
Theory of
Programming

Prof. Dr. W. Reisig

Tutorial
Conceptual Foundations

of SOC

Wolfgang Reisig
Humboldt-Universität zu Berlin

SUMMERSOC
Hersonissos, Wednesday, June 28, 2017. 9.30 – 10.30

Foundations of SOC

Why needed?
to make it conceptually simpler,
better teachable,
better usable by non-experts
What could this be?
Identify the (??) fundamental concepts
and build a theory on top of this …
We are so wonderfully progressing without
for a while
There is this deep “Theoretical Informatics” stuff. That’s enough.
No. There is something fundamentally new

2

Foundations of SOC

1. SOC exceeds classical Theoretical Informatics
2. Services are made to be composed!
3. Required: mechanisms to compose many services.
4. Composition must retain or guarantee properties.
5. Composition is surprisingly expressive!

3

Foundations of SOC

1. SOC exceeds classical Theoretical Informatics
2. Services are made to be composed!
3. Required: mechanisms to compose many services.
4. Composition must retain or guarantee properties.
5. Composition is surprisingly expressive!

4

Let’s start fundamentally …

What constitutes a science?

The example: Physics
A system of notions
and relations among them,
stating laws of nature,
described in terms of models.

5

Models in Science
Typical example:

The term “energy”
+ all laws about energy.

There is nothing like energy in nature.
The notion of “energy” is an abstraction
from many aspects in nature,

intended to describe an invariant.

6

7

sum of energy
first residing in gasoline,
then in acceleration,
then in deformed metal sheet.

Example: What remains invariant?

What physicists really did:
Searched a notion, general enough
to describe what remains invariant
… and called it energy.

Scientific theories
Physicist do accept intuitively hard models (“theories”)
if they offer convincing explanations,
in particular invariants.

Invariant in Chemistry
CH4 + 2 O2 → CO2 + 2 H2O

Search for good models
= Search for comprehensive invariants.

Even Theoretical Biology is behind (biological) invariants!
e.g. metabolism.
We should learn from this! 8

e = mc2

a further example: the Frank invariant

9

The sum of the length of his hair remains invariant

Our task
We must develop
integrated conceptual theories and models
in the style of the exact sciences
for … ??

… supporting nontrivial analysis and verification
by help of invariants.

10

Models and invariants in Informatics
Informatics has models.

Some models have invariants.

11

… with comprehensive invariants

12

account
+ in hand

What remains invariant
when using
a cash machine ?

What remains invariant during running a garbage collector?

… while fulfilling a contract?

13

by means of models!
We must “elevate models
as to a first class citizenship ...
a peer of traditional text languages
(and potentially its master)”.

“models as products”.

Grady Booch, (2004)

THE fundamental difference to programming:
1. Modeled behavior is not necessarily implemented.
2. The modeler freely chooses the level of abstraction

How achieve all this?

State of the art in informatics …
Probably, pre-Newton.

14

Certainly pre-Einstein

15

The three paradigms of programming:
1. Conventional (procedural) programs

follows the IPO model: input-process-output
theoretical foundation/ expressive power:
the computable functions, complexity theory, logic

2. Object orientation
attributes and methods
theoretical foundation:
abstract data types / algebraic specifications /
signatures and structures (as for 1st order logic)

3. Service orientation
self contained components
loosely coupled
theoretical foundation: missing

How establish reliable communication?
By sending acknowledgements, copies, etc. ,
i.e. by means of distributed algorithms (“protocols”).

1.1 SOC comprises communication

Complexity is not in computation but in communication.
Informatics comprises formal aspects
that can’t be explained as
functions f: Σ * Σ*

16
---→

1.2 SOC comprises
non-ending behavior

classical view:
terminating behavior is intended,
infinite behavior is mistaken.

SOC “always on”

cloud

elevator control

business informatics “24/7”

new view:
infinite behavior is intended.
terminating behavior is mistaken.

