
Theory of

Programming

Prof. Dr. W.

Reisig

Tutorial

Formal Methods for SOC

2. Temporal Logic

and Model Checking

SUMMERSOC 2014

Wed July 3rd 10:30 - 12

Wed July 3rd 15 – 16.30

Wolfgang Reisig

2

How to express properties
of systems that perform discrete steps?

1. Temporal Logic

3

From a transition system
to its tree

4

Once more: a process and its tree

5

Computation Tree Logic CTL*
p =

p p p p eventually

Computation Tree Logic CTL*

6

p =

p p p p eventually

7

AGEF

8

AGEG

9

Valid formulas

EX

AG (∨ EX)

AX

AGEF

EFG

10

Typical applications
“Never something bad happens” AG safely

“No deadlock reachable” AG enabled

„With a series of clicks you reach p“ EF p

“Whatever happens – you will succeed” AF Goal

“Each requirement is followed by an acknowledgement”

 AG(req U AF ack)

“It makes sense to wait” AG AF avail

“You always can properly terminate” AG EF exit

11

formulas interpreted in paths

Tautologies: F G F f w G F f G F G f w F G f

G F f = f holds infinitely often

....... f f f f f

F G f = f stabilizes

.......... f f f f f f f f

G (f u F y) = f leads to y

.......... f f f f y y y

12

Why not just First order logic
(predicate logic)?

Example:
Whenever process A sends a message to process B,
then B eventually sends an acknowledgement to A.

First order:
 t (send(A,B,t)   t’ (greater(t’,t)  send(B,A,t’)))

CTL*:
AG (Send (A,B)  AF Send (B,A))

Expressiveness
Why just THIS logic?

Theorem.

Two states are bisimilar

iff they share the same CTL* properties.

Consequence:

Specify a system in terms of CTL*.

This may yield various different implementations.

They all are bisimular.

13

next lecture

14

2. Model Checking

How to express properties
of systems that perform discrete steps?

verify

15

to prove its correctness (theoretically)

To find subtle mistakes (practically)

In contrast: Testing
Testing shows presence of mistakes,
but not their absence (E. Dijkstra)

Why verify a system design?

16

Verification techniques

manually

automatically

Hoare Logic, Invariants, descending functions, ...

interactive Theorem proving

Model Checking

17

Aim: Show that a CTL* formula f holds in a transition system T .

Idea: Visit each state of T and derive its properties.
Combine the results to prove f

First relevant results: 1986

Brake through: 1992

… a success story
with a fundamental problem:
state explosion

Model Checking

18

State Explosion
Assume: 2.4 GHz, sufficient store,

one new state per clock cycle:
how many states can you visit?

2,400,000,000 per second

144,000,000,000 per minute

8,840,000,000,000 per hour

207,360,000,000,000 per day

75,738,240,000,000,000 per year

1,514,764,800,000,000,000,000,000,000 since big bang
(< 1028)

19

Systems with 1028 states

Theoretically: 90 Boolean variables

Practically: 200 Boolean variables (in distributed systems)

Milestones of Model Checking:

1986: 106

1992: 1020

1996: 10100

2000: 101000

Supporting techniques:

Abstract interpretation,

Symbolic Model checking.

A miracle?

Cheating?

Clever technolgy?

20

Model Checking: How to use it

system

specification formalize log. formula

abstract model

Model Checker +

counter
example

-

make precise

spillover

simulate refine

21

Efficient algorithms

… not for CTL*,
but for subsets of it

CTL*

CTL LTL

Path Formula: may hold in an path

proposition p

p  (s0 s1 s2 s3 ...) iff p  s0

X path formula

X f  (s0 s1 s2 s3 ...) iff f  (s1 s2 s3 ...)

F path formula

F f  (s0 s1 s2 s3 ...) iff f  (si si+1 si+2 ...) for some i

G path formula

G f  (s0 s1 s2 s3 ...) iff f  (si si+1 si+2 ...) for all i

path formula U path formula

f U y  (s0 s1 s2 s3 ...) iff ...

State Formula:
may hold in a state of a tree

E path formula

E f  s iff for some path p starting at s holds: f  p

A path formula

A f  s iff for each path p starting at s holds: f  p

24

Efficient algorithms

CTL* : O(2|f| |TS|)

LTL: Only path formulas : O(2|f| |TS|)

CTL: Only state formulas: O (|f| |TS|)

CTL*

CTL LTL

25

Fairness

p

a

b

c

d

e

f

p p p

a

b

d e

 GFp

 GFp

Take GFp as part of
the specification of

Theory of

Programming

Prof. Dr. W.

Reisig

Tutorial

Formal Methods for SOC

2. Temporal Logic

and Model Checking

SUMMERSOC 2014

Wed July 3rd 10:30 - 12

Wed July 3rd 15 – 16.30

Wolfgang Reisig

