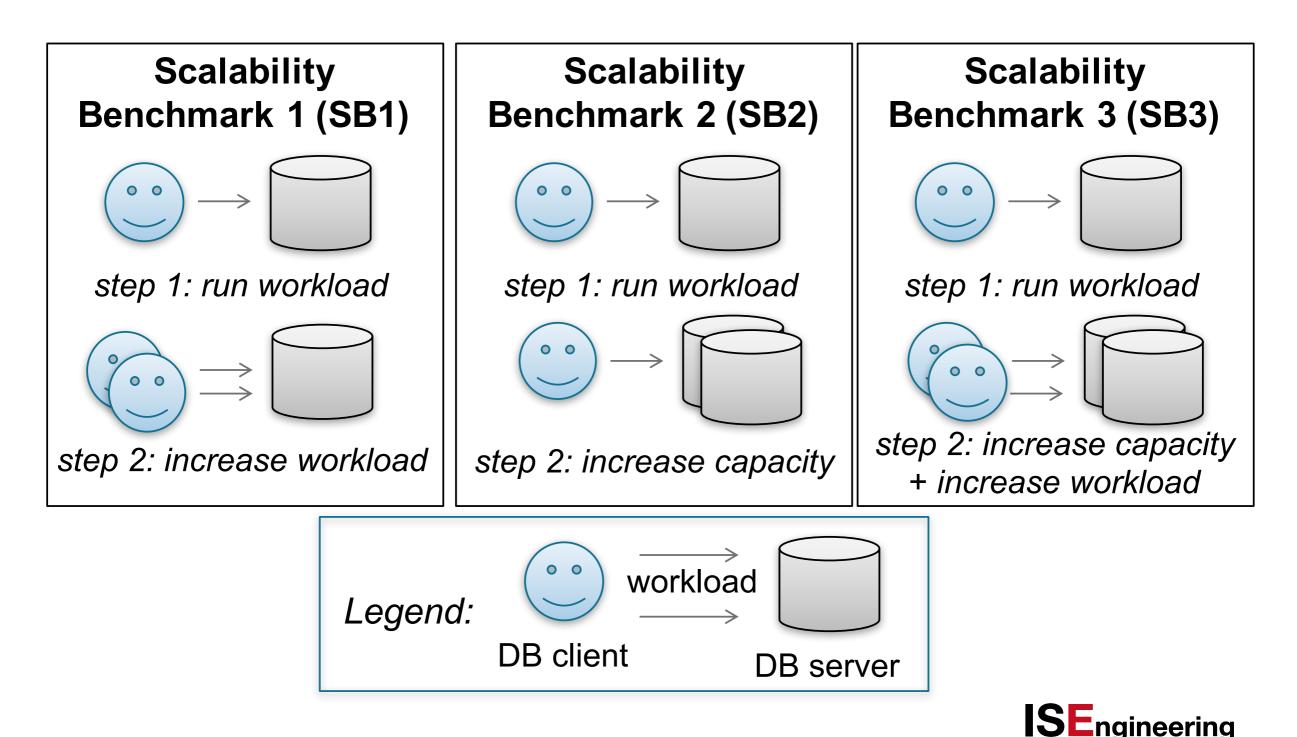


The hot Storage Unit "Sherpa7"

Experiments



Scalability Benchmarking



Wirtschaftsinformatik – Information Systems Engineering

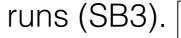
Experiment Reproduction

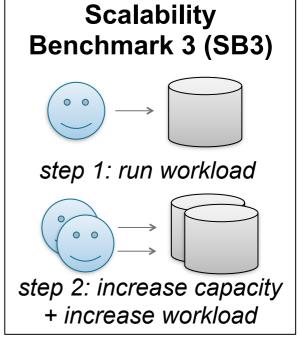
Reproduction of experiments by Rabl, et al.*

- Selected results of the original experiments:
 - Cassandra is the winner in terms of throughput.
 - HBase has low write latency, however, higher read latency.
 - Linear scalability of both Cassandra and HBase.

*Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor Muntés-Mulero, Hans-Arno Jacobsen, and Serge Mankovskii. 2012. Solving big data challenges for enterprise application performance management. Proc. VLDB Endow. 5, 12 (August 2012), 1724-1735.

- Our experiment objective
 - Create an experiment plan that reproduces the original experiment setups.
 - Change system capacity and change load proportionally between subsequent workload

