
Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann
Institute of Architecture of Application Systems

The OpenTOSCA Ecosystem

www.opentosca.org

http://www.opentosca.org/

© IAAS 2

The OpenTOSCA Ecosystem

Modelling
Tool

 TOSCA Modelling tool to develop CSARs
 Graphical Topology Template Modeller
 Template, Types, and Artifact Management Backend

© IAAS 3

The OpenTOSCA Ecosystem

Modelling
Tool

OpenTOSCA

Container

Runtime
Environment

 TOSCA Runtime Environment
 Supports imperative processing based on BPEL
 Supports Java- and Script-Implementation Artifacts

© IAAS 4

The OpenTOSCA Ecosystem

Modelling
Tool

OpenTOSCA

Container

Runtime
Environment

Self-Service
Portal

 Self-Service Portal for OpenTOSCA
 Provides easy graphical interface for users
 Currently supports the provisioning of applications

© IAAS 5

The OpenTOSCA Ecosystem

Self-Service
Portal

 Develop
Deploy &

Manage
 Instantiate

„Standards-based - Open Source - End-To-End Toolchain“

Modelling
Tool

OpenTOSCA

Container

Runtime
Environment

© IAAS 6

© IAAS 7

© IAAS 8

© IAAS 9

© IAAS 10

Container UI

Ecosystem Structure & Relations

CSAR

11

OpenTOSCA Container:

Plan-based Management

© IAAS 12

Two Flavors of Processing

 Declarative  What?

 Example: “I want this, realize it!”

 Runtime interprets topology
and does deployment

 Imperative  How?

 Example: “First do this, than that.”

 Management plan explicitly describes
each step

OperatingSystem

(Ubuntu 12.04 LTS)

VirtualServer

(AWS EC2 Server)

WebServer

(Tomcat)

EC2

OperatingSystem

(Ubuntu 12.04 LTS)

VirtualServer

(AWS EC2 Server)

WebServer

(Tomcat)

EC2
Start VM

Install
Tomcat

© IAAS 13

CustomerDB
(RDB)

MyDBMS
(RDBMS)

MyBlockStore
(BlockStore)

CustomerDB_on_MyDBMS
(RDB_HostedOn_RDMBS)

MyBlockStore_For_MyDBMS
(BlockStore_For_RDBMS)

Allocate()

Install()

Attach()

Get
Storage

Install
DBMS

Attach
Storage

...

Build Plan

...And Its Imperative Processing

 In a imperative mode of
processing, the environment
is not dependent on a
precise interpretation of the
types

 All that interpretation is
done by plans

PRO: No precise definition of all types, their processing, their behavior,… needed
CON: Plans must be specified even for “simple” provisioning and decommissioning needed

© IAAS 14

What is contained in a Cloud Service Archive (CSAR)?

Cloud Service Archive (CSAR)

X

Deployment

Artifacts

Topology

(Templates)

Management

Plans

Images

Installables

Implementa-

tion Artifacts

Services

Scripts

Types

Implementation

Artifacts

Deployment

Artifacts

Type

Interfaces Properties

© IAAS 15

EC2.wsdl

Ubuntu-IA.pl

Tomcat-IA.war

Deployment and Implementation Artifacts

OnlineBookstore

(WAR)

OperatingSystem

(Ubuntu 12.04 LTS)

VirtualServer

(AWS EC2 Server)

WebServer

(Tomcat)

EC2

app.war

tomcat.zip

ubuntu.ami

OnlineBookstore

(WAR)

OperatingSystem

(Ubuntu 12.04 LTS)

VirtualServer

(AWS EC2 Server)

WebServer

(Tomcat)

EC2

Deployment

Artifacts

Implementation

Artifacts

appSpecific

deployWAR

start, stop

installPkg

terminate

createVM

execScript

© IAAS 16

OpenTOSCA Architecture Simplified

Container API

Implementation Artifact
Runtime

Operation

Plan Portability API

Plan Runtime

Plug-Ins

Component

Ext. Systems

External APIs

Control

Core

Admin UI
Self-Service

Portal
Modeling

Tool

Models
Instance

data
Files

End-
points

Plans

Management Plan

Implementation
Artifact Engine …

Plugin

Plan Engine

Plugin

…

Operation Invoker

© IAAS 17

Currently supported:

 Implementation Artifacts
 Java-based, asynchronous SOAP / HTTP – Webservices (WAR)

 SH Scripts (ongoing research)

 Deployment Artifacts
 All possible types 

 Management Plans can process Deployment Artifacts arbitrarily

 Node Types / Relationship Types
 In general all Node / Relationship Types can be processed

 If special operations / actions are required, they must be
implemented either (i) in the plan or the type must provide (ii) a
corresponding Implementation Artifact

 Custom Node and Relationship Types can be defined and used!

