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Basics in Quantum Physics

!2
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Photoelectric Effekt

!3

By shining electromagnetic waves (i.e. light) on a surface of material, 
electrons are emitted 

E = h·ν 

Einstein’s Light Quantum Hypothesis: 
Light itself is made of individual packets or quanta (photons). 
Their energy is hν, where ν is the frequency of the light 

…even by lowest intensity of the light!

Dislodgement of electrons and their resulting energy only depends on frequency  
of the incoming light!

This energy is an integer multitude of hν (ν: frequency of the light)
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Compton Effect

!4

Light exchanges momentum.

E = m·c2 from relativity theory

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Compton-scattering.svg/239px-Compton-scattering.svg.png

m = E
c2 = hν

c2   =  
c=λν!

 h
cλ

Thus, photons have mass.
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Wave-Particle Duality

!5

In experiments, light behaves sometimes as a wave,
sometimes as a particle

If light is sometimes a wave and sometimes a particle,
can "normal matter" be considered as a wave?

5
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Matter Waves

!6

Diffraction of an electron beam
Verification of de-Broglie-Formula

m = h
cλ

λ = h
mc

⇒
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Heisenberg’s 
Uncertainty Principle

!7

Δx ⋅ Δp ≥ h
4π

ΔE ⋅ Δt ≥ h
4π

It is impossible to prepare a quantum state in which position and 
momentum are defined with arbitrary precision

It is fundamentally not possible to determine the position and the 
momentum of a particle at the same time

Measuring the momentum of a particle implies a compulsory 
disturbance of its position and vice versa

⇒ Superposition! (see next)
7
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State

!8

The actual state (e.g. momentum, location,…) of a physical system is a 
mathematical object

This mathematical object determines for
each possible measurement of the system, and 
for each possible value of a measurement (momentum, location,…)

the probability that exactly the observed value occurs

More precise: The set of all possible states is a 
ℂ-Hilbert-Space (state space)

Location

Momentum

…
𝜓

α1

α2

α3
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Superposition

!9

The overall state 𝜓 of a system is the superposition of individual 
states 𝜑i (momentum, location,…)

Mathematically, the state 𝜓 is a linear combination of the individual 
states 𝜑i : ψ = ciϕ i

i
∑

The 𝜑i’s are orthogonal to each other (normed individual states)

The squared modulus |ci|2 of the amplitude ci is the probability for 
measuring the state 𝜑i in a measurement specialized on this state

ci
i
∑ 2

= 1
Measuring will always reveal a resulting state:
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Schrödinger’s Cat

!10

 Measuring delivers the result - it destroys superposition

10
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Postulates of 
Quantum Mechanics

!11

(von Neumann Postulates)

 Every isolated physical system is associated with a Hilbert-Space over ℂ, the so-
called state space of the system.

 An hermitian operator H(t) (Hamilton Operator) exists that describes 
the temporal development of the system and that satisfies the following 
equation (Schrödinger Equation):

i ⋅h
2π

⋅ ∂v(t)
∂t

= H (t) ⋅v(t)

 Measuring is described by a hermitian operator O (observable) on the state space. 
Measuring always results in an  eigenvalue of O as a result of the measurement.

 The state space of a composite system is the tensor product of the state spaces of the 
component systems.

 O = λ ⋅Pλ
λ∈σ (O )
∑According to the Spectral Theorem: 

where Pλ is the projection onto the eigenspace of O associated with the eigenvalue λ.  

11
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So, We Need Some Math

!12

Hilbert-Space

Operator
Hermitian

Unitary

Eigenvalue
Eigenspace

Spectral Theorem

Tensor Product

12
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Vector Spaces

!13
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Example: Coordinate Space

!14

Let 𝕂 be a field (e.g. ℝ or ℂ) and n ∈ℕ

𝕂n = 𝕂 × … × 𝕂 = {(v1,…,vn) | vi ∈ 𝕂 } 
is called n-dimensional coordinate space over 𝕂

v1
v2
!
vn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+

w1
w2
!
wn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

v1 + w1
v2 + w2
!

vn + wn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

a ⋅

v1
v2
!
vn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

a ⋅v1
a ⋅v2
!
a ⋅vn

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Coordinatewise Addition

Coordinatewise Scalar Multiplication

(𝕂n ,+, ·) is a 𝕂-vector space

14
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Linear Dependency

!15

v1,...,vn ∈V and                      𝕂 a1,...,an ∈

…let a1v1 + ...+ anvn = aivi
i=1

n

∑ = 0V

a1 = a2 = ...= an = 0If this implies , then are called linear independentv1,...,vn

linear independent

Otherwise (i.e. ∃1≤ i ≤ n : ai ≠ 0 ) we call v1,...,vn linear dependent

linear dependent

15
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Basis: Definition

!16

Theorem: All bases of a vector space V have the same number of vectors.

Definition: A set {v1,…,vn} ⊆ V is called basis of V :⇔ 
(i) {v1,…,vn} are linear independent,
(ii) L({v1,…,vn}) = V

vi is called basis vector.

Definition: The number of vectors of a basis of a vector space V 
    is called dimension of V (dim V).

16
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Example

!17

is called standard basis of ℝn (ℂn)

⇒   dim ℝn  =  n

e1 :=

1
0
!
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,e2 :=

0
1
!
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,...,en :=

0
0
!
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

∈"n(#n )

⇒   dim ℂn  =  n
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Definition

!18

Let V, W be vector spaces over 𝕂 
A map f :V →W is called lineare map  (or: operator) :⇔ 

∀x, y ∈V   ∀a∈𝕂:

(i)   f(ax) = af(x)

(ii)   f(x + y) = f(x) + f(y)

18
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Matrix of a Linear Map

!19

Let E={e1,…,em} be the standard basis of W

f :V →WLet be a linear map
Let B={b1,…,bn} be a basis of V

Take the images of a basis of V and put them as columns in a matrix.  
This matrix is called matrix of f wrt bases B and E

ME
B( f ) = f (b1) f (b2 ) ! f (bn )( ) =

a11 ! a1n
" # "
am1 ! amn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

19
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Eigenvalues

!20
20
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Eigenvalues & Eigenvectors

!21

linear map (endomorphism)f :V →V

λ ∈ 𝕂\{0} is called eigenvalue of f :⇔ 

∃v ∈V \{0}: f (v) = λv

v is called an λ associated eigenvector of f  

I.e. in the direction of an eigenvector, f is a stretching 

The set Eλ of all eigenvectors associated with the eigenvalue λ 
is called eigenspace of f of eigenwert λ

Measuring means observing eigenvalues

21



© Frank Leymann

Examples

!22

v1=f(v1)v2

f(v2)

v1 and v2 are eigenvectors  
with eigenvalues λ1=1 and λ2=-1

Only vectors (x,0) (with x≠0)
are eigenvectors

No eigenvectors

Reflection

f(v)≠λvv

Shear

f(v)≠λv v

Rotation, 0<𝜑<π

22
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Spectrum

!23

In each ℂ-vector space V every map has at least one eigenvalue 
and the sum of the algebraic multiplicities is dimV.  

(is a consequence of the Fundamental Theorem of Algebra) 
This is not true for ℝ-vector spaces!

The set of all Eigenvalues of f, denoted by σ(f), 
 is called spectrum of f (and of A=M(f))

23
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Determining Eigenvectors

!24

Let A = M(f)

Let λ be an eigenvalue of f (from the characteristic polynomial)

I.e. there is an x with f(x)=λx ⇔  Ax=λx  (= λEx)

Thus, we have to solve the linear equation system (A - λE)x = 0 

Measuring transforms the system into an eigenvector 
(collapse)

24
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Pre-Hilbert-Spaces

!25
25



© Frank Leymann

Inner Product aka 
Scalar Product

!26

Let V be 𝕂-vector space (𝕂 = ℂ or ℝ). 
A scalar product (or: inner product) on V is a
 positiv definite, hermitian sesquilinearform:

Positiv Definite

x,x ≥ 0

x,x = 0⇔ x = 0

A 𝕂-vector space with a scalar product is called Pre-Hilbert-Space

.,. :V ×V →!

Semililinear  
(in the first argument)

x + y, z = x, z + y, z

λx, y = λ x, y

x, y + z = x, y + x, z

x,λ y = λ x, y

Linear  
(in the second argument)

Hermitian

x, y = y,x

Example: x, y  := xi yi
i=1

n

∑ = x1y1 + ...+ xn yn

26
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Normed Vector Space

!27

Let V be a 𝕂-vector space (𝕂 = ℝ oder 𝕂 = ℂ). 

A map  ⋅   : V → ! 0
+ is called norm on V :⇔ 

∀ v,w∈V  ∀ λ ∈   :𝕂

•   x = 0⇔ x = 0

•    λx = λ ⋅ x

•    x + y ≤ x + y

(V, || . ||) is called normed vector space.  

27
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Theorem

!28

A pre-Hilbert-space is a normed vector space.

x := x,xProof:  is a norm on V

28
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Angle

!29

Let (V, <.,.>) be a pre-Hilbert-space

v

w

𝜑

v≠0≠w . Then is called angle between v and w!(v,w) =ϕ := arccos
v,w
v ⋅ w

v ⊥ w⇔ v,w = 0

v and w are called orthogonal

29
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Orthogonality of 
Eigenspaces

!30

Let λ, μ ∈σ(f), λ≠μ, two different eigenvalues of the linear map f.
For v∈Eλ and w∈Eμ  it is v⊥w. 

Eigenvectors of different eigenvalues are orthogonal.

Let (V, <.,.>) be a pre-Hilbert-space

30



© Frank Leymann

Orthogonal Projection

!31

U ⊆ V subspace and {u1,…,uk} ⊆ U an ON-basis of U. 
Define PU : V → U as 

Then, PU is called orthogonal projection onto U.

PU (v) := < v,ui > ui
i=1

k

∑

u1

v

u2

U

U
⊥

PU(v)

< v,u2 > u2

< v,u1 > u1

31
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Self-Adjoint and Hermitian 
Maps

!32

Let V a pre-Hilbert-space over 𝕂, dimV < ∞ and f : V → V linear. 
f is called self-adjoint (𝕂=ℝ) or hermitian (𝕂=ℂ) :⇔ 

∀u,v ∈V :  < f (u),v >  = < u, f (v) >

Let f be hermitian ⇒ 
(all eigenvalues of hermitian maps are real numbers)                   

∀λ ∈σ ( f ) :  λ ∈!

We always measure values that are real numbers

32



© Frank Leymann

Spectral Theorem

!33

Let f : V → V be self-adjoint or hermitian  ⇒  

f = λ ⋅PEλ
λ∈σ ( f )
∑

Intuition: 
1. if λ, µ ∈σ(f), λ≠µ, then Eλ and Eµ are orthogonal. 
2. f  acts on Eλ by stretching (λ >1) oder compression (0< λ <1)

Eλ

Eµ

Eλ

Eµ

f

Measurement is projection onto an eigenspace, 
result is corresponding eigenvalue

33
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Orthogonal & Unitary Maps

!34

Let V, W be two pre-Hilbert spaces over 𝕂 and f : V → W. 
f is orthogonal (𝕂=ℝ) or unitary (𝕂=ℂ) :⇔ 
∀ u,v ∈V : f (u), f (v)

W
= u,v

V
(angle preserving)

ker(f)={0}, f is injective

|| f(v) || = || v ||  (length preserving)

①

②

Some key properties:
Especially: f is invertible! 

Quantum algorithm use unitary computation steps only, 
i.e. each such step is reversible!  

(in contrast to classical algorithms)

34
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The Qbit

!35
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Dirac Notation

!36

A state y is denoted by      , so-called. ket-notation.
There is also a  bra-Notation: 
See braket <.|.> 😆 
Introduced by Paul Dirac.

y
y

Quantum bit (Qbit) is in the two classical states      or      at the same time (!): Superposition0 1

State of a qbit is 
 

ie a linear combination of       and  
α, β∈ℂ and |α|2 + |β|2 = 1.
Ie a quantum state is a vector   
on the unit circle S1. 
            is a basis of the state space

α 0 + β 1

0 , 1{ }

0 1

0 = 1
0

⎛

⎝⎜
⎞

⎠⎟
1 = 0

1
⎛

⎝⎜
⎞

⎠⎟

36
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Measurement

!37

Classical bits can be read 
⇒ You can find out the exact state (value 0 or 1) of the bit

Reading a qbit means measurement, and measuring destroys superposition!

Corollary: A qbit can be read only once.

Can’t be done for qbits, their state is the superposition α 0 + β 1

Measuring                            destroys superposition and results in

state       with probability         

state       with probability          

x =α 0 + β 1

0

1

α
2

β
2

37
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Single Computation Steps 

!38

A computation step creates from a state (a vector 
from S1) a new state (again a vector from S1).

A computation step is a linear map from S1 to S1, 
thus, a unitary map. 

A computation step is represented by a unitary linear map

γ 0 +δ 1

38
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Principle of a 
Quantum Algorithm

!39

Unitary  
Transformation  

Measurement
= hermitian  

Transformation
ResultzState 

Preparation

39
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Example: Coin Flipping

!40

We want an algorithm, that results in       with probability 1/2,

and that results in       with probability 1/2

0

1

H(|0>)

H(|1>)

|1>

|0>

x 0Step 1: Qbit      is initialized in state       
Step 2:  Hadamard transformation H is applied to
                 thus,       transitions into state

x
x 1

2
0 + 1( )

Step 3: Measuring gives the desired result
The algorithm produces a completely random bit, i.e. a random number:

Classical algorithms can only produce pseudo random numbers!

 
  
 
  
               

1.  x ← 0

2.  x ← H x

3.  Measure x

40
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Quantum Register

!41
41
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Quantum Register: 
Informally

!42

Quantum register is a series of n qbits

Classical register is a series of n bits

Quantum register with n qbits is the
superposition of the corresponding 2n states

00...00 ,  00...01 ,  00...10 ,..., 11...11

Classical register with n bit → 1 value at a time

Quantum register with n bit → 2n value at the same time
Quantum computer manipulates 2n values at the same time  

(Quantum Parallelism)
42
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2-Qbit Quantum Register: 
Formally

!43

This is a product!
("tensor product")R = x1 x0

x0 = γ 0 0 + γ 1 1

x1 = β0 0 + β1 1

R = x1 ⋅ x0
= β0 0 + β1 1( ) ⋅ γ 0 0 + γ 1 1( )
= β0γ 0 0 0 + β0γ 1 0 1 + β1γ 0 1 0 + β1γ 1 1 1

=α00 00 +α01 01 +α10 10 +α11 11
R =α00 0 0 +α01 0 1 +α10 1 0 +α11 1 1Withα ij = βiγ j

43
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Tensor Product 
of Vector Spaces

!44

V and W vector spaces over 𝕂 with basis {v1,…,vn} and {w1,…,wm}

The Tensor Produkt V⊗W is an (n·m) dimensional vector space 
with basis {vi⊗wj | 1≤i≤n and 1≤j≤m}

v1⊗ w1, v1⊗ w2 , ..., v1⊗ wm ,

v2⊗ w1, v2⊗ w2 , ..., v2⊗ wm ,

! ! ! !
vn⊗ w1, vn⊗ w2 , ..., vn⊗ wm

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

44
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Example

!45

α1
α 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⊗

β1
β2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

α1β1
α1β2
α 2β1
α 2β2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

45
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2-Qbit Quantum Register 
as Tensor Produkt

!46

x = α0 0 +α1 1( ) y = β0 0 + β1 1( )Let                be basis for the space of qbits                                 and0 , 1{ }

R = x ⊗ yThe basis for the quantum register                             is the set:

10 = 1 ⊗ 0 = 0
1

⎛

⎝⎜
⎞

⎠⎟
⊗ 1

0
⎛

⎝⎜
⎞

⎠⎟
=

0
0
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Example:

0 ⊗ 0 ,  0 ⊗ 1 ,  1 ⊗ 0 ,  1 ⊗ 1{ }

Yet even simpler 00 ,  01 ,  10 ,  11{ }

Simplified notation 0 0 ,  0 1 ,  1 0 ,  1 1{ }

This space is denoted as 2H - it’s a Hilbert-Space

46



© Frank Leymann

…In Summary:

!47

is a basis of  ℂ4 = 2H⊗2H

47
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Quantum Register

!48

Let 2H be the ℂ-vector space spanned by 0 , 1{ }

Then,                                             with                 is called

state of the n-qbit-quantum register  xn−1 ⊗!⊗ x0

 φ  = 1φ ∈ 2H
⊗n := 2H ⊗!⊗ 2H

n−times
! "## $##

!2
n

= 2H
⊗n

48
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Separable & Entangled 
States

!49

is called  separable :⇔φ ∈H1⊗!⊗ Hn

φ = ψ 1 ⊗!⊗ ψ n with ψ i ∈Hi ,  1≤ i ≤ n

is called entangled :⇔       is not separableφ φ

49
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Separable States

!50

A state of a quantum register is called separable, 
it it can be expressed as tensor product of the individual qbits

Example:

1
2
00 + 01 + 10 + 11( ) = 1

2
0 + 1( )⊗ 1

2
0 + 1( )

50
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Entanglement

!51

Measuring the first qbit results in 
with probability 1. 

The second qbit will be measured as      
or      with probability 1/2      

Einstein–Podolsky–Rosen Paradox  
(EPR Paradox)

Entanglement is a phenomenon unique to Quantum Computing! 

Every computation that is not concerning entangled qbits,  
can be performed with the same efficiency with classical computations.

A state that is not separable is called entangled 

1
2
00 + 01( )

0

0 1

Measuring the first qbit results in 
 or      with equal probability. 

After that the value of the second 
qbit is already determined!

1
2
00 + 11( )

0 1

51
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Operators on Quantum Registers

!52
52
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1-Qbit Operators

!53

X = 0 1
1 0

⎛

⎝⎜
⎞

⎠⎟
Y = 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
Z = 1 0

0 −1
⎛

⎝⎜
⎞

⎠⎟

X, Y, Z are called Pauli-Matrices

H = 1
2

1 1
1 −1

⎛

⎝⎜
⎞

⎠⎟

Hadamard Matrix

S = 1 0
0 i

⎛

⎝⎜
⎞

⎠⎟

Phase Matrix

T =
1 0

0 e
iπ
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

π/8 Matrix
(yeah, strange: π/8 vs π/4;
pure historical reasons!)

Quantum NOT, Bit Flip Phase Flip

A unitary map f : 2H → 2H is called 1-qbit operator (…Gate)

53
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1-Qbit Operators: 
Decomposition

!54

A set U of 1-qbit operators is called universal :⇔  
Each 1-qbit operator is a finite combination of operators from U 

Let U be a 1-bit operator. Then:

The set of Pauli-Operators  are universal for 1-qbit operators

54
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Operators on  
Quantum Registers

!55

A set  U  of quantum-register-operators is called universal :⇔ 
Every quantum-register-operator is a finite combination of operators from  U 

2H ⊗!⊗ 2H2H
⊗n =Let n>1, 

2H
⊗nA unitary map f :              →               is called 

n-qbit operator (or quantum-register-operator oder quantum gate)
2H

⊗n

55
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Two-Level Operators

!56

  Let                       be a unitary map

f is called two-level :⇔ ∃ U ∈!2×2 :  M(f) =

1
"

1

U

1
"

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

and U is unitary

A two-level map modifies at most two components of a vector  
(i.e. two qbits of a quantum register)

f :V →V

56
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Decomposition into 
Two-Level Operators

!57

  Let                       be unitary, dim V = n.f :V →V

  Then, M(f) can be represented as product of r two-level matrices.                      

It is:  n - 1 ≤ r ≤ n·(n - 1)/2 

The set of two-level operators on quantum registers 
is universal.

Problem:  There is an infinite number of two-level operators.
But the set of universal operators should be "small"!

57
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CNOT 
(Controlled Not)

!58

     0  1
0   0  1 
1   1  0

⊕

I.e. if x=1 then y will be negated; otherwise, y is not changed at all
(x is called control-qbit, y is called target-qbit)

CNOT is unitary      

⊕ : {0,1} →  {0,1} with  x⊕y ↦ x+y mod 2

CNOT : 2H ⊗ 2H→ 2H ⊗ 2H
x, y ! x,x⊕ y

58
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Decomposition into CNOT 
and 1-Qbit Operators

!59

M(f) can be represented as a product of 1-qbit operators 
and CNOT operators.                      

For an n qbit quantum register it is d=2n.
The number of required 1-qbit operators and CNOTs is O(n2·4n) 

The set of 1-qbit Operators and CNOT is universal.

Reminder: The Pauli-Matrices is a set of universal 1-qbit operators

Problem:  This is not an efficient implementation of quantum register operators

  Let                       be unitary, dim V = d.f :V →V
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Approximation

!60

Using {Hadamard, Phase, CNOT, 𝜋/8},
each operator U on a quantum register 

can be approximated with arbitrary precision. 

Solovay-Kitaev Theorem

Here, approximation with precision ε means,  
that the probabilities of measurements of results of U deviates at most by ε 

from measurements of the results of the composition. 
("The statistics of measurements don’t really differ.")  

Assumption: This implementation is acceptable. 
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Tools

!61
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http://www.quantumplayground.net/#/home
Google

Microsoft: Q#

https://docs.microsoft.com/en-us/quantum/index?view=qsharp-preview

https://docs.microsoft.com/en-us/quantum/quantum-qr-intro?view=qsharp-preview

https://docs.microsoft.com/de-de/quantum/quantum-installconfig?view=qsharp-
preview&tabs=tabid-vscode

https://quantumexperience.ng.bluemix.net/qx/editor

https://github.com/QISKit/ibmqx-user-guides

https://github.com/QISKit/qiskit-tutorial/blob/master/index.ipynb

IBM: openQASM

https://github.com/quantumlib/OpenFermion
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Algorithm of Deutsch

!70
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A Problem

!71

You have coin…

…and you want to find out whether or not it’s bogus….

(i.e. whether it has both, head and tail, or only heads or only tails) 

Can you find that out by flipping the coin exactly once?

In a classical world you can’t do this!
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Problem Abstraction

!72

Is it possible to evaluate the function f once 
to determine whether f is constant or balanced?

Such a function is either constant (i.e. f(0) = f(1))
or it is balanced (i.e. f(0) ≠ f(1))
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A New Operator

!73

Uf is unitary
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Algorithm of David Deutsch
Step 1: Prepare the register

Step 2: Apply Hadamard transformation

Step 3: Evaluate f

Step 4: Apply Hadamard transformation

Step 5: Measure the register

f is constant

f is balanced

Uf is performed only once!

!74
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Generalization

!75

f : 0,1{ }n → 0,1{ }
f constant :⇔ ∀ x, y ∈ 0,1{ }n : f (x) = f ( y)

f balanced :⇔ card f −1(0) = 2n−1 = card f −1(1)

(f  maps half of the domain to 0, the other half to 1)

Problem:
Determine with a minimum number of evaluations of f

whether f is constant or balanced!
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Classical Case

!76

In the classical case, even after having read half (i.e. 2n-1) values
it’s not clear whether f is constant or balanced

Example: 
All values read are 0, but the next value

(i.e. the (2n-1+1)-th value) is 1 ⇒ f balanciert;
or the next value is 0 ⇒ f konstant.

I.e. a classical (deterministic) algorithm requires  
(worst case) 2n-1+1 evaluations of f
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An "Oracle"

!77

Uf is unitary

( |x＞is an n-Qbit-Quatum Register) 

| x, y >  !  | x, y⊕ f (x) >

U f : 2H
⊗n⊗ 2H→ 2H

⊗n⊗ 2H
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Algorithm of 
Deutsch-Jozsa

Uf  will be executed exactly once!
Step 3: Evaluate f
x y ←U f x y( )

Step 1: Initialize the register
x y ← 0

⊗n
1

Step 4: Apply the Hadamard Transformation

x ← H⊗n x

Step 5: Measure
x = 0!0 ⇒  f is constant

x ≠ 0!0 ⇒  f is balanced

Step 2: Apply the Hadamard Transformation

x y ← H⊗(n+1) 0
⊗n
1( )
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Meaning

!79

The algorithm evaluates f exactly once!

In the classical case, f has to be evaluated
(worst case) 2n-1+1 times!

The quantum algorithm of Deutsch-Jozsa  
results in an exponential speedup!
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Quantum Parallelism

!80

→ a function with a domain of cardinality 2

Classically, you need to invoke the function twice
to get the values f(0) and f(1)

U f :  x, y  !  x, y⊕ f (x) → unitary map ("oracle")

U f 0 + 1 , 0( )  = U f 0,0( )+U f 1,0( ) → Uf unitary, i.e. linear

= 0, f 0( ) + 1, f 1( ) {Single invocation of Uf  
delivers all values of f!

This is "quantum parallelism"

Can be obviously extended to functions with finite domain
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Searching

!81
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Unstructured Search

!82

We want to find out to whom a certain phone number belongs.
Alphabetic order of phone book doesn’t help!

Simple Solution: Inspect each of the N phone numbers until you found 
number at hand, then read the owner field of this record (this is O(N))
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Algorithm of Grover

!83

  There is a quantum algorithm that solves the problem in

G(N ) = π
4
N = O N( )

Classical unstructured search is O(N)

⇒ Quantum search results in quadratic speedup!
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Application

!84

Quantum search can speed-up (selective*) NP-problems 

"Just" list all possible solutions and build a "database" out of them

Then use Grover algorithm to determine in O(√N) the solution

(*) You can define an oracle function for the problem  
(which can be done for cracking keys, traveling salesman,…)
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Quantum Information

!85
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No-Cloning Theorem

!86

There can be no algorithm,  
which can copy each arbitrary state of a system.

Formalization:

such that for a chosen c ∈H (the state receiving the copy)

There exists no unitary transformationU :H→ H

and an arbitrary state ψ ∈H holds: id⊗U( ) ψ ⊗ c( ) = ψ ⊗ ψ
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Orthogonal States

!87

A quantum algorithm that can copy       ,  
can at most copy states that are orthogonal to       .

ψ
ψ

Let x be a classical bit. Then: x = a|0> + b|1>  ⇒ (a=1 ∧ b=0) ∨ (a=0 ∧ b=1)

Let x, y be two classical bits. Then: x=y or x⊥y

⇒ Classical bits can be copied without limitations!
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Quantum Teleportation

!88

Problem: 
Location A has a certain qbit                              .

We want to transmit classical bits from location A to location B 
such that the qbit at A can be reconstructed at B.

Ψ
A
=α 0

A
+ β 1

A

This can be done!

A and B must agree in advance  
on a certain entangled 2-qbit state, 

and A and B hold 1-qbit of this entangled state.

A will create a mixed state from         and the shared qbit 
and compute the classical bits to transmitted to B from this mixed state. 

Ψ
A

B will use the received classical bits to lookup a unitary operator 
to compute from his shared qbit the state         . Ψ

A
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Quantum Teleportation

!89

The "magic" is entanglement here!

At location A, 
manipulation of the entangled state and following measurement  

results in information about the part of the entangled qbit  
at  location B.

This information is used to tell location B 
what to do to reconstruct the qbit at location B.
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Conclusion

!90
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Summary

!91

Quantum algorithms are based on the postulates of quantum 
mechanics ⇒ You have to understand a bit of this to work with 
quantum computers

Hardware of quantum computers is rapidly evolving  ⇒  In the 
next few years deep problems will likely become solvable

The current state of the art of software for implementing 
quantum computing is at the assembler level
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Quote by Enrico Fermi

!92

I am still confused…

…but at a higher level!
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End

!93
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