
TOSCA-based Container Orchestration on Mesos

Two-Phase Deployment of Cloud Applications using Container-based Artifacts

11th Symposium and Summer School On Service-
Oriented Computing,

June 25 – June 30, 2017 in Crete, Greece

Stefan Kehrer, Wolfgang Blochinger

Reutlingen University

TOSCA-based Container Orchestration on Mesos

2

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Conclusion

TOSCA-based Container Orchestration on Mesos

3

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Conclusion

TOSCA-based Container Orchestration on Mesos

Introduction

 Fast software release cycles are an essential business requirement

 DevOps proposed to foster collaboration of development and operations personnel

 Deployment automation is key to enable fast release cycles

 DevOps artifacts (e.g., scripts or templates) encapsulate deployment logic

 Two classes of DevOps artifacts (Wettinger et al. [3]):

4

Node-centric artifacts

Deployment logic of a single node

Environment-centric artifacts
Deployment logic of multi-node
application topologies

Heat Orchestration Template (HOT)

Juju Bundle
CloudFormation Template

[3] Wettinger J, Breitenbücher U, Kopp O, Leymann F (2016) Streamlining devops automation for cloud applications
using tosca as standardized metamodel. Future Generation Computer Systems 56(C):317-332

Chef Cookbook

Puppet Module

Docker Image

TOSCA-based Container Orchestration on Mesos

Introduction

 Application components are packaged using containers

 Node-centric deployment logic is specified (e.g., in a Dockerfile) and employed to build a

container-based artifact (e.g., Docker image)

 An application topology is comprised of multiple container-based artifacts

 Templates are used for environment-centric deployment logic

 Several container management systems evolved to deploy container-based applications:

5

Marathon & Apache Mesos

Kubernetes
Google Container Engine

Amazon EC2 Container Service
Docker Swarm

TOSCA-based Container Orchestration on Mesos

Introduction

» Problems

 Heterogeneous orchestration solutions lead to vendor-lock-in [4]

 Current approaches do not integrate node-centric and environment-centric deployment logic,

e.g., components of a node cannot be configured after node creation

» Contributions

 Two-phase deployment process to integrate node-centric and environment-centric

deployment

 TOSCA-based modeling constructs

 TOSCA-based container management system on top of Apache Mesos

6
[4] Kratzke N, Quint PC (2017) Understanding cloudnative applications after 10 years of cloud computing - a

systematic mapping study. Journal of Systems and Software 126:1-16

TOSCA-based Container Orchestration on Mesos

7

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Conclusion

TOSCA-based Container Orchestration on Mesos

TOSCA at a glance

» Topology and Orchestration
Specification for Cloud Applications

 Standardized language for portable cloud

applications (OASIS)

 Applications are described as topology graphs

and management plans

 Topology model describes a topology graph of

typed nodes and relationships

 Deployment artifacts to instantiate nodes

 Implementation artifacts to execute lifecycle

operations

 Application description captured in service

template / Cloud service archive (CSAR)

8

Topology graph of example application

create

configure Lifecycle
Operations

Shell
ScriptShell

ScriptShell
Script

Implementation Artifacts

VM
ImageVM

ImageVM
Image

Deployment Artifacts

realizes

Node Type
realizes

start

Deployment and implementation artifacts

<HostedOn>

<HostedOn> <HostedOn>

<ConnectsTo><DependsOn>

<H
os

te
dO

n>

<WordPress>
wordpress

<Apache>
apache

<Compute>
webserver_vm

<MySQL>
mysql

<Compute>
database_vm

<PHP>
php_module

TOSCA-based Container Orchestration on Mesos

9

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Conclusion

TOSCA-based Container Orchestration on Mesos

Two-phase deployment

10

» Node-related configurations are applied

» Requires a fine-granular topology model

» Environment-related dependencies have

to be considered

» Results in a container-based artifact

Node-centric deployment

» Deployment based on a container

management system

» Requires coarse-granular topology model

enriched with container-based artifacts

Environment-centric deployment

Node-centric topology model Environment-centric topology model

mysql_containerwordpress_container

wordpress

apache mysqlphp_module

Co
nn

ec
ts

ToHostedOn

ConnectsToDependsOn

Ho
st

ed
On

Co
nn

ec
ts

To

mysql_containerwordpress_container

HostedOn

ConnectsToDependsOn

Ho
st

ed
On

wordpress

apache mysqlphp_module

TOSCA-based Container Orchestration on Mesos

Two-phase deployment

11

» Allows two views on the application topology

» Integrates node-centric and environment-centric deployment logic

» Standards-based service template ensures portability

Two-phase deployment process

Process fragment supporting two-phase deployment

Node-centric Deployment Phase







Implement /
Gather

Artifacts

Build
Container-

based Artifact

Construct
Build

Specification

Environment-centric Deployment Phase

Provision
Service

Template



Model
Service

Template

Test
Service

Template



Test
Container-

based Artifact

TOSCA-based Container Orchestration on Mesos

12

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Environment-centric deployment phase

» Node-centric deployment phase

» Conclusion

TOSCA-based Container Orchestration on Mesos

13

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Environment-centric deployment phase

» Node-centric deployment phase

» Conclusion

TOSCA-based Container Orchestration on Mesos

» Modeling containers

 Resource properties for CPU shares, memory

size, and disk size

 Docker image deployment artifact

 Repository for container image provisioning

 Create operation requires deployment artifact

and several input values

TOSCA-based Integration

14

1 mysql_container:
2 type: cst.nodes.Docker.MySQL
3 properties:
4 cpu_shares: 0.5
5 mem_size: 512 MB
6 disk_size: 500 MB
7 capabilities:
8 ...
12 artifacts:
13 my_image:
14 file: mysql/mysql-server
15 type: tosca.artifacts.Deployment.Image.

-> Container.Docker
16 repository: docker_hub
17 interfaces:
18 Standard:
19 create:
20 implementation: my_image
21 inputs:
22 MYSQL_ROOT_PASSWORD: my-root-pw
23 MYSQL_USER: my-user
24 MYSQL_PASSWORD: my-user-pw
25 MYSQL_DATABASE: my-db

MySQL node template in YAMLEnvironment-centric topology model

ConnectsTo
mysql_containerwordpress_container

TOSCA-based Container Orchestration on Mesos

» Modeling relationships

 Capability-Requirement pair in line with TOSCA

endpoints concept instead of Docker links

 IP address is assigned during deployment  No

port mapping!

 Relationship connect_to_db requires configuration,

e.g., set IP address in configuration files

TOSCA-based Integration

15

1 mysql_container:
2 type: cst.nodes.Docker.MySQL
3 properties:
4 ...
7 capabilities:
8 db_endpoint:
9 properties:
10 protocol: tcp
11 port: 3306
12 ...

Wordpress node template in YAML

1 wordpress_container:
2 type: cst.nodes.Docker.WordPress
3 properties:
4 ...
7 capabilities:
8 ...
9 requirements:
10 - db_endpoint:
11 node: mysql_container
12 relationship: connect_to_db
13 ...

MySQL node template in YAML

ConnectsTo
mysql_containerwordpress_container

Environment-centric topology model

TOSCA-based Container Orchestration on Mesos

» Embedded implementation artifacts

 Implementation artifacts provided by

container-based deployment artifacts

 Benefits:

 Single artifact per node

 Using repositories instead of CSAR

 Additional distribution of implementation

artifacts, e.g., by using SSH, is not

necessary

 Runtime dependencies are part of the

container

TOSCA-based Integration

16

Embedded implementation artifacts

Deployment Artifact

realizes
VM

Image
Node Type

Shell
ScriptShell

Script

Implementation Artifacts

Shell
Script

Artifacts in TOSCA

Shell
ScriptShell

Script

Implementation Artifacts

Deployment Artifact

realizes

provides

Node Type

Shell
Script

Docker
Image

TOSCA-based Container Orchestration on Mesos

TOSCA-based Integration

17

 Triggered by the container itself during the

creation

 Configure a container directly after its

instantiation

 Input values are static or can be resolved

before node instantiation

Node-triggered

implementation artifacts

 Triggered by orchestration solutions

 Configure a node instance

 Input values are dynamic and dependent

on runtime information

» How to expose these artifacts?

Environment-triggered

implementation artifacts

1 mysql_container:
2 type: cst.nodes.Docker.MySQL
3 ...
17 interfaces:
18 Standard:
19 create:
20 implementation: my_image
21 inputs:
22 MYSQL_ROOT_PASSWORD: my-root-pw
23 MYSQL_USER: my-user
24 MYSQL_PASSWORD: my-user-pw
25 MYSQL_DATABASE: my-db

MySQL node template in YAML

Shell
ScriptShell

Script

Implementation Artifacts

Deployment Artifact

realizes

provides

Node Type

Shell
Script

Docker
Image

Embedded implementation artifacts

invokes Orchestration
solution

TOSCA-based Container Orchestration on Mesos

» Management APIs

 Standards-based API to wrap environment-triggered implementation artifacts

 Container-based artifacts encapsulate implementation artifacts and management APIs

 Added keyname api for modeling management APIs

TOSCA-based Integration

18

1 connect_to_db:
2 type: ConnectsTo
3 interfaces:
4 Configure:
5 pre_configure_source:
6 api:
7 type: REST/HTTP
8 protocol: http
9 method: POST
10 format: json
11 path: /api/configure
12 port: 8080
13 inputs:
14 WORDPRESS_DB_HOST: { get_attribute:

-> [TARGET, ip_address] }
15 WORDPRESS_DB_USER: my-user
16 WORDPRESS_DB_PASSWORD: my-user-pw
17 WORDPRESS_DB_NAME: my-db

connect_to_db relationship template in YAMLManagement API concept

create

configure

start

Lifecycle
Operations

Shell
ScriptShell

Script

Implementation Artifacts

Deployment Artifact

exposes

realizes

provides

APISOAP
APIREST

API

Management APIs

wraps

Node Type

provides

Shell
Script

Docker
Image

TOSCA-based Container Orchestration on Mesos

19

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Environment-centric deployment phase

» Node-centric deployment phase

» Conclusion

TOSCA-based Container Orchestration on Mesos

mysql_containerwordpress_container

wordpress

apache mysqlphp_module

Co
nn

ec
ts

ToHostedOn

ConnectsToDependsOn

Ho
st

ed
On

 Modeling construct to model “internal” structure of containers

TOSCA-based Integration

20

Topology of a container-based example application

1 wordpress_container:
2 type: cst.nodes.Docker.WordPress
3 children: [wordpress, apache, php_module]
4 ...

Modeling child nodes for wordpress_container

TOSCA-based Container Orchestration on Mesos

 Modeling construct to model “internal” structure of containers

TOSCA-based Integration

21

Topology of a container-based example application

1 wordpress_container:
2 type: cst.nodes.Docker.WordPress
3 children: [wordpress, apache_php]
4 ...

Modeling child nodes for wordpress_container

mysql_containerwordpress_container

wordpress

apache_php mysql

Co
nn

ec
ts

ToHostedOn

ConnectsTo

TOSCA-based Container Orchestration on Mesos

TOSCA-based Integration

22

1 wordpress:
2 type: cst.nodes.DockerInternal.WordPress
3 ...
4 artifacts:
5 build_spec:
6 file: wp/Dockerfile
7 type: cst.artifacts.Deployment.ImageSpec.Docker
8 ...
11 interfaces:
12 Standard:
13 create:
14 implementation:
15 primary: build_spec
16 dependencies:
17 - wp/pre_configure.sh
18 - wp/managementAPI-rest.jar

wordpress node template in YAML

Node-centric deployment phase

Node-centric Deployment Phase





Implement /
Gather

Artifacts

Build
Container-

based Artifact

Construct
Build

Specification

Test
Container-

based Artifact

Node-centric topology

wordpress_container

wordpress

apache_php

HostedOn

TOSCA-based Container Orchestration on Mesos

TOSCA-based Integration

23

1 wordpress:
2 type: cst.nodes.DockerInternal.WordPress
3 ...
4 artifacts:
5 build_spec:
6 file: wp/Dockerfile
7 type: cst.artifacts.Deployment.ImageSpec.Docker
8 ...
11 interfaces:
12 Standard:
13 create:
14 implementation:
15 primary: build_spec
16 dependencies:
17 - wp/pre_configure.sh
18 - wp/managementAPI-rest.jar

wordpress node template in YAML

Node-centric deployment phase

Node-centric Deployment Phase





Implement /
Gather

Artifacts

Build
Container-

based Artifact

Construct
Build

Specification

Test
Container-

based Artifact

Node-centric topology

wordpress_container

wordpress

apache_php

HostedOn

TOSCA-based Container Orchestration on Mesos

TOSCA-based Integration

24

1 wordpress:
2 type: cst.nodes.DockerInternal.WordPress
3 ...
4 artifacts:
5 build_spec:
6 file: wp/Dockerfile
7 type: cst.artifacts.Deployment.ImageSpec.Docker
8 ...
11 interfaces:
12 Standard:
13 create:
14 implementation:
15 primary: build_spec
16 dependencies:
17 - wp/pre_configure.sh
18 - wp/managementAPI-rest.jar

wordpress node template in YAML

Node-centric deployment phase

Node-centric Deployment Phase





Implement /
Gather

Artifacts

Build
Container-

based Artifact

Construct
Build

Specification

Test
Container-

based Artifact

Node-centric topology

wordpress_container

wordpress

apache_php

HostedOn

TOSCA-based Container Orchestration on Mesos

25

Agenda

» Introduction

» TOSCA at a glance

» Two-phase deployment

» TOSCA-based Integration

» Conclusion

TOSCA-based Container Orchestration on Mesos

» Conclusion

 TOSCA-based orchestration ensures a uniform interface for container management systems

and addresses an open research topic [4]

 CSAR captures all required deployment logic

 Environment-triggered implementation artifacts support dynamic runtime management

 Two-phase deployment process for creating and maintaining multi-node application topologies

 Developer is responsible for exposing management APIs

» Future work

 Tool support for node-centric deployment phase

 Higher degree of automation for specific application classes

Conclusion

26
[4] Kratzke N, Quint PC (2017) Understanding cloudnative applications after 10 years of cloud computing - a

systematic mapping study. Journal of Systems and Software 126:1-16

TOSCA-based Container Orchestration on Mesos

27

Thank You

Thank You

Stefan Kehrer
Reutlingen University

stefan.kehrer@reutlingen-university.de