 Management Plans
 BPEL workflows

© IAAS 18

Simplified OpenTOSCA Architecture

Container API

Implementation Artifact
Runtime

Operation

Plan Portability API

Plan Runtime

Plug-Ins

Component

Ext. Systems

External APIs

Control

Core

Admin UI
Self-Service

Portal
Modeling

Tool

Models
Instance

data
Files

End-
points

Plans

Management Plan

Implementation
Artifact Engine …

Plugin

Plan Engine

Plugin

…

Operation Invoker

© IAAS 19

Ongoing research…

Operation Invoker

Operation Invoker

…

BPEL Management Plan

SOAP / HTTP

SOAP / HTTP Web
Service IAs

SOAP / HTTP-Plugin Script-Plugin

Script
IA

Script
IA

Script
IAs

IA-Invoker (Normalized Message Format)

SOAP / HTTP -API

…

© IAAS 20

Ongoing research…

Operation Invoker

Operation Invoker

…

BPEL Management Plan

SOAP / HTTP

SOAP / HTTP Web
Service IAs

SOAP / HTTP-Plugin Script-Plugin

Script
IA

Script
IA

Script
IAs

IA-Invoker (Normalized Message Format)

SOAP / HTTP -API

…

<NodeTemplate>
 OpenStack
</NodeTemplate>

<Interface>
 VMManagement
</Interface>

<Operation>
 createVM
</Operation>

<InputParams>
…

21

The Power of (Open)TOSCA

© IAAS 22

Major strenghts of the (Open)TOSCA concept

 Node Types can provide management logic by very
different kinds of Implementation Artifacts

 OpenTOSCA directly supports (Operation Invoker):

 Script IAs

 Java-based Webservice IAs (WARs)

 OpenTOSCA indirectly supports any kind of IA

 Plans can do whatever they want with arbitrary types of IAs

…

>_

© IAAS 23

Major strenghts of the (Open)TOSCA concept

 Enables wrapping many (!) different kinds of
managenent interfaces and technologies 

 You want to install a special Webserver?

 Attach the corresponding Script to the Node Type and let
the plan execute it on the operating system

 You want to provision a virtual machine on Provider X?

 Attach a Java Webservice IA to the Node Type that
implements the „createVM“ operation and call it

© IAAS 24

Core Concept

 The core concept of OpenTOSCA:

All required management logic is
contained in the CSAR

 This leads to completely self-contained CSARs:

 CSAR provides all executables:

 Low-level management logic is implementd as IAs

 Plans orchestrate all these Implementation Artifacts

25

REST

>_

26

REST

 install (…)

(PHP)

 install (…)

 (Apache)

 createVM (...)

 (OpenStack)

WAR

 (UbuntuVM)
Create VM

Install Apache

Deploy PHP

>_

>_

27

 install (…)

(PHP)

 install (…)

 (Apache)

 createVM (...)

 (OpenStack)

REST

 (UbuntuVM)
Create VM

Install Apache

Deploy PHP

SCP, SSH…
>_

28

 install (…)

(PHP)

 install (…)

 (Apache)

 createVM (...)

 (OpenStack)

REST

 (UbuntuVM)
Create VM

Install Apache

Deploy PHP

Operation

Invoker

SOAP / HTTP

SOAP / HTTP

SOAP / HTTP

>_

29

 install (…)

(PHP)

 install (…)

 (Apache)

 createVM (...)

 (OpenStack)

REST

 (UbuntuVM)
Create VM

Install Apache

Deploy PHP

Operation

Invoker

SOAP / HTTP

SOAP / HTTP

SOAP / HTTP

<NodeTemplate>
 OpenStack
</NodeTemplate>

<Interface>
 VMManagement
</Interface>

<Operation>
 createVM
</Operation>

<InputParams>
…

>_

30

 install (…)

(PHP)

 install (…)

 (Apache)

 createVM (...)

 (OpenStack)

REST

 (UbuntuVM)
Create VM

Install Apache

Deploy PHP

Operation

Invoker

SOAP / HTTP

SOAP / HTTP

SOAP / HTTP

<NodeTemplate>
 PHP
</NodeTemplate>

<Interface>
 PHPManagement
</Interface>

<Operation>
 install
</Operation>

<InputParams>
…

>_

31

 install (…)

(PHP)

 install (…)

 (Apache)

 createVM (...)