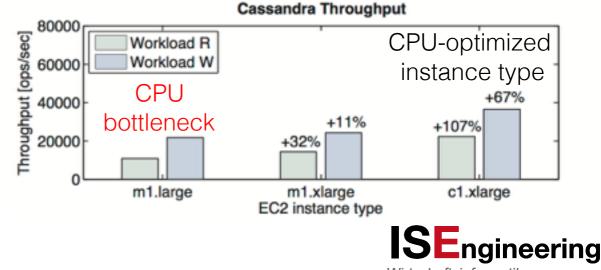




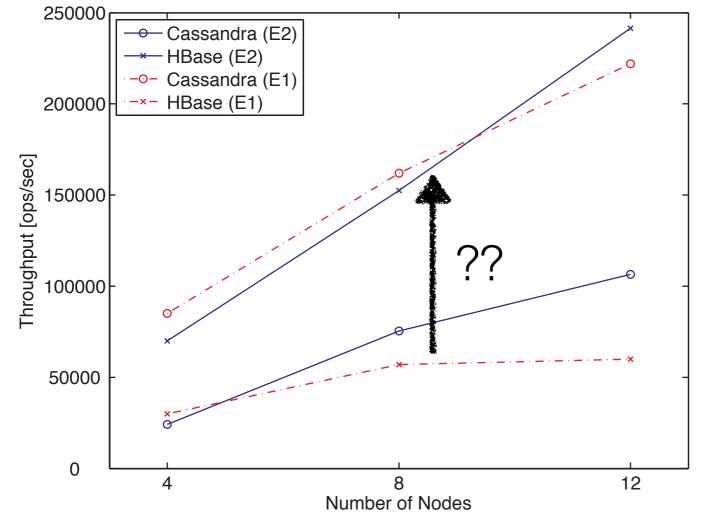
Cassandra and HBase Scalability Benchmark

- HBase and Cassandra scale linearly from 4-12 servers
- Cassandra: better performance for read-heavy workloads
- HBase: better performance for write-heavy workloads
- Cassandra performance is CPU-bound when using EC2 general purpose instances

	Avg RT [ms]				Avg RT [ms]		
DB	Workload	Max Load	95% Load	DB	Workload	Max Load	95% Load
	Read-heavy	111	45		Read-heavy	26	21
HBase	Write-heavy	0	2	Cassandra	Write-heavy	13	10
	Scan-heavy	162	49		Scan-heavy	122	56

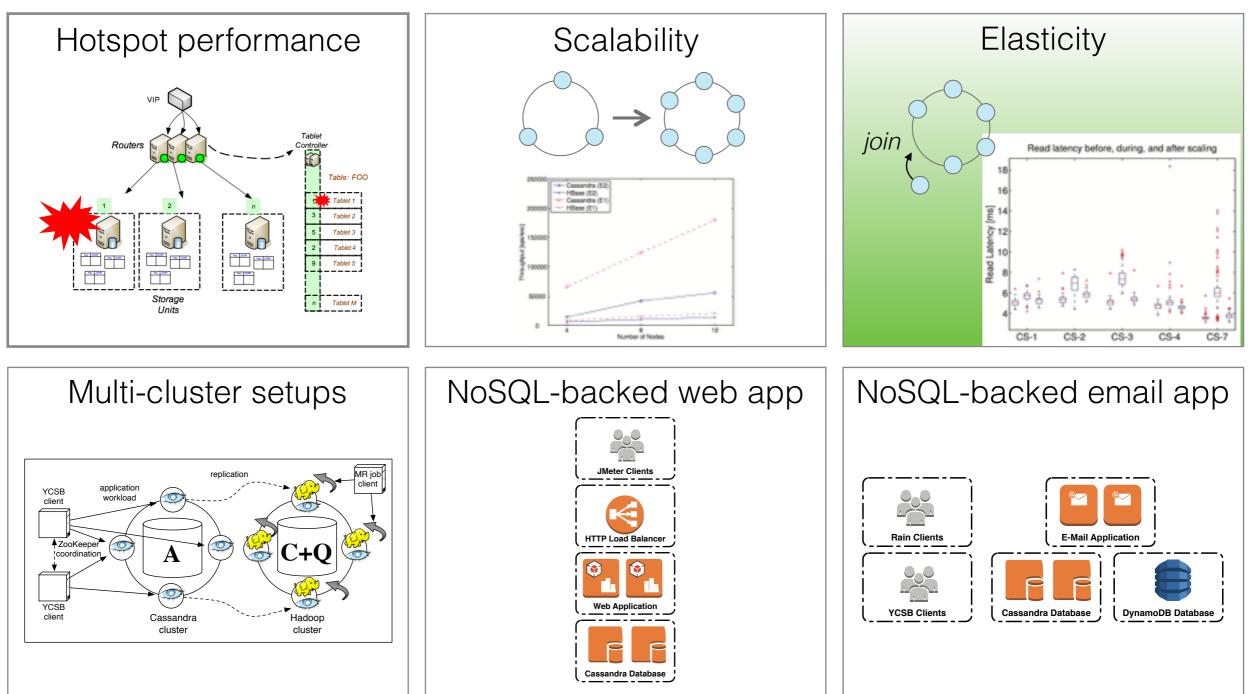


Selected Observations: Client-side Bottleneck



- We observed a client-side performance bottleneck when we reproduced the original experiments with HBase and a write-heavy workload.
- Increasing the number of YCSB client servers (x2) increased performance considerably, as shown in the graph.

