SUMMERSOC 2014 Wed July 3rd 10:30 - 12 Wed July 3rd 15 - 16.30

Tutorial Formal Methods for SOC 3. Simulation and equivalence

Wolfgang Reisig

TOP

Humboldt

nformatil

Theory of Programming

Prof. Dr. W. Reisig

.1 Process Simulation

R:

Process L has two traces: a.b, a.c

"Systems with same traces are equivalent!"

Process R has same traces.

L and R are not equivalent, ... by no means!

intuitively :

R is "more liberal" than L.

R *simulates* L L does *not* simulate R

b

а

Simulation: a relation

Vice versa

Vice versa

Simulation equivalence

Def.: P and Q are *simulation equivalent* iff P simulates Q and Q simulates P.

Observation. Simulation equivalence is an equivalence relation on processes.

Def.: Let ~ be an equivalence relation, and let + be any reasonable composition of processes. Then ~ is a *congruence* (w.r.t. +) iff for all processes P, Q, R holds: If P ~ Q then P+R ~ Q+R.

Observation. Simulation equivalence is no congruence!

2. Bisimulation

- Observation:
- A slightly more tight relation
- makes simulation equivalence a congruence:
- R is simulated by L with ρ and L is simulated by R with $(\rho)^{-1}$.

Def. ρ is a *bisimulation from L to R* iff R is simulated by L with ρ and L is simulated by R with $(\rho)^{-1}$. **Sim** $=_{def} \{(l_0, r_0), (l_0, r_2), (l_1, r_1), (l_2, r_1)\}$ is a bisimulation from L to R

Bisimulation harmonizes with CTL*

Theorem.

- Two states are bisimilar
- iff they share the same CTL* properties.

Consequence:

Specify a system in terms of CTL*. This may yield various different implementations. They all are bisimular.

Examples for Bisimularity

P and Q are bisimilar:

b

а

R, S and T are pairwise *not* bisimilar:

Variant: L is wekly simulated by R

Caution!

Weak bisimulation is no congruence

We conside them from right to left

Complete Trace Equivalence

Combining termination and choice ...

a is a complete trace of L but not of R

Failure Equivalence of a set M of actions

Def.: For an action w and a set of actions M: [w,M] is a *failure pair* of P iff P may do a step

 $P - w \rightarrow Q$ and no action of M is enabled in Q.

[a,{c}] is a failure pair of L but not of R

Failure Trace Equivalence

... like Failure equivalence.

But now you continue along a trace

a {f} c {e} d is a failure trace of L but not of R

Ready Trace Equivalence

In a trace, between each two actions, present the alternative actions.

[a,{c},b] is a ready trace of L but not of R

Tree Equivalence

Unfold the transition systems as trees

 $L =_U R$ iff both trees are isomorpic

Structural Equivalence

Equivalence:

 $L =_K R$ iff the transtion systems are isomorphic

Further equivalences

Ready equivalence Ready Simulation equivalence Ready Trace Simulation equivalence Completed Simulation equivalence Failure Simulation equivalence Failure Trace Simulation equivalence Simulation equivalence

• • •

152 ones

SUMMERSOC 2014 Wed July 3rd 10:30 - 12 Wed July 3rd 15 - 16.30

Tutorial Formal Methods for SOC 3. Simulation and equivalence

Wolfgang Reisig

TOP

Humboldt

nformati

Theory of Programming

Prof. Dr. W. Reisig

the end