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Quantum Algorithm: Paper Version

Quantum algorithm for linear systems of equations Next we apply the conditional Hamiltonian evolution 74 |7)(r|® ® ¢4/ on |[W)® @ |b), where to = O(k/e).
Fourier transforming the first register gives the state
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Solving linear systems of equations is a common problem that arises both on its own and as a where |k) are the Fourier basis states, and |ay;| is large if and only if "#a, we can relabel
subroutine in more complex problems: given a matrix A and a vector b, find a vector  such that our |k) register to obtain
A# = b. We consider the case where one doesn’t need to know the solution # itself, but rather an :
approximation of the expectation value of some operator associated with Z, e.g., &' Mz for some N Tt -
matrix M. In this case, when A is sparse, N x N and has condition number r, classical algorithms ;B )‘k> [u)
can find # and estimate &' M in O(N /) time. Here, we exhibit a quantum algorithm for this task =1 k=0
that runs in poly(log N, ) time, an exponential improvement over the best classical algorithm.
Adding an ancilla qubit and rotating conditioned on | ) yields
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Quantum computers are devices that harness quar ~form computations in ways that classical . o frery Ak A
computers cannot. For certain problems, quantum sal speedups over their classical coun- Al gorlthm
ﬂcrgﬁf& ﬂt'; 'tnost f(amf;]‘ls C:ﬁmplc bfci“g Szm’s fnc "xpmctn“ﬂl [Szr]’)mhdups e k'fml:iv where C = O(1/k). We now undo the phase estimation to uncompute the ‘J\k>. If the phase estimation were perfect,
and those that are (such as the use of quantum compu. vstems ave so far foun o . o )
limited use outside the domain of quantum mechanics. This | sthm to estimate features we would have ag); = 1 if Ak = A;, and 0 otherwise. Assuming this for now, we obtain
of the solution of a set of linear equations. Compared to classic. ~ur algorithm can be
as much as exponentially faster. al c? C
Linear equations play an important role in virtually all fields of scienc the data sets DBl (4[1= Sz 10+ 5
that define the equations are growing rapidly over time, so that terabytes « a may need to = 7
be processed to obtain a solution. In other cases, such as when discretizing par. tions, the linear To finish the inversion we measure the last qubit. Conditioned on seeing 1, we have the state
equations may be implicitly defined and thus far larger than the original description m. For a classical
computer even to approximate the solution of N linear equations in N unknowns in genc. res time that scales
at least as N. Indeed, merely to write out the solution takes time of order N. Frequently, ho  :ver, one is interested Z ﬁ] Juj)
not in the full solution to the ions, but rather in ing some function of that solution, such as determining CWW/ N2 5= A
the total weight of some subset of the indices. We show that in some cases, a quant can imate the
value of such a function in time which scales logarithmically in N, and polynomially in the condition number (defined which corresponds to [z) = 7, ;" |u;) up to normalization. We can determine the normalization factor from
below) and desired precision. The dependence on N is exponentially better than what is achievable classically, while the probability of obtaining 1. Finally, we make a M whose e jon value (=] M |} corresponds to
the dependence on condition number is ble, and the dependence on error is worse. Thus our algorithm can the feature of & that we wish to evaluate.
achieve useful, and even exponential, speedups in a wide variety of settings where I is large and the condition number
is small.
We sketch here the basic idea of our algorithm, and then discuss it in more detail in the next scct)on Given a
Hermitian N x N matrix A, and a unit vector 5, suppose we would like to find & satisfying A = b. (We discuss

later questions of efficiency as well as how the assumptions we have made about A and § can be rclaxcd.) First, the
algorithm represents b as a quantum state [b) = SN | b, [i). Next, we use iques of Hamiltonian simulation[3, 4
to apply e* to [b) for a superposition of different times ¢. This ability to exponentiate A translates, via the well-
known technique of phase estimation[5-7], into the ability to decompose [b) in the eigenbasis of A and to find the
corresponding eigenvalues \;. Informally, the state of the system after this stage is close to ), B [u;) [A;), where
u; is the eigenvector basis of A, and [b) = YN, 6; |u;). We would then like to perform the linear map taking |;)
to CA;! |;), where C is a normalizing constant. As this operation is not unitary, it has some probability of failing,
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which wnll enter into our discussion of the mn time bclow After it succeeds, we uncompute the |);) register and are

left with a state proportional to 2] VBN ) = A7 [b) = |2

An important factor in the performance of the mamx inversion algorithm is &, the condition number of A, or the
ratio between A’s largest and smallest eigenvalues. As the condition number grows, A becomes closer to a matrix which
cannot be inverted, and the solutions become less stable. Such a matrix is said to be “ill-conditioned.” Our algorithms
will generally assume that the singular values of A lie between 1/ and 1; equivalently k2 < A'A < I. In this
case, our runtime will scale as x? log(N) /e, where ¢ is the additive error achieved in the output state |z). Therefore,
the greatest advantage our algorithm has over classical algorithms occurs when both % and 1/e are polylog(N), in
which case it achieves an exponential speedup. However, we will also discuss later some techniques for handling

ill-conditioned matrices. Phase Estimation  Rotation
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Data for the Algorithm

We also need an efficient procedure to prepare |b).
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Data as Quantum State
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Unfolding
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Structure of a Quantum Algorithm
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Leymann, Frank; Barzen, Johanna: The bitter truth about gate-based quantum algorithms in the NISQ era. In: Quantum Science and Technology, 2020
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Hybrid Quantum-Classical Workflows

Run Calibration Build Calibration Invert Calibration Store Inverted
Circuits Matrix Matrix Calibration Matrix

