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Motivation

▪ Recent advances with more powerful quantum computers
➔ New quantum applications are needed

▪ Development of quantum applications requires expertise from different fields:

▪ Computer science

▪ Physics

▪ Mathematics

▪ …

▪ Common understanding of the development and execution process needed

➔ Quantum Software Lifecycle



Quantum Software Lifecycle
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Quantum Software Lifecycle – Interwoven Lifecycle
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B. Weder, J. Barzen, F. Leymann, and D. Vietz. Quantum Software Development Lifecycle. In: Quantum Software Engineering, Springer, 2022 
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Quantum Software Lifecycle – Interwoven Lifecycle

5

Quantum
Workflow
Lifecycle

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Requirement
Analysis

Quantum-Classical
Splitting

Architecture
& Design

Implementation

Testing

Deployment

Observability

Analysis



R
e
se
a
rc
h

Quantum-Classical Splitting

▪ Entered by the user with the identified requirements

▪ Split problem to solve into quantum and classical parts:

▪ Different techniques:

▪ Manually by experts

▪ Comparison of quantum algorithms with classical algorithms ➔ QHAna

▪ Automated recommender (based on patterns, provenance, …)
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J. Barzen. From Digital Humanities to Quantum Humanities: Potentials and Applications. In: Quantum Computing in the Arts and Humanities
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Quantum Software Lifecycle – Interwoven Lifecycle
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10

Quantum Modeling Extension (QuantME)

▪ Guide quantum experts to model the execution of quantum algorithms in 
workflows

▪ Hide technical details when invoking predefined quantum algorithms

?

OracleExpansion
Task

QuantumCircuit
LoadingTask

ReadoutError
MitigationTask

QuantumCircuit
ExecutionTask

DataPreparation
Task

QuantumComputation
Task

Encoding: [encoding schema]
UnfoldingTechnique: [technique to use]
MaxAge: [max age of the error model]

Algorithm: [algorithm to execute]
Provider: [provider to use]

B. Weder, U. Breitenbücher, F. Leymann, and K. Wild. IntegratingQuantum Computing into Workflow Modeling and Execution. In: UCC 2020 
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Executing Hybrid Loops using Workflows

12

▪ Inefficient execution:

▪ Problems: 

▪ 1. Latency due to queue-based access
➔ Reserve time slot for complete execution

▪ 2. Data transfer between classical and quantum parts inefficient
➔ Deploy quantum and classical parts closely together
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Executing Hybrid Loops using Workflows
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▪ Inefficient execution:

▪ Problems: 

▪ 1. Latency due to queue-based access
➔ Reserve time slot for complete execution

▪ 2. Data transfer between classical and quantum parts inefficient
➔ Deploy quantum and classical parts closely together

➔ Usage of hybrid runtimes (e.g., Qiskit Runtime) for execution of hybrid loops
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Analysis and Rewrite Method
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B. Weder, J. Barzen, M. Beisel, and F. Leymann. Analysis and Rewrite of Quantum Workflows: 

Improving the Execution of Hybrid Quantum Algorithms. In: CLOSER 2022
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Detailed View of the Quantum Circuit Lifecycle
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Detailed View of the Quantum Circuit Lifecycle
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Quantum Circuit Enrichment

▪ Enrichment with details for a certain problem instance

▪ Oracle expansion: 

▪ Data preparation: 

▪ Adding an initialization circuit to the beginning of the original circuit

▪ Different encodings: basis encoding, angle encoding, …
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B. Weder, J. Barzen, F. Leymann, M. Salm, and D. Vietz. The Quantum Software Lifecycle. In: APEQS 2020 
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Detailed View of the Quantum Circuit Lifecycle
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Optimization: Cutting Quantum Circuits

▪ Quantum circuits might be too large (width, depth) to retrieve good results

▪ Execute multiple smaller circuits 
➔ Classical post-processing to combine results
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Compilation of Quantum Circuits

▪ Compilation to machine instructions required

▪ Replacement of not physically implemented gates

▪ Qubit allocation on the quantum computer

▪ Optimization based on:

▪ Decoherence times of different qubits

▪ Gate fidelities

▪ Qubit connectivity

20
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Detailed View of the Quantum Circuit Lifecycle
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Error-Mitigation

▪ Reduce impact of errors based on data about the quantum computer

▪ Example: Readout-error mitigation using the calibration matrix

▪ Data collection:

▪ Mitigating the result:
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M. Beisel, J. Barzen, F. Leymann, F. Truger, B. Weder, and V. Yussupov. Patterns for Quantum Error Handling. In: PATTERNS 2022 
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Topology Modeling – TOSCA4QC

▪ Quantum programs are often deployed when they are invoked

▪ Common modeling principles do not apply

▪ TOSCA4QC:

▪ Introcude two modeling styles for quantum applications

▪ Automatic transformation between them
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K. Wild, U. Breitenbücher, L. Harzenetter, F. Leymann, D. Vietz, and M. Zimmermann. TOSCA4QC: 

Two Modeling Styles for TOSCA to Automate the Deployment and Orchestration of Quantum Applications. In: EDOC 2020
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Quantum Provenance

▪ Provenance

▪ Information describing a process or computation

▪ Goals: reproducibility, understandability, quality

▪ Especially important for quantum computing

▪ Noisy devices (decoherence, gate errors, …)

▪ Different realizations (trapped ions, superconducting, …)

▪ Example use cases:

▪ Quantum hardware selection

▪ Readout-error mitigation

▪ Optimization & compilation

27
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Quantum Provenance Attributes
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B. Weder, J. Barzen, F. Leymann, M. Salm, and K. Wild.QProv: A provenance system for quantum computing. In: IET Quantum Communications 2021 
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The QProv System

▪ Quantum provenance framework:

▪ Continuously gather all required data

▪ E.g., through the provider API, by executing calibration circuits, …
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B. Weder, J. Barzen, F. Leymann, M. Salm, and K. Wild.QProv: A provenance system for quantum computing. In: IET Quantum Communications 2021 
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Conclusion & Outlook

▪ Quantum application development is complex and requires experts from different fields

▪ Common understanding of the various phases and tasks is needed

▪ Quantum Software Lifecycle:

▪ Interwoven lifecycles

▪ Workflow, classical, quantum circuit, operations lifecycles

▪ Future work:

▪ Many open problems, e.g., how to properly split a problem into quantum and classical parts?

▪ Tooling support required (e.g., test, circuit cutting, …)
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Thank you for your attention ☺