17

How cope with this?
by means of temporal logic

“from now on, q holds” Gq
… invariants …

“eventually p holds” Fp

… a real logic
with laws such as

¬(F ¬p) = Gp
18

behavior according to the beer hall pattern (*):
“ … so that people are continuously criss-crossing
from one to another.” … to click their glasses

(*) A PATTERN LANGUAGE in: TOWNS • BUILDINGS ' CONSTRUCTION
Christofer Alexander, Sara Ishikawa, Murray Silverstein NEW YORK OXFORD UNIVERSITY PRESS 1977

1.3 SOC comprises
causal (in)dependence

a typical
behavior:

Monday we learnded
about patterns …

… a partially ordered set of events

A B

C

D E

F

(*) A PATTERN LANGUAGE TOWNS • BUILDINGS ' CONSTRUCTION
Chris to f her Alexander Sara Ishikawa Murray Silverstein NEW YORK OXFORD UNIVERSITY PRESS 1977

A B F

D C E

What is a behavior formally?

c

a b

c

a b

c

a b

This view has deep consequences!

a b a b a ac c cb …

d e d e d df f fe …

c

a b

21

f

ed

e

d

f e

d

f e

d

f

The classical view:

e

a

a
b

c

b

d
e

d

a

d

f

cb
e

…
…

…
…

…
…

…

+ fairness assumption

b
…

motivated by
“observation”

22

c

a b

c

a b

c

a b

e

d

f e

d

f e

d

f
c

a b

f

ed

This view has deep consequences!
The classical view:

23

a b a b a ac c cb …

d e d e d df f fe …

c

a b

f

ed

This view has deep consequences!
The causality based view:

a b a b a ac c cb …

d e d e d df f fe …

24

a variant: i-th b before i-th f

a deterministic system;
no alternatives;
one behavior (run, execution)

c

a b

f

ed

25

… summing up

Semantics of SOC
should be mathematics!

True, this is presently not the case.

BUT WE SHOULD spend effort into this!

Foundations of SOC

1. SOC exceeds classical Theoretical Informatics
2. Services are made to be composed!
3. Required: mechanisms to compose many services.
4. Composition must retain or guarantee properties.
5. Composition is surprisingly expressive!

26

27

Requirements:
• The – elementary – notion of composition of services

is a (simple!) mathematical (or logical!) operation.

• For services S and T,
the composition S ⊕ T
is a service again.

(Frequently, S ⊕ T does not interact any more.)

ticketing =def

sell_ticket ⊕ buy_ticket

Interaction is represented as composition

"One cannot not
communicate. (*)

(*) Paul Watzlawick, 1967

28

a general goal
Description of
semantics and (in particular) composition of services:

- on a high level of business logic.
- not on a low level of implementation details.

Describe system properties !

Foundations of SOC

1. SOC exceeds classical Theoretical Informatics
2. Services are made to be composed!
3. Required: mechanisms to compose many services.
4. Composition must retain or guarantee properties.
5. Composition is surprisingly expressive!

29

30

1. A service S has an interface.
The interface of S is partitioned into
a left and a right port Sl and Sr !

customer and supplier
provider and requester
producer and consumer
buy side and sell side

input and output

Two fundamental ideas:

RM ⊕ Su ⊕ Ma ⊕ Di ⊕ Cu ⊕ Co

2. Composition
must be
associative!

31

customer and supplier
provider and requester
producer and consumer
buy side and sell side

input and output

2. Composition
must be
associative!

socket ⊕ adapter ⊕ plug

⊕ ⊕()

Two fundamental ideas:

1. A service S has an interface.
The interface of S is partitioned into
a left and a right port Sl and Sr !

Left ports: blue;
right ports: red .
Indices of equally labelled elements:
(index “1” is mostly skipped).
The inner nodes of N1 and N2 are sketched as boxes.