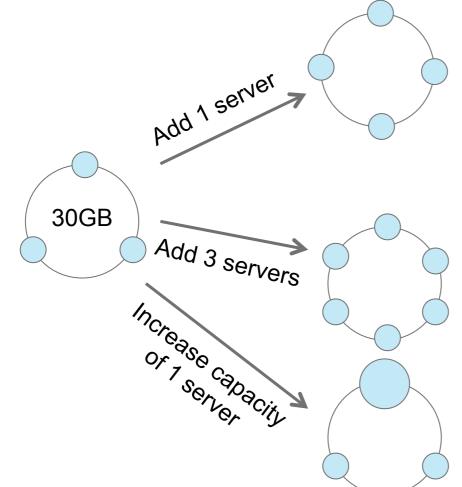
Experiments



Elasticity Benchmarking

- EB1:
 - Apply constant load and execute a single scaling action during the execution of a workload.
 - Scaling actions are executed at pre-specified points in time
- EB2:
 - Change load and execute one or more scaling actions during a workload run.
 - Scaling actions are executed automatically, e.g., by a rulebased control framework that uses moving averages of CPU utilization as sensor inputs.

Cassandra Elasticity Benchmark (EB1)

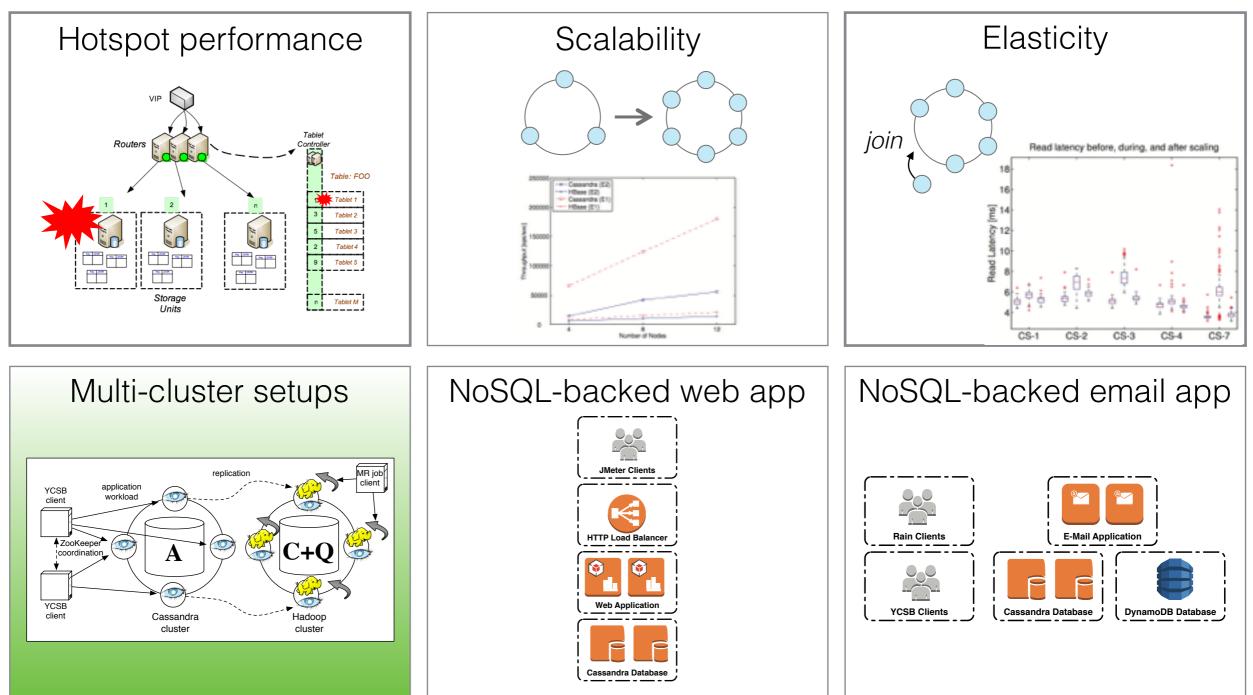


Streaming	Scaling time	Avg. read lat.
5 Mbit/s	198 min	5.7 ms
40 Mbit/s	31 min	6.9 ms
unthrottled	16 min	7.5 ms
disabled	1.3 min	5.2 ms

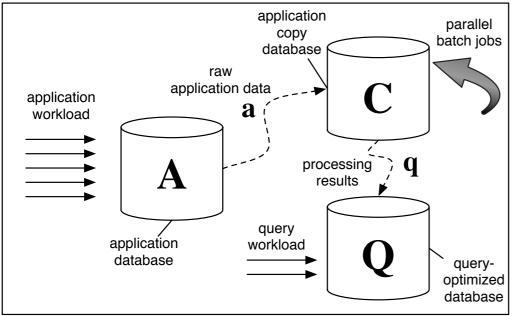
Streaming	Scaling time	Avg. read lat.
unthrottled	13 min	6.5 ms
disabled	0.8 min	5.8 ms

Streaming	Scaling time	Avg. read lat.
N/A	8 min	6.1 ms

Experiments



Cassoop Architecture



Basic System Architecture Design

- **Application database**: serves simple single-row requests, such as create, read, update, and delete, and simple multi-row requests, like row scan and column slice.
- **Parallel processing framework**: runs batch jobs that use the application data as input source, process it, and materialize query-optimized data, e.g., OLAP cubes.
- Query engine: serves complex analytical queries, such as "Sales of iPads in all Apple stores in New York City during the week of Thanksgiving", from a query-optimized database.

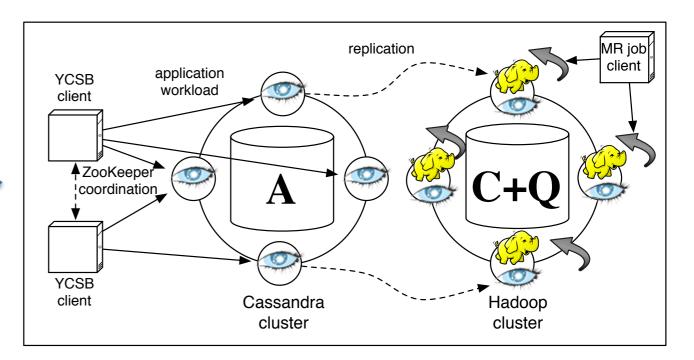
Experiment Setups

Setups:

- CH1 = single-cluster setup with 8 servers where each server has Cassandra and Hadoop installed
- CH2 = dual-cluster setup with 6 dedicated Cassandra servers and 2 dedicated Hadoop servers
- CH3 = dual-cluster setup with 4 dedicated Cassandra servers and 4 dedicated Hadoop servers
- CH4 = dual-cluster setup with 2 dedicated Cassandra servers and 6 dedicated Hadoop servers

Each setup CH{2,3,4} is evaluated twice with:

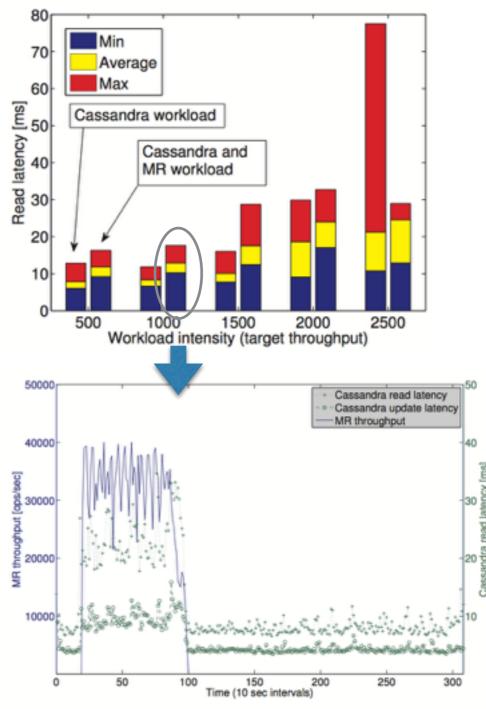
- a. **Synchronous replication** between clusters (Cassandra Consistency Level "ALL")
- b. **Asynchronous replication** between clusters (Cassandra Consistency Level "QUORUM")



Experiment Results

The main results of our experiments are:

- We measure a performance impact of Map Reduce jobs on Cassandra read latency for nearly all experiments
- Dual-cluster setups: Cassandra scales nearly linearly with the number of servers
- Increasing capacity of the Hadoop cluster results in a nearly linear increase of throughput
- Interestingly, similar to the Cassandra scalability measurements, in the case of the shared Single-cluster CH1, Hadoop performance deteriorates and is slightly worse than in the CH4b dual-cluster setup.
- We calculate the overhead of synchronous replication for all three dual-cluster setups in terms of average read and write response time increase during the map-task. The performance impact computes to an average response time increase of approximately 35% for read requests and approximately 50% for write requests.



