
Institute of Architecture of Application Systems

Towards Quantum Software Engineering

Benjamin Weder
benjamin.weder@iaas.uni-stuttgart.de



R
e
se
a
rc
h

Motivation

▪ Recent advances with more powerful quantum computers
➔ New quantum applications are needed

▪ Development of quantum applications requires expertise from different fields:

▪ Computer science

▪ Physics

▪ Mathematics

▪ …

▪ Common understanding of the development and execution process needed

➔ Quantum Software Lifecycle



Quantum Software Lifecycle



R
e
se
a
rc
h

Quantum Software Lifecycle – Interwoven Lifecycle

4

Quantum
Workflow
Lifecycle

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Requirement
Analysis

Quantum-Classical
Splitting

Architecture
& Design

Implementation

Testing

Deployment

Observability

Analysis

B. Weder, J. Barzen, F. Leymann, and D. Vietz. Quantum Software Development Lifecycle. In: Quantum Software Engineering, Springer, 2022 



R
e
se
a
rc
h

Quantum Software Lifecycle – Interwoven Lifecycle

5

Quantum
Workflow
Lifecycle

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Requirement
Analysis

Quantum-Classical
Splitting

Architecture
& Design

Implementation

Testing

Deployment

Observability

Analysis



R
e
se
a
rc
h

Quantum-Classical Splitting

▪ Entered by the user with the identified requirements

▪ Split problem to solve into quantum and classical parts:

▪ Different techniques:

▪ Manually by experts

▪ Comparison of quantum algorithms with classical algorithms ➔ QHAna

▪ Automated recommender (based on patterns, provenance, …)

6

J. Barzen. From Digital Humanities to Quantum Humanities: Potentials and Applications. In: Quantum Computing in the Arts and Humanities



R
e
se
a
rc
h

Quantum Software Lifecycle – Interwoven Lifecycle

7

Quantum
Workflow
Lifecycle

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Requirement
Analysis

Quantum-Classical
Splitting

Architecture
& Design

Implementation

Testing

Deployment

Observability

Analysis



R
e
se
a
rc
h

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Detailed View of the Quantum Workflow Lifecycle

8

Quantum
Workflow
Lifecycle

Quantum
Workflow
Lifecycle

Modeling

Quantum-Classical
Splitting

Analysis
& Rewrite

Transformation

Observability

Analysis

IT RefinementDeployment



R
e
se
a
rc
h

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Detailed View of the Quantum Workflow