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How to express properties 
of systems that perform discrete steps? 
 
 

1. Temporal Logic 
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From a transition system  
to its tree 
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Once more: a process and its tree 
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Computation Tree Logic CTL* 
p = 

p  p  p  p  eventually 



Computation Tree Logic CTL* 
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p = 

p  p  p  p  eventually 
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AGEF  
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AGEG  
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Valid formulas 

EX 

AG (      ∨ EX      ) 

AX 

AGEF  

EFG    
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Typical applications 
“Never something bad happens”                 AG safely  

 
“No deadlock reachable”                          AG enabled 

 
„With a series of clicks you reach p“                         EF p    

 
“Whatever happens – you will succeed”        AF Goal  

 
“Each requirement is followed by an acknowledgement”   

                                                            AG(req U AF ack) 
 

“It makes sense to wait”                           AG AF avail 
 

“You always can properly terminate”          AG EF exit 
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formulas interpreted in  paths 

Tautologies:  F G F f w G F f       G F G f w F G f 

G F f    =    f holds infinitely often 

....... f f f f f 

F G f    =    f stabilizes 

.......... f f f f f f f f 

G ( f u F y)   = f leads to y 

.......... f f f f y y y 
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Why not just First order logic 
(predicate logic)? 

Example:  
Whenever process  A  sends a message to process  B,  
then  B  eventually sends an acknowledgement to  A. 
 
First order:  
 t (send(A,B,t)   t’ (greater(t’,t)   send(B,A,t’))) 

 
CTL*: 
AG ( Send (A,B)  AF Send (B,A) ) 
 
 



Expressiveness 
Why just  THIS  logic? 

 

Theorem.    

Two states are bisimilar 

iff they share the same CTL* properties. 

 

Consequence: 

Specify a system in terms of CTL*.  

This may yield various different implementations.  

They all are bisimular. 
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next lecture 
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2. Model Checking 

How to express properties 
of systems that perform discrete steps? 

verify 
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to prove its correctness (theoretically) 
 
To find subtle mistakes (practically) 
 
In contrast: Testing 
Testing shows presence of mistakes, 
but not their absence (E. Dijkstra) 
 
 

Why verify a system design? 
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Verification techniques 

manually 

automatically 

Hoare Logic, Invariants, descending functions, ...    

interactive Theorem proving 

Model Checking 
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Aim: Show that a CTL* formula f  holds in a transition system T . 
 
Idea: Visit  each state of  T  and derive its properties. 
Combine the results to prove  f 

 
 
First relevant results: 1986 
 
Brake through: 1992 
 
… a success story 
with a fundamental problem:  
state explosion 
 

Model Checking  
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State Explosion 
Assume: 2.4 GHz, sufficient store,  

one new state per clock cycle:  
how many states can you visit? 

2,400,000,000 per second 

144,000,000,000 per minute 

8,840,000,000,000 per hour 

207,360,000,000,000 per day 

75,738,240,000,000,000 per year 

1,514,764,800,000,000,000,000,000,000 since big bang 
(< 1028) 
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Systems with 1028  states 

Theoretically:  90 Boolean variables   

 

Practically: 200 Boolean variables (in distributed systems) 

Milestones of Model Checking: 

1986: 106 

1992: 1020 

1996: 10100 

2000: 101000 

 

 

Supporting techniques: 

 

Abstract interpretation, 

Symbolic Model checking.  

A miracle? 

Cheating? 

Clever technolgy? 
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Model Checking: How to use it 

system 

specification formalize log. formula 

abstract model 

Model Checker + 

counter  
example 

- 

make precise 

spillover 

simulate refine 
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Efficient algorithms 

… not for CTL*, 
but for subsets of it 

CTL* 

CTL LTL 



Path Formula: may hold in an path 

proposition p  

p  (s0 s1 s2 s3 ... ) iff p  s0 

 

X path formula 

X f  (s0 s1 s2 s3 ... ) iff f  (s1 s2 s3 ... ) 

  

F path formula  

F f  (s0 s1 s2 s3 ... ) iff f  (si si+1 si+2 ... ) for some i 

 

G path formula  

G f  (s0 s1 s2 s3 ... ) iff f  (si si+1 si+2 ... ) for all i 

 

path formula  U  path formula 

f U y  (s0 s1 s2 s3 ... ) iff ... 



State Formula:  
may hold in a state of a tree 

E path formula 

E f  s iff for some path p starting at s holds: f  p 

  

A path formula 

A f  s iff for each path p starting at s holds: f  p 
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Efficient algorithms 

CTL* : O(2|f| |TS|) 
 

LTL: Only   path formulas : O(2|f| |TS|) 
 

CTL: Only  state formulas: O (|f| |TS|) 
  

CTL* 

CTL LTL 
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Fairness 

p 

a 

b 

c 

d 

e 

f 

p p p 

a 

b 

d e 

 GFp 

 GFp 

Take GFp as part of  
the specification of 
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