Agenda

- Introduction
- Experiments

Experiment Automation

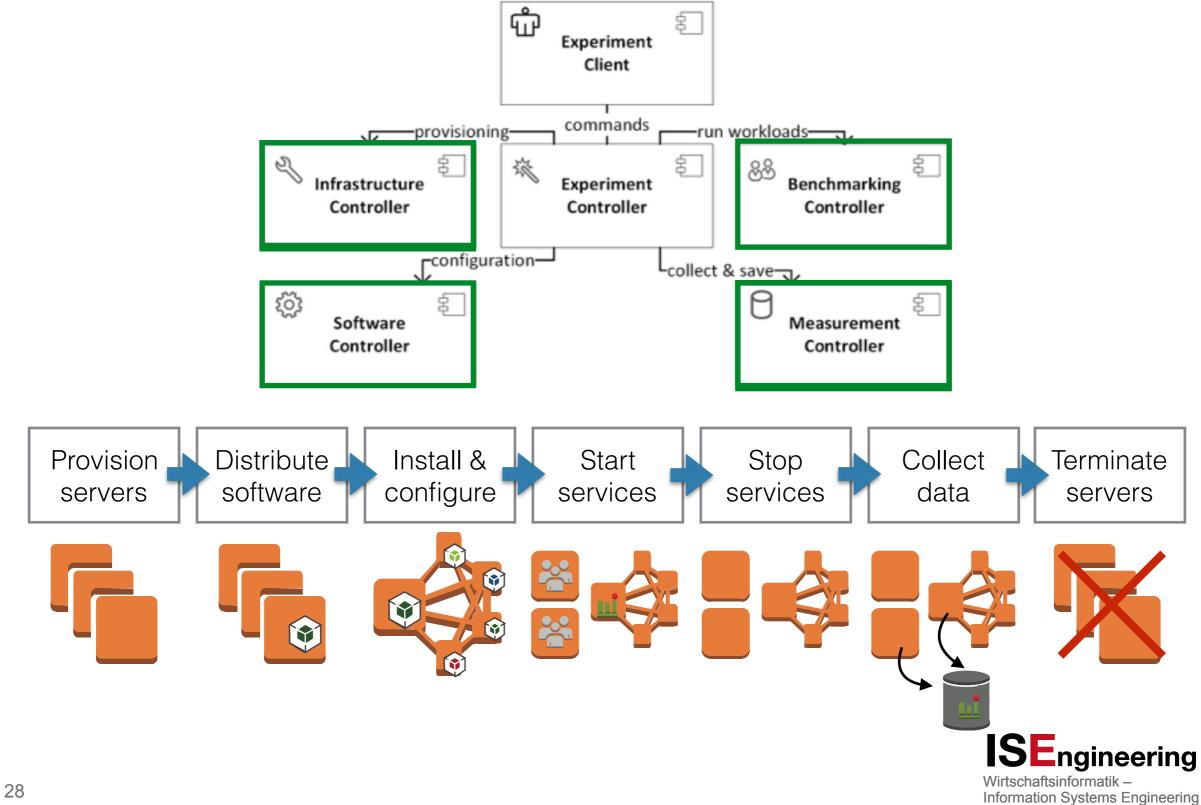
- Trade-off Evaluation
- Conclusions

Experiment Automation

Our main challenges:

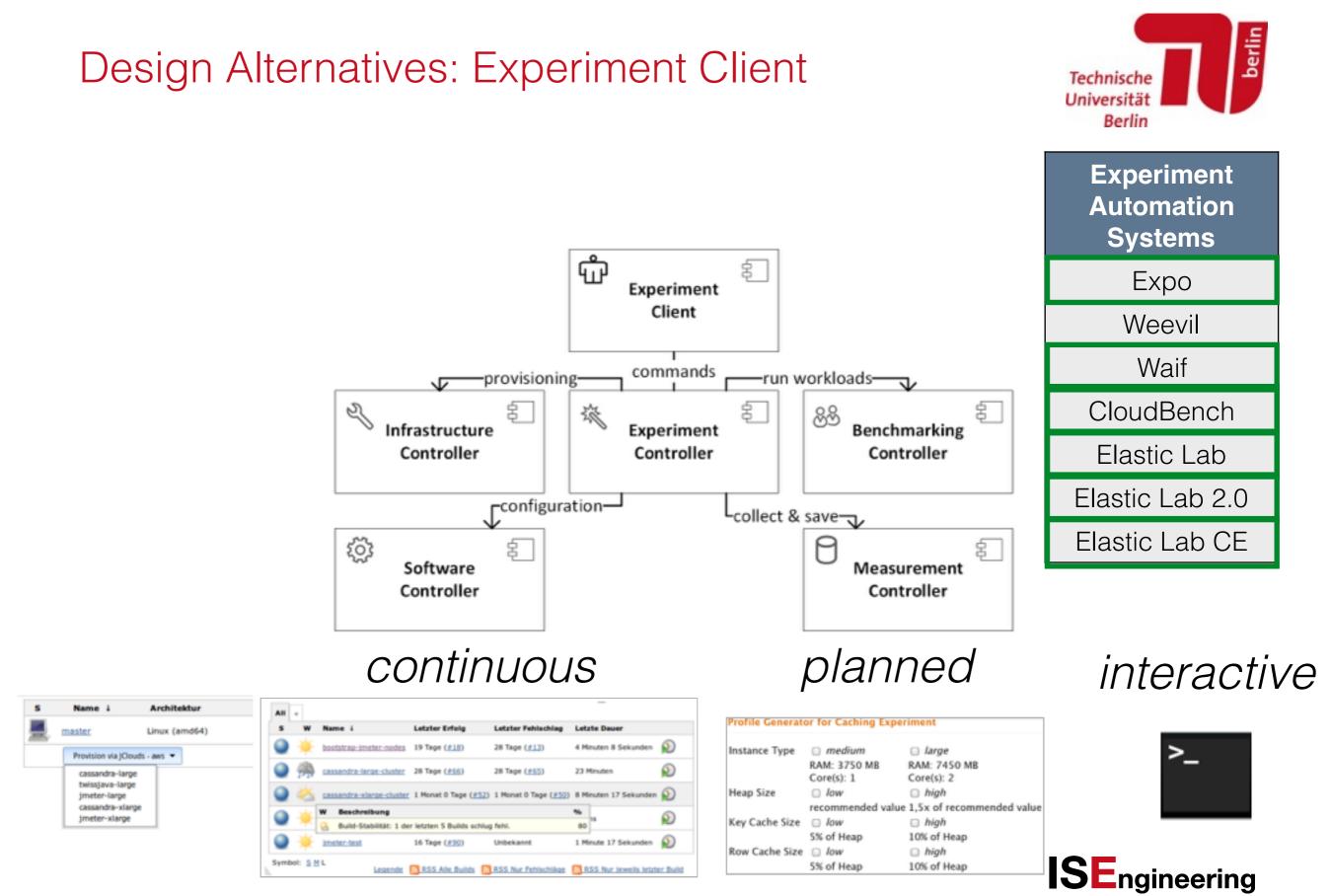
- Each experiment involves a complex, error-prone setup
- Difficulties to collaborate, repeat, and reproduce experiments
- Large numbers of experiments are needed to systematically evaluate
 - scalability and elasticity
 - infrastructure configuration alternatives: instance types, storage devices
 - system configuration alternatives: caching, replication, clustering, etc
 - different workloads