Create State Prepend Execute Overall Unfold Measured

Preparation SPCircuit to Deliver Result

Circuit Algorithm Proper Circuit Distribution

Compute Transform into
Retrieve Data Normalize Data Parameters for Quantum
Gates Assembler
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Real Use Case (Sketch
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Barzen, Johanna: From Digital Humanities to Quantum Humanities: Potentials and Applications. In: E. R. Miranda (Ed.):
An Introduction to Core Concepts, Theory and Applications, Springer International Publishing, 2022.
Preprint at: arXiv:2103.11825 (2022)

Weder, Benjamin; Breitenbiicher, Uwe; Leymann, Frank; Wild, Karoline: Integrating Quantum Computing
into Workflow Modeling and Execution. In: Proceedings of the 13th IEEE/ACM International Conference
on Utility and Cloud Computing (UCC 2020), [IEEE Computer Society, 2020.
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Packaging and Deployment
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Binz, Tobias; Breiter, Gerd; Leymann, Frank; Spatzier, Thomas: Quantum
Portable Cloud Services Using TOSCA. Application Archive
In: IEEE Internet Computing 16 (03), IEEE, 2012 (QAA)

© Frank Leymann



Two Orchestrations 1n "Superposition”
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Leymann, Frank; Barzen, Johanna: Hybrid Quantum Applications Need Two Orchestrations in Superposition:
A Software Architecture Perspective. arXiv:2103.04320, 2021.
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The Role of
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Nttt oo/ Weder, Benjamin; Barzen, Johanna; Leymann, Frank; Vietz, Daniel:
Quantum Software Development Lifecycle. In: Quantum Software
Engineering, Springer International Publishing, 2022. 14



HAna

Quantum Humanities
Analysis Tool

When to use quantum and when to use classical?

What are best practices to build quantum applications? e,

“This is the start of a collection of patterns for quantum computing.
ibution 4.0 International Licen
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Leymann, Frank: Towards a Pattern Language for Quantum Algorithms. In: QTOP 2019 Proceedings, Springer, 2019
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On which available QPU may my quantum program succeed?

Aaorme Grover SAT / Grover SAT Qiskit

Publications Algorithm Implementation

+
(]

Execution Environments v

General Publications Software Platforms Selection Criteria Execution NISQ Analyzer
Manage Components v
Settings
-

QPU Analysis Job from 2022-03-04T11:08:43.108Z

) ) 0 ) - - 2 Show result
0.008349201 26.666666 398.22223 0.03982 94376.96 135634.03 276 m
0.008349201 26.666666 398.22223 0.03982 94376.96 135634.03 276 m
0.0131952735 26.666666 387.55554 0.0415 80360.09 99525.98 16 ( Show result |

Status: FINISHED
Number of shots: 8192

Histogram intersection value: 0. 74462890625
Result: {00=260, 01=761, 101071, 11-6100}

0.0131952735 26.666666 387.55554 0.0415 80360.09 99525.98 16 m
0012949518 26666666 5457778 0.0274 111939.77 98319.54 41 m
0.012949518 26.666666 545.7778 0.0274 111939.77 98319.54 a1 m

Salm, Marie; Barzen, Johanna; Breitenbiicher, Uwe; Leymann, Frank; Weder, Benjamin; Wild, Karoline:
The NISQ Analyzer: Automating the Selection of Quantum Computers for Quantum Algorithms. In: Proc. SummerSOC 2020
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Required Middleware
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A

Executing a Hybrid Quantum Application

Workflows

0
RUN Q(pi,....px)!

)

Queue
Controlle

( Workflow Engine

QPU Cloud

Weder, Benjamin; Breitenbiicher, Uwe; Leymann, Frank; Wild, Karoline: Integrating Quantum Computing into Workflow Modeling and Execution.

In: Proceedings of the 13th [IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2020), IEEE Computer Society, 2020
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Prototype: IBM
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Prototype: WSO2 & IBM

Kubernetes

Low-Code ((hidden))

o QisKit
Algos\
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Development Roadmap

Model
Developers

Algorithm
Developers

Kernel
Developers

SE]
Modularity

Executed by IBM 0 IBM Quantum

On target 9

2019 @ 2020 ©@ 2021 © 2022 2023 2024 2025 Beyond 2026

Run quantum circuits Demonstrate and Run quantum Bring dynamic circuits to Enhancing applications Improve accuracy of Scale quantum applica- Increase accuracy and

on the IBM cloud prototype quantum programs 100x faster Qiskit Runtime to unlock with elastic computing Qiskit Runtime with tions with circuit knitting : Mlntum
algorithms and with Qiskit Runtime more computations and parallelization of scalable error mitigation toolbox controlling workflows Wth integration

Qiskit Runtime Qiskit Runtime iction into
Qiskit Runtime

applications

Prototype quantum software applications — Quantum software applications

Machine learning | Natural science | Optimization

Quantum algorithm and application modules Quantum Serverless

Machine learning | Natural science | Optimization

O time ()

Dynamic circuits @ Threaded primitives Error suppression and mitigation Error correction
Falcon (v) Hummingbird @ Eagle (v) Osprey @ Condor Flamingo Kookaburra Scalingto
27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits

with classical
and quantum

‘ ; / communication
Heron Crossbill
133 qubits x p 408 qubits

%
e, \




Conclusion

> Real-world quantum applications are hybrid
' Such hybrid quantum-classical applications require orchestrations
¢ Workflows: Orchestration of control- and dataflow of steps of the application

¢ Provisioning: Orchestration of deployment of the infrastructure and code of the application

As a result, quantum applications become packages
¢ ...which can be used as tradable artifacts

» Quantum applications can be deployed and executed on premise or in a cloud environment or mixed

© Building Quantum Application is a integration problem

© Frank Leymann
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The End