 (OpenStack)

REST

 (UbuntuVM)
Create VM

Install Apache

Deploy PHP

Operation

Invoker

SOAP / HTTP

SOAP / HTTP

SOAP / HTTP

Ongoing research…

SCP, SSH…

>_

32

Portability & Interoperability

© IAAS 33

Moodle – A school software based on LAMP

(Moodle)

(Apache)

(Ubuntu12.04VM)

(MySQLDB)

(MySQLDBMS)

Where to host the application?

© IAAS 34

Moodle – A school software based on LAMP

Would be a cool thing, right?

CSAR

© IAAS 35

Moodle – A school software based on LAMP

(Moodle)

(Apache)

(OpenStack)

(Ubuntu12.04VM)

(MySQLDB)

(MySQLDBMS)

© IAAS 36

Exchangeable Node Types: OpenStack and AmazonEC2

(Moodle)

(Apache)

(OpenStack)

(Ubuntu12.04VM)

(MySQLDB)

(MySQLDBMS)

Create Virtual Machine

Install MySQLDBMS

createVM (…)

runScript (..)

© IAAS 37

Exchangeable Node Types: OpenStack and AmazonEC2

(Moodle)

(Apache)

(Ubuntu12.04VM)

(MySQLDB)

(MySQLDBMS)

Create Virtual Machine

Install MySQLDBMS

createVM (…)

runScript (..)

(AmazonEC2)

© IAAS 38

Input Message of Provisioning Plan

 We were able to design a uniform interface for both
„createVM“ operations

 Parameters of both proprietary APIs are similar and can be
mapped

 For example, Amazon Region = OpenStack Endpoint

 etc.

 Identical Interfaces = Identical Plan 

 All these parameters are exposed to the input
message of the plan

 In general, very flexible (and reusable!) implementation of
Management Plans possible

© IAAS 39

The „workflow“ of defining the target environment

Steps to define the target environment:
1. Open CSAR in Winery
2. Put the desired Node Type into the Topology
3. Safe CSAR and deploy it in OpenTOSCA

CSAR

(AmazonEC2)
(OpenStack)

© IAAS 40

Self-contained CSARs

 This concept enables creating self-contained CSARs

 Contain management logic of different layers
 IAs orchestrate infrastructure, platform, or software services

 IAs to install components, e.g., scripts

 All the logic is shipped with the CSAR

 OpenTOSCA is not coupled to any specific Cloud or

 Management technology / provider

 Can be extended by implementing new Node Types

 without modifying the container

© IAAS 41

(Ubuntu12.04VM)

Hybrid Applications

(Moodle)

(Apache)

(Ubuntu12.04VM)

(MySQLDB)

(MySQLDBMS)

(AmazonEC2) (OpenStack)

© IAAS 42

 The OpenTOSCA container is completely independent
from any concrete technology or provider

 Management Plans can implement very complex
management flows that act directly on the
operations provided by Node Types…

 … which can be customized arbitrarily

Advantages

© IAAS 43

Advantages

 Standardizing (abstract) Node Types additionally
supports this as it enables a seamless exchange

 … no need to adapt plans for other providers 

 … only the implementation IN the CSAR changes

  Very extensible! Supports portability!

(AmazonEC2) (OpenStack)

(IaaS) IaaS
createVM()

© IAAS 44

Advantages

 Because the whole management logic is completely
contained in the CSAR, the execution is the same
every time…

 …on each TOSCA Runtime Environment that is able to
process the Plans and Implementation Artifacts

© IAAS 45

Challenges and Problems

 Implementing „good“ Node Types not easy…

 Interfaces and properties must be defined

 Management logic must be implemented

 However, as Java is supported for IAs, this is possible! 

 Management Plans must be created

 However, the Operation Invoker eases that 
 Abstraction from IA implementations

 Uniform and simple SOAP / HTTP interface

 Asynchronous processing supported

 BPEL fragments available

46

How to work with the

OpenTOSCA Ecosystem?

© IAAS 47

(Ubuntu12.04VM)

Install OpenTOSCA

(OpenStack)
(AmazonEC2)

Install
Script

Instance
Creator

© IAAS 48

Container UI

www.demo.opentosca.org

CSAR

Thank you for your attention!