Design of Elastic Lab

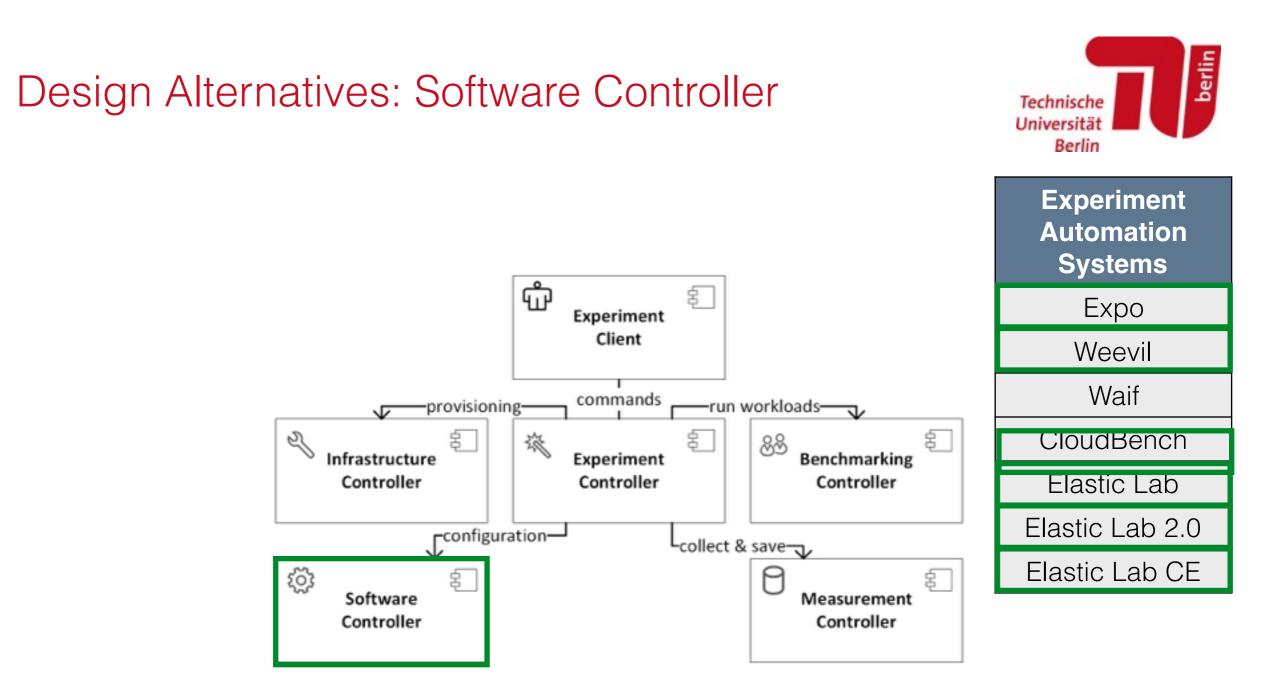


Related Experiment Automation Approaches & Systems

Related System	Main differences to Elastic Lab	Main similarities with Elastic Lab
Expo	 Grid infrastructure Experiments with scientific simulation systems 	
Weevil	 Grid infrastructure Infrastructure provisioning not automated 	 Experiments with distributed systems (Freenet, Chord)
Waif	 Experimental evaluation of file server performance with NFS workloads 	 Cloud infrastructure (AWS)
CloudBench	 SUT is "hard-coded" as virtual appliance; software configurations not automated 	 Experiments with distributed systems and applications on cloud infrastructure



