
SummerSOC 2018

Using Architectural Modifiability Tactics to

Examine Evolution Qualities of Service- and

Microservice-Based Systems

An Approach based on Principles and Patterns

Justus Bogner1,2, Stefan Wagner2, Alfred Zimmermann1
1 University of Applied Sciences Reutlingen, 2 University of Stuttgart

Motivation: Software Evolution

“Highly business critical modifiability tends to be
detrimental to project success, even when the architect
is aware of it. […] Modifiability gets too little attention.”
(Poort et al., 2012)

“40% of participants were not satisfied with the degree
of maintainability of their software, while 35% were
somewhat satisfied. Only one fourth of participants (15
of 60) were actually content with the degree of
maintainability.” (Bogner et al., 2018)

2

What about Service Orientation?

“Literature reports that SOA directly supports
changeability by promoting loose coupling between service
consumers and providers. Issues, however, are only seen
on second sight.” (Voelz and Goeb, 2010)

“Lastly, ∼67% reported to not treat SBSs and µSBSs with
special maintainability controls. […] 6 participants
mention relaxed maintainability controls because of trust
in the high base level of maintainability gained through
service orientation.” (Bogner et al., 2018)

Analyze the evolution qualities of service orientation by
using architectural modifiability tactics

3

Architectural Tactics

•High-level techniques to achieve quality attribute goals

•Conceptualized by the Software Engineering Institute
(CMU SEI, Pittsburgh, PA)

• Exist for various quality attributes

•Modifiability tactic: a design decision or an architectural
transformation that positively affects system properties
related to modifiability reduce time and effort
necessary to introduce future changes

4

Modifiability Tactics

5

15 tactics in 3 categories, compiled from (Bass et al.,
2003), (Bachmann et al., 2007), and (Bass et al., 2012)

Scope and Method

Goal: Systematic understanding of service-oriented
evolution qualities via modifiability tactics

6

Compile list of
modifiability

tactics

Compile list of
principles (SOA

& Microservices)

Compile list of
patterns (SOA &
Microservices)

Map principles
to tactics

Map patterns to
tactics

Analyze and
compare results

Used Principles

SOA (Erl, 2005) Microservices (Fowler, 2015)

Standardized Service Contract Componentization via Services

Service Loose Coupling Organized around Business Capabilities

Service Abstraction Products, not Projects

Service Reusability Smart Endpoints, Dumb Pipes

Service Autonomy Decentralization

Service Statelessness Infrastructure Automation

Service Discoverability Design for Failure

Service Composability Evolutionary Design

7

Results: Principles

8

SOA: 26 mappings Microservices: 15 mappings

Results: Principles

9

SOA (8) Microservices (8)
General: - 26 mappings (~22%)

- Focused on the “Reduce
Coupling” category (~60%)

- 15 mappings (~13%)
- More evenly distributed over

the categories

Most mapped
principle:

“Service Loose Coupling” (7) “Evolutionary Design” (5)

Most mapped
tactic:

“Maintain Existing Interface” (5) “Restrict Dependencies and
Communication Paths” (3)

Not mapped
principles:

- “Service Statelessness”

- “Products, not Projects”
- “Design for Failure”

SOA principles of a more “technical” nature

But: Microservices principles often very fitting

(e.g. “Evolutionary Design”, “Organized around Business Capabilities”)

Used Patterns

SOA (118 patterns):

• “SOA Design Patterns” (Erl, 2009)

• “SOA with REST” (Erl et al., 2012)

• “SOA Patterns” (Rotem-Gal-Oz, 2012)

Microservices (42 patterns)

• “Microservices Patterns” (Richardson, 2018)

•…

10

Results: Patterns

11

SOA: 47 mappings (~40%) Microservices: 21 mappings (50%)

Results: Patterns

12

SOA (118) Microservices (42)
General: - 47 mappings (~40%)

- Focused on the “Reduce
Coupling” category (~49%)

- 21 mappings (50%)
- Focused on the “Defer Binding

Time” category (~52%)

Frequently mapped
tactics:

- “Use an Intermediary” (9)
- “Restrict dependencies” (8)
- “Generalize Module” (8)

- “Runtime Registration and
Dynamic Lookup” (5)

- “Use an Intermediary” (3)
- “Publish-Subscribe” (3)

Not mapped
tactics:

- “Start-Up Time Binding”
- “Deployment Time Binding”
- “Compile Time Binding”

- “Maintain Existing Interface”
- “Runtime Binding”
- “Compile Time Binding”

~10% more patterns mapped for Microservices than SOA

Microservices patterns slightly more coined at modifiability?

Only 3 Microservices patterns for “Increase Cohesion” category

Threats to Validity

13

 •Qualitative nature of the approach

•Possibility of subjective bias

•Revalidate with professionals / pattern experts?

•Microservices are much younger than SOA

•Principle & pattern quantity/quality is different

•Overlapping of principles/patterns

•Not all allegedly beneficial principles/patterns
could be included

•Focus on “theoretical” modifiability

Conclusion

14

•We mapped 15 modifiability tactics to

• Principles of SOA (8) and Microservices (8)

• Patterns of SOA (118) and Microservices (42)

Analysis: Evolution qualities seem to be roughly equal

•But: partly different strategies to achieve modifiability

•SOA: governance, restrictions, interoperability, reuse

•Microservices: evolutionary design, basic restrictions
(DB access, protocols, …), heterogeneity, runtime
bindings decentralization

• Vision: Incorporate this knowledge into the SDLC

Thank you!

Q & A

15

