
Modelling, analysing and reusing
composite cloud applications

Jacopo Soldani

SummerSOC 2018, 25th of June 2018

Dipartimento di Informatica, Università di Pisa

Mail: soldani@di.unipi.it Web: http://pages.di.unipi.it/soldani

2

Context

1 F. Leymann. Cloud computing. it—Information Technology, 53(4):163–164, 2011.

Challenge1:

» Flexibly manage complex composite applications

» over heterogeneous cloud platforms.

app

3

Two major issues1,2

Automate the management
of composite cloud applications.

Support a vendor-agnostic design
of composite cloud applications.

Flexibly manage complex composite applications
over heterogeneous cloud platforms.

1 T. Binz et al. TOSCA: Portable automated deployment and management of cloud applications. Advanced Web Services, pp. 527-549, Springer, 2014.
2 R. Di Cosmo et al. Aeolus: A component model for the cloud. Information and Computation, 239(0):100 –121, 2014.

4

Research objectives

Modelling
composite cloud

applications.

Analysing
composite cloud

applications.

Reusing
composite cloud

applications.

5

From objectives to research contributions

Compositional,
fault-aware

modelling for the
management
behaviour of
applications.

Modelling
composite cloud

applications.

Analysing
composite cloud

applications.

Reusing
composite cloud

applications.

Techniques for
checking and
planning the

management of
applications.

Techniques for
matching and

adapting existing
applications.

6

Roadmap

Chapter 6
Behaviour-aware matching

of cloud applications

Chapters 3-4
(Syntactic) matching
of cloud applications

Chapter 7
Fault-aware management

protocols

Chapter 5
Management protocols

Chapter 2
TOSCA

(Background)

Chapter 2
TOSCA

(Background)

https://tinyurl.com/soldani-thesis

https://tinyurl.com/soldani-thesis

7

TOSCA (Topology and Orchestration Specification for Cloud Applications)

» OASIS standard

» Goals:

1. Create portable cloud applications.

2. Automate application management.

Run
Maven

Run
Mongo

Setup
RestAPI

Start
RestAPI

Configure
RestAPI

8

Start

PortMappings
Volumes Maven

(Docker)

Container

Start
Stop

Run

Delete
PortMappings

Mongo
(DockerMongo)

MongoEndpoint

Start
Stop

Run

Delete

Run
Maven

Run
Mongo

Setup
RestAPI

Start
RestAPI

Configure
RestAPI

Port
Resource

APIEndpoint

RestAPI
(Dropwizard)

APIEndpoint

MavenContainer

Run

Stop

Setup

Configure

Uninstall
MongoEndpoint

Port
Resource

A toy example

hostedOn
connectsTo

9

Roadmap

Chapter 6
Behaviour-aware matching

of cloud applications

Chapters 3-4
(Syntactic) matching
of cloud applications

Chapter 7
Fault-aware management

protocols

Chapter 5
Management protocols

Chapter 2
TOSCA

(Background)

https://tinyurl.com/soldani-thesis

https://tinyurl.com/soldani-thesis

10

A running example

Objective: Deploy/manage a web application on a cloud.

Approach:
1. Abstractly describe the desired hosting environment (DesiredEnvironment).

2. Match and adapt existing applications to actually implement DesiredEnvironment.

11

Substitutability of TOSCA applications

1 OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer. 2013.

Existing TOSCA applications can be reused to actually implement desired components1.

No additional information on how to match nodes/applications is given.

12

Four (formal) notions of matching

Exact matching (≡)

Plug-in matching (≃)

Renaming-based matching (∼)

White-box matching (□)

applications that “offer more” and “require less”
extended

in

extended

in

extended

in

ignore naming differences

search missing features inside of available applications’ topologies

+ adaptation methodology

+ adaptation methodology

+ adaptation methodology

13

A limitation of the proposed matching notions

1 OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer. 2013.

All notions of matching (≡,≃,∼,□) permit reusing applications only in their entirety.

This would potentially waste resources to deploy unnecessary software.

14

Reusing fragments of TOSCA applications

TOSCAMART (TOSCA-based Method for Adapting and Reusing application Topologies)
» Reuse only the necessary fragments of application topologies.

15

Properties of TOSCAMART

1. TOSCAMART always terminates.

2. TOSCAMART is sound.

3. The time complexity of TOSCAMART is

𝑇(𝑇𝑂𝑆𝐶𝐴𝑀𝐴𝑅𝑇) = 𝑂(𝑟𝑡)

where
◦ 𝑟 is the size of the repository, and

◦ 𝑡 is the maximum amount of features available in an application.

16

Implementation

1 https://github.com/jacopogiallo/TOSCA-MART

We implemented a prototype of TOSCAMART.

» Open-source1

» Fully-compatible with the OpenTOSCA open-source ecosystem.

» Expected time performances

17

Roadmap

Chapters 3-4
(Syntactic) matching
of cloud applications

Chapter 7
Fault-aware management

protocols

Chapter 5
Management protocols

Chapter 2
TOSCA

(Background)

Chapter 6
Behaviour-aware matching

of cloud applications

https://tinyurl.com/soldani-thesis

https://tinyurl.com/soldani-thesis

18

Motivations

Analyse/automate the management of composite cloud applications.
» Intra-component dependencies.

» Inter-component dependencies.

How to easily take into
account all dependencies?

19

Management protocols

The management protocol of a component is a FSM1.

» Transitions model intra-component dependencies.

» Conditions on requirements/capabilities capture inter-component dependencies:

- reqs needed and caps offered in a state.

- reqs needed to execute a transition, and caps preserved during its execution.

1 Notions of well-formedness and determinism of management protocols are defined and can be automatically checked.

20

Reasoning with composite applications

The management behaviour of a composite application is derived by composing the
management protocols of its components.

» A global state 𝐺 is a set containing the current state of each component.

» A global state 𝐺 is consistent iff all the requirements assumed in 𝐺 are satisfied.

» An operation can be executed in 𝐺 iff all the requirements it needs are satisfied in 𝐺.

21

Example – Consistent global state & operation execution

22

Analysing the management of applications

Validity of plans

»A sequence of management operations 𝑜1𝑜2…𝑜𝑛 is valid from a global state 𝐺0 iff

𝐺0 ՜
𝑜
1
𝐺1՜

𝑜
2
𝐺2՜

𝑜
3
…՜

𝑜
n
𝐺𝑛 and each 𝐺𝑖 is consistent.

»A workflow plan is valid from a global state 𝐺0 iff all its sequential traces are valid from 𝐺0.

Effects of (valid) plans

»The effects of a plan (on states, requirements, capabilities) can be directly determined from
global states.

»A valid plan is also deterministic if all its sequential traces reach the same global state.

Finding plans (achieving desired goals)

»The problem can be solved with a visit of the graph of reachable global states.

…

23

Implementation

Barrel1

» Web-based editor/analyser of management protocols in TOSCA applications.

» Open-source and compatible with the OpenTOSCA ecosystem.

1 http://ranma42.github.io/MProt.

edit analyse

24

Case study

Thinking
» Real application, made by three components

- GUI (deployed on a NodeJS Docker cont.)

- REST API (deployed on a Maven Docker cont.)

- Mongo database (running as a Docker cont.)

» Validation and test of existing deployment plans

- Valid plans effectively deploy application.

- Non-valid plans resulted in crashes/exceptions.

» Planning

- Valid plan to undeploy GUI and REST API (only)

- Effectively resulted in undeploying them.

25

Roadmap

Chapters 3-4
(Syntactic) matching
of cloud applications

Chapter 7
Fault-aware management

protocols

Chapter 5
Management protocols

Chapter 2
TOSCA

(Background)

Chapter 6
Behaviour-aware matching

of cloud applications

https://tinyurl.com/soldani-thesis

https://tinyurl.com/soldani-thesis

26

Behaviour-aware matching of cloud applications

We extended the notions of syntactic matching.

Idea:

syntactic
matching

Ʌ ?
behaviour-aware

matching
behavior

simulation
↔

simulation of
management

protocols

(syntactic)
plug-in

matching

Ʌ
behaviour-aware
plug-in matching

↔

27

Simulation of management protocols

1 D. Sangiorgi. Introduction to bisimulation and coinduction. Cambridge University Press, 2011.

Two notions of simulation1 of management protocols:

» simulation (for one-to-one operation matching)

𝑀’ simulates 𝑀 iff

(a) each transition 𝑡 in 𝑀 can be simulated by a transition 𝑡’ in 𝑀’,

(b) 𝑀’ requires less than 𝑀, and

(c) 𝑀’ offers more than 𝑀.

» 𝒇-simulation (for one-to-many operation matching)

𝑀’ 𝑓-simulates 𝑀 iff

(a) each transition 𝑡 in 𝑀 can be simulated by the sequence 𝑓(𝑡) of transtions in 𝑀’,

(b) 𝑀’ requires less than 𝑀, and

(c) 𝑀’ offers more than 𝑀. How to compute
the function 𝒇?

28

Computing 𝒇-simulations

Algorithm for finding all functions 𝒇 such that 𝑀’ 𝑓-simulates 𝑀.

Two steps:

1. Initialisation
- Each transition of 𝑀 can be simulated by any sequence of transitions in 𝑀’.

2. Iterative refinement
- Iteratively remove mappings leading to states that cannot 𝑓-simulate.
- Continue until the mapping cannot be refined any more.

The algorithm is formally proved to be terminating, sound and complete.

29

Roadmap

Chapter 7
Fault-aware management

protocols

Chapter 5
Management protocols

Chapter 2
TOSCA

(Background)

Chapter 6
Behaviour-aware matching

of cloud applications

Chapters 3-4
(Syntactic) matching
of cloud applications

https://tinyurl.com/soldani-thesis

https://tinyurl.com/soldani-thesis

30

Motivations

How to handle
the fault of

requirements?

Effects of
misbehaving
components?

31

Our approach

Fault-aware management protocols permit
» modelling how nodes behave when faults occurs, and

» analysing/automating application management in presence of faults.

Unexpected behaviour
» naturally modelled in (fault-aware) management protocols

» to permit analysing the (worst possible) effects of a misbehaving component.

Planning how to hard recover applications that are stuck
» since a fault was not properly handled, or

» because of a misbehaving component.

32

Fault-aware management protocols

33

Default handling

Application designers may leave the handling of some faults unspecified.

Default handling to a sink state that requires/provides nothing (worst-case assumption).

34

Reasoning with composite applications (and with faults)

How to handle
the fault of

requirements?

35

Analysing the management of applications

Validity of plans
» …

Effects of (valid) plans
» …

Finding plans (achieving desired goals)
» …

… All previously introduced analyses can still be automatically performed
(now also taking into account faults)

36

Dealing with «misbehaving components»

The unexpected behaviour of a component can be modelled with a special «crash» operation..

..leading to a sink state that provides/requires nothing (worst-case assumption).

37

Dealing with misbehaving components

Effects of
misbehaving
components?

38

Hard recovery

Can recovery plans be generated automatically?

39

40

Hard recovery

Recovery plans can be generated automatically.

Idea (from our experience):

Machine stuck,
not responding

Forcibly
restart it

→

Node stuck,
not responding

Forcibly
restart it

→

by resetting the whole system

by resetting the container node,
hence resetting all nodes it contains

41

Implementation

1 http://di-unipi-socc.github.io/barrel.

Barrel1

» Web-based editor/analyser of management protocols in TOSCA applications.

» Open-source and compatible with the OpenTOSCA ecosystem.

edit analyse

42

Case study

Thinking
» Real application, made by three components

- GUI (deployed on a NodeJS Docker cont.)

- REST API (deployed on a Maven Docker cont.)

- Mongo database (running as a Docker cont.)

» Validation and test of existing deployment plans

» Effects of misbehaving components

- e.g., crashed API.

» Planning

- e.g., hard recovery of crashed API.

REST API does not return any answer when invoked

43

Roadmap & publications

Chapter 6
Behaviour-aware matching

of cloud applications

Chapters 3-4
(Syntactic) matching
of cloud applications

Chapter 7
Fault-aware management

protocols

Chapter 5
Management protocols

Chapter 2
TOSCA

(Background)

A. Brogi, J. Soldani, P.
Wang. TOSCA in a nutshell:
Promises and perspectives.
ESOCC, 2014.

A. Brogi, J. Soldani. Finding available services in
TOSCA-compliant clouds. Sci. Comp. Progr., 2016.

J. Soldani, T. Binz, U. Breitenbücher, F. Leymann, A.
Brogi. TOSCAMART: A Method for Adapting and
Reusing Cloud Applications. JSS, 2016.

F. Bonchi, A. Brogi, A. Canciani, J. Soldani. Behaviour-
aware matching of cloud applications. TASE, 2016.

F. Bonchi, A. Brogi, A. Canciani, J. Soldani.
Simulation-based matching of cloud applications.
Sci. Comp. Progr., 2017.

A. Brogi, A. Canciani, J. Soldani. Modelling and
analysing cloud application management. ESOCC,
2015.

A. Brogi, A. Canciani, J. Soldani, P. Wang. A Petri
net-based approach to model and analyze the
management of cloud applications. Trans. on
Petri Nets and other models of Conc., 2016.

A. Brogi, A. Canciani, J. Soldani. Fault-aware
application management protocols. ESOCC, 2016.

A. Brogi, A. Canciani, J. Soldani. Fault-aware
management protocols for composite applications.
JSS, 2018.

Journal
Conference

https://tinyurl.com/soldani-thesis

https://tinyurl.com/soldani-thesis

44

Conclusions

Management protocols,
which are a modular,
compositional, and

fault-aware modelling
for the management

behaviour of application
components.

Modelling
composite cloud

applications.

Analysing
composite cloud

applications.

Reusing
composite cloud

applications.

Techniques for analysing
and automating

the management of
composite applications
(e.g., validity of plans,

effects of plans, planning,
hard recovery, etc.).

Techniques for
matching and adapting
(fragments of) existing
applications, by taking
into account both their

structure and their
behaviour.

independent from the employed topology model

45

Conclusions (2)

Feasibility
assessment

Related
work

(a) prototype implementation

(b) case study

First approach
(i) allowing to model and analyse

faults in composite apps,
(ii) dealing with misbehaving

components, and
(iii) allowing to plan how to

manage/recover composite apps.

(a) prototype implementations

(b) formal assessment of all
proposed algorithms

First approach
(i) considering both functional

and non-functional features, and
(ii) exploiting behaviour

models/simulation to go beyond non-
relevant operation mismatches.

46

Future work

faults generated
during transitions

dynamic reconfiguration
of topologies

cost- and QoS-aware
analyses

management protocols
in TOSCA

full-integration of the
proposed matching techniques

substitutability
assumption

cost- and QoS-aware
matching

Thank you!

Mail: soldani@di.unipi.it Web: http://pages.di.unipi.it/soldani