Wirtschaftsinformatik – Information Systems Engineering



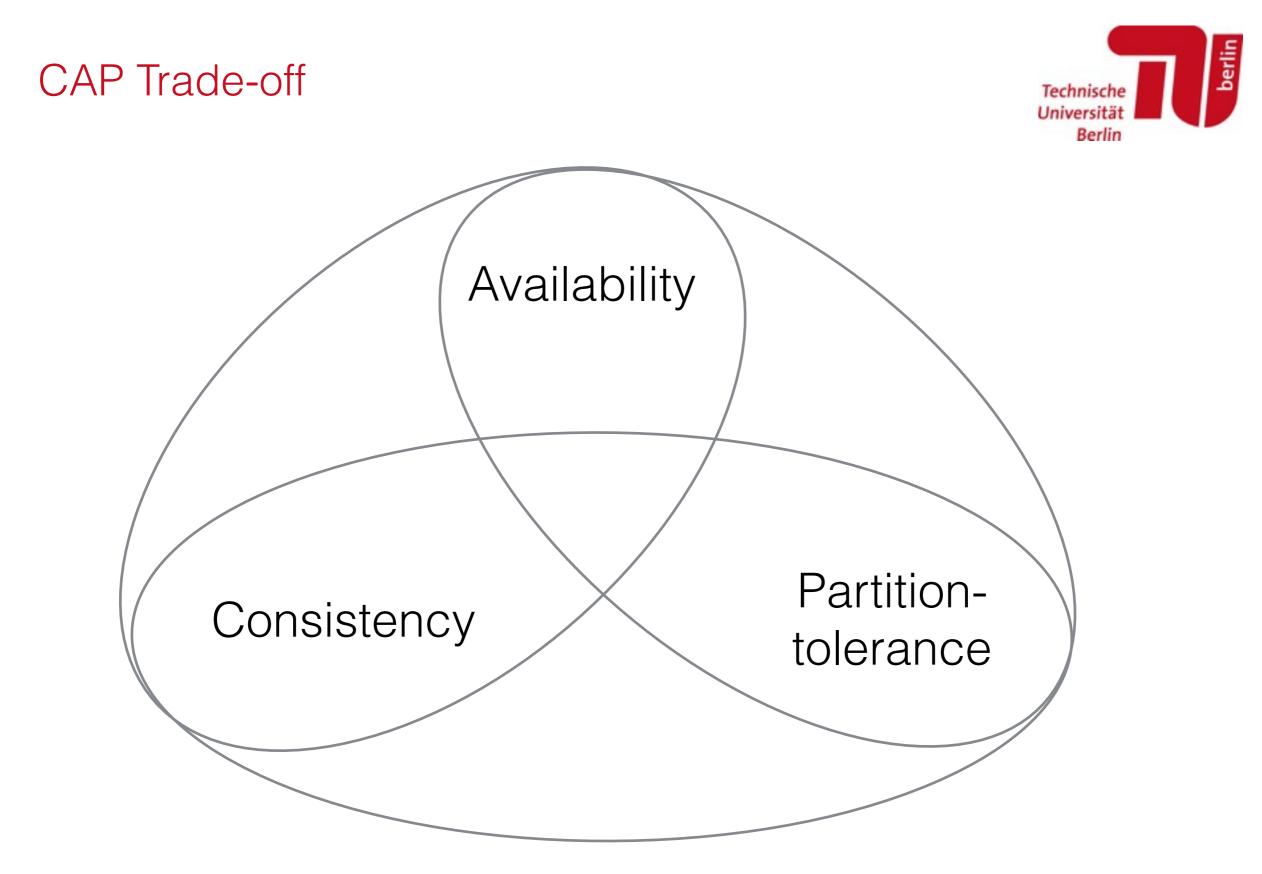
script-based software automation

config. management based virtual appliance based software automation software automati

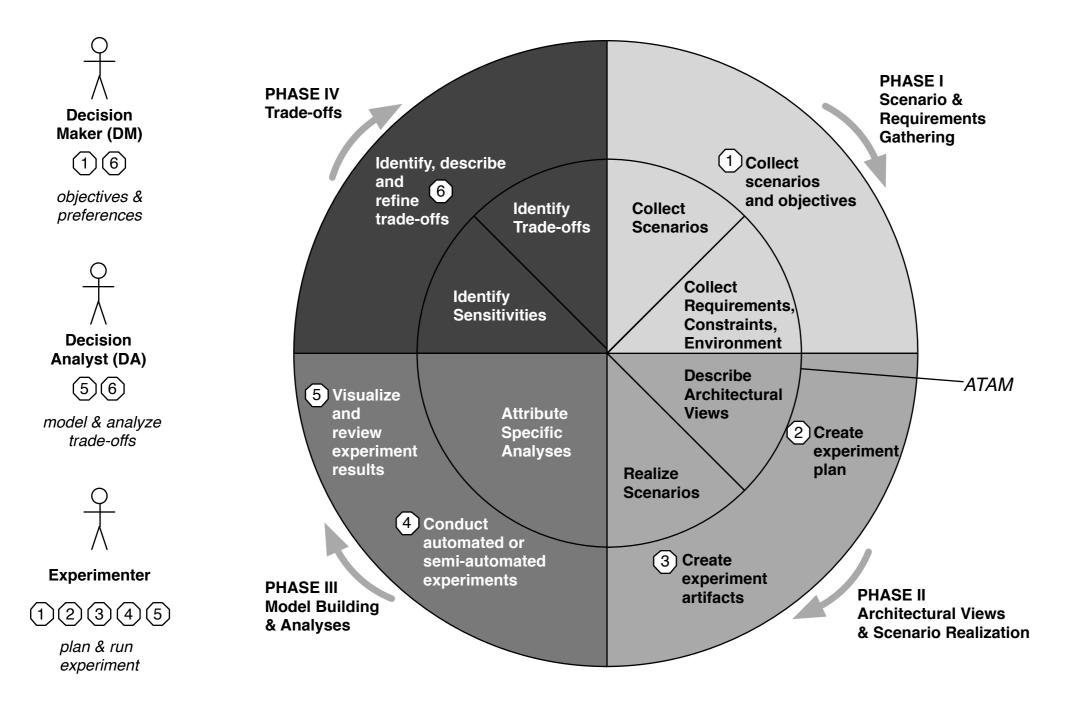
Wirtschaftsinformatik – Information Systems Engineering

Agenda

- Introduction
- Experiments
- Experiment Automation
- Trade-off Evaluation
- Conclusions



Trade-off Evaluation Approach

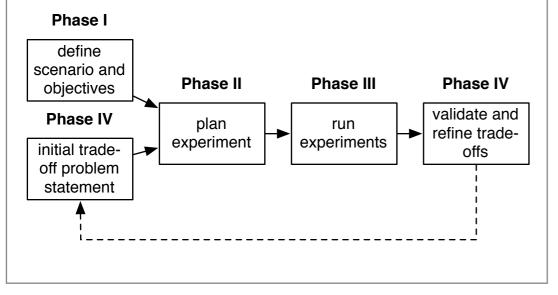


Experiment-Driven Trade-off Evaluation Method (ETEM)

Two instantiations of ETEM

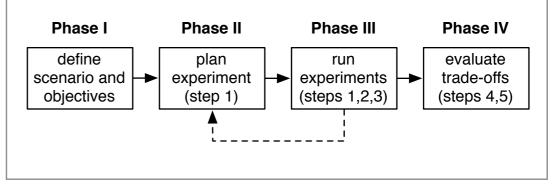
Trade-off Refinement Method

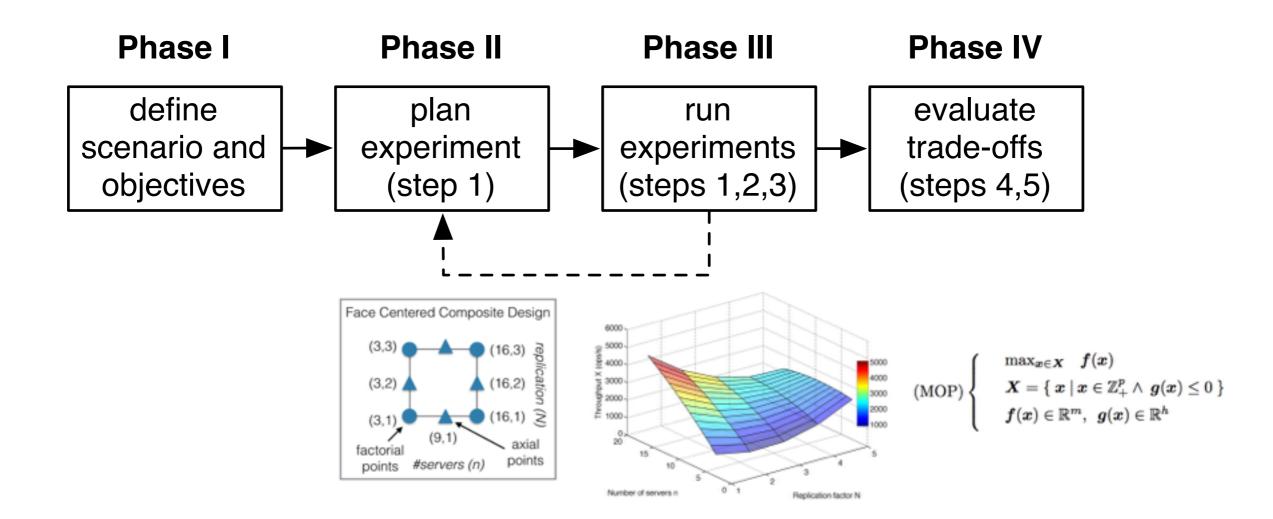
Describe a trade-off problem statement (in more detail)



Experiment-Driven Multi-Objective Optimization Method

Find an optimally balanced solution between conflicting objectives, using both experimental data and subjective preferences as input





Agenda

- Introduction
- Experiments
- Experiment Automation
- Trade-off Evaluation
- Conclusions

Conclusions

- 1. Reproduction of related experiments
 - Successful reproduction of general performance, scalability and elasticity results
 - Absolute performance measurements are difficult to reproduce
- 2. Automation of experiments
 - Design alternatives of experiment automation systems determine the types of experiments that we can conduct with reasonable effort
 - Automated experiments enable us to
 - conduct a broad variety of performance, scalability, and elasticity benchmarking experiments
 - evaluate replication setups via automated parameter testing
- 3. Evaluation of trade-off problems
 - Experiments enable us to describe trade-off problems in more detail
 - Iterative system optimization methods enable balanced decisions by using a combination of experiment data and subjective preferences

Thank you!