a

b

d

a

1

2

• N1 N1
•

N1

e

d

a

f

1

1

• N2 N2
•

N2

• (N1 N2) (N1 N2)•

a

b

d

D

e

d

f

a

1

2 1

N1 N2

yellow

left-right interface

Associative composition

machine machine

material product

a. workflow N, transforming material into products by help of a machine

b. composed workflow, NN

machine
material

product

machine

material

machine

Associative composition

machine machine

material product

a. workflow N, transforming material into products by help of a machine

b. composed workflow, NN

machine
material

product

machine

material

machine

Associative composition

machine machine

material product

a. workflow N, transforming material into products by help of a machine

b. composed workflow, NN

material product

machine
material

productmaterial

machine
product

c. composed workflow, NNN

machine
material

product material

broker clientproducer

nego-
tiate send

offer

send
reject

send
order

a

b

a

b

c

nego-
tiate

prod-
uce

a

b

d
ship

rec.
offer

reject
offer

accept
offer

a

b

c

d rec-
eive

send
offer

send
reject

send
order

a

b

c

nego-
tiate

prod-
uce

d
ship

nego-
tiate send

offer

send
reject

send
order

a

b

rec.
offer

reject
offer

accept
offer

d
rec-
eive

producer broker broker client

producer broker client

nego-
tiate send

offer

send
reject

send
order

prod-
uce

ship

rec.
offer

reject
offer

accept
offer

rec-
eive

Foundations of SOC

1. SOC exceeds classical Theoretical Informatics
2. Services are made to be composed!
3. Required: mechanisms to compose many services.
4. Composition must retain or guarantee properties.
5. Composition is surprisingly expressive!

39

40

return
prod.

choose
product

send
order

rec.
product

accept
productib fb

Example: Internet Shopping

Soundness:
• a unique start state,
• a unique stop state,
• each transition is reachable,
• you always can reach stop
• no litter remains

Soundness is efficiently decidable. (v.d. Aalst)

41

return
prod.

time
out

choose
product

send
order

rec.
product

accept
productib fb

… not sound

Soundness:
• a unique start state,
• a unique stop state,
• each transition is reachable,
• you always can reach stop
• no litter remains

Soundness is efficiently decidable. (v.d. Aalst)

42

return
prod.

time
out

choose
product

send
order

rec.
product

accept
productib fb

…because

Soundness:
• a unique start state,
• a unique stop state,
• each transition is reachable,
• you always can reach stop
• no litter remains

Soundness is efficiently decidable. (v.d. Aalst)

add a seller

43

rec.
returned

prod.
handle

return
prod.

time
out

choose
product

send
order

rec.
product

accept
productib fb

rec.
order

send
product

file
record

is fs

… is sound

44

rec.
returned

prod.
handle

return
prod.

time
out

choose
product

send
order

rec.
product

accept
productib fb

rec.
order

send
product

file
record

is fs

… a reachable state …

buyer may
want to
continue …

45

choose
product

send
orderib

rec.
returned

prod.
handle

return
prod.

time
out

accept
product fb

file
record

fs

second purchase, NN

46

choose
product

send
orderib

rec.
returned

prod.
handle

return
prod.

time
out

accept
product fb

file
record

fs

second purchase

47

choose
product

send
orderib

rec.
returned

prod.
handle

return
prod.

time
out

accept
product fb

file
record

fs

second purchase

rec.
product

accept
produc

r
p

time
out

r
ret

p

file
record

send
product

rec.
order

is

48

rec.
returned

prod.
handle

return
prod.

time
out

choose
product

send
order

rec.
product

accept
productA A

rec.
order

send
product

file
record

B B

NN is sound, too!
N:

A

B

A

B

A

B

A

B

composition N N (second instance is bold faced)

remember:A service is sound iff
- all its activities are executable,
- the final state is always reachable,
- upon termination,

no token remains.

Soundness

Theorem: Composition of sound services is sound.

… a tricky property
dad pays, mom selects,

tea!

juice!

momdad

coin coin

tea!

juice!

beverage

vend. mach

50

coin

tea!

juice!

beverage

beverage

kid

tea!

juice!

momdad

coin

… a tricky property
dad pays, mom selects, kid drinks.

vend. mach

51

juice!

tea!

mom

coin

juice!

tea!

beverage

dad

coin

kid

A variant of the vending machine
dad pays, mom selects, kid drinks.

beverage

vend. mach

52

Foundations of SOC

1. SOC exceeds classical Theoretical Informatics
2. Services are made to be composed!
3. Required: mechanisms to compose many services.
4. Composition must retain or guarantee properties.
5. Composition is surprisingly expressive!

53

R
requester

P•

left and right Ports may overlap!

P
provider

54

R
requester

P•

exclusive requester

P
provider

55

R
requester

overlapping ports

P
provider

56

P•

R
requester

R•

sharing requester

P
provider

57

R
requester

R
requester

second requester

P
provider

58

R
requester

R
requester

second sharing requester

P
provider

59

R
requester

R
requester

third requester
R

requester

P
provider

60

more involved requester

P
provider

Q
requester

D

D

D

D

M

Q
requester

Q
requester

P Q Q

P Q Q Q

P Q

generic
reques-
ter Q : Q

requester

D

M

R
L

61

prefer this variant?

P
provider

Q
requester

D

D

D

D

M

Q
requester

Q
requester

P Q Q Q

P Q

A

A

A

A

A

A

62

P Q Q

generic
reques
ter Q : Q

requester

D

M

R
L

prefer this variant?

P
provider

Q
requester

D

D

D

D

M

Q
requester

Q
requester

P Q Q

P Q Q Q

P Q

A

63

A

generic
reques
ter Q : Q

requester

D

M

R
L just make

a member of L

Given:
• a set S of services,
• a
• a set Q of requirements ρ1, ... , ρn ⊆ S.
This yields the algebraic structure

(S; ⊕ , Q).

composition operator ⊕ : S × S S,

The algebraic structure of services

n associative

65

This yields the algebraic structure
(S; ⊕ , Q).

For S, T ∈ S, ρ∈Q,
T is a ρ - partner of S,
iff S ⊕ T ρ.

Let semρ(S) =def the set of
all ρ - partners of S.

the “classical” requirement ρ :
soundnss

The algebraic structure of services
derived notions
(w.r.t some ρ):

S may be substituted by S‘ :
semρ(S) ⊆ semρ(S‘)

S and T are equivalent:
semρ(S) = semρ(T)

U adapts S and T:
S ⊕ U ⊕ T ρ

A generalization:
The algebraic structure of clouds

66

Theory of
Programming

Prof. Dr. W. Reisig

Tutorial
Conceptual Foundations

of SOC

Wolfgang Reisig
Humboldt-Universität zu Berlin

SUMMERSOC
Hersonissos, Wednesday, June 28, 2017. 9.30 – 10.30

	Tutorial�Conceptual Foundations �of SOC��
	Foundations of SOC�
	Foundations of SOC�
	Foundations of SOC�
	Let’s start fundamentally …
	Models in Science
	Example: What remains invariant?
	Scientific theories
	a further example: the Frank invariant
	Our task
	Models and invariants in Informatics
	… with comprehensive invariants
	How achieve all this?
	State of the art in informatics …
	The three paradigms of programming:
	1.1 SOC comprises communication
	1.2 SOC comprises �non-ending behavior
	How cope with this?
	1.3 SOC comprises �causal (in)dependence
	What is a behavior formally?
	This view has deep consequences!
	This view has deep consequences!
	This view has deep consequences!
	a variant: i-th b before i-th f
	… summing up
	Foundations of SOC�
	Foliennummer 27
	a general goal
	Foundations of SOC�
	Two fundamental ideas:
	Two fundamental ideas:
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foundations of SOC�
	Example: Internet Shopping
	… not sound
	…because
	… is sound
	… a reachable state …
	second purchase, N$N
	second purchase
	second purchase
	N$N is sound, too!
	Soundness
	… a tricky property
	… a tricky property
	A variant of the vending machine
	Foundations of SOC�
	left and right Ports may overlap!
	exclusive requester
	overlapping ports
	sharing requester
	second requester
	second sharing requester
	third requester
	more involved requester
	prefer this variant?
	prefer this variant?
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Tutorial�Conceptual Foundations �of SOC��

