Modeling and Execution of Blockchain-aware Business Processes

Ghareeb Falazi, Michael Hahn, Uwe Breitenbücher and Frank Leymann

[lastname]@iaas.uni-stuttgart.de

University of Stuttgart

Institute of Architecture of Application Systems

Agenda

- Motivation
- Challenge: Durability (finality) of Blockchain Transactions
- Modeling and Execution of Blockchain-aware Business Processes
 - Blockchain-access Layer
 - Blockchain-aware BPMN Extension
 - System Architecture
- Conclusion

- Blockchains open new business opportunities (supply-chains, health-care, finance, etc.)
- Business partners already have automated business processes (BPMN, BPEL).
- Idea:
 - Allow existing business processes to communicate with blockchainbased systems.

Challenge: Durability (finality) of Blockchain Transactions

- Blockchains store some kind of a state:
 - The set of balances of all accounts (e.g., Bitcoin)
 - Smart contracts and their local storage (e.g., Ethereum)
- A **blockchain transaction** is an atomic change of the state.
 - Transfer of value from one account to another.
 - Execution of a smart contract that changes its local storage.
- Blockchain transactions have inherent properties that make using them by regular applications challenging.
 - We focus here on transaction durability.

Challenge: Durability (finality) of Blockchain Transactions

 A simplified lifecycle of a blockchain transaction (from the durability point-of-view):

Challenge: Durability (finality) of Blockchain Transactions

Handling Uncertainty of Transaction Durability

At the execution level:

By creating an abstraction layer that provides <u>access</u> to blockchains and allows tackling their <u>uncertainty</u> - **Blockchain Access Layer (BAL)***.

At the modeling level:

- By providing a modeling extension to BPMN 2.0 that supports communicating with the BAL and
- by providing a set of rules to <u>transform</u> the extension artifacts to standard-compliant BPMN 2.0 fragments.

*Open-source implementation available at: <u>https://github.com/ghareeb-falazi/BlockchainAccessLayer</u>

Blockchain-access Layer – Architecture

An extensible, technology-agnostic unification layer that allows external applications to communicate with blockchains, while explicitly handling transaction uncertainty through an asynchronous API.

Blockchain-access Layer – API

 Operations accept a parameter called "block-confirmations" that allows specifying the certainty level that a transaction is durably committed.

Operation	Subscription Type
submitTransaction	One-shot
receiveTransaction	One-shot
receiveTransactions	Durable
detectOrphanedTransaction	One-shot
ensureTransactionState	One-shot

Blockchain-aware Modeling Extension (BlockME)

- Set of blockchain-aware tasks and events.
- Captures the semantics of blockchain-transactions and allows making trade-offs.
- Has the **visual appearance** of BPMN 2.0 artifacts.
- Can be transformed into standard-compliant BPMN 2.0.

BlockME – Sample Use-Case

 Receive money transaction through blockchains, and based on it, execute some critical operations (sending a product), and some uncritical operations (sending confirmation to client):

BlockME – Artifacts

 Extension artifacts are designed to communicate with the blockchain-access layer

Operation	Subscription Type	Extension Artifact	lcon
submitTransaction	One-shot	Submit Transaction / Task	₽
receiveTransaction	One-shot	Receive Transaction / Task	
receiveTransactions	Durable	Receive Transactions / Start Task	
detectOrphanedTransaction	One-shot	Detect Orphaned Transaction / Event Subprocess, Boundary Event	
ensureTransactionState	One-shot	Ensure Transaction State / Task	

BlockME – Transformation into Standard BPMN 2.0

 BlockME artifacts are transformed into a pair of message sending and message receiving tasks that communicate with the BAL asynchronously:

Method and System Architecture

Conclusion

- Identified the issue with blockchain transactions durability.
- Introduced the BlockME-method to model, transform and deploy blockchain-aware business processes.
- Introduced the Blockchain Access Layer that allows communication between blockchains and external applications while explicitly handling uncertainty.

Thank you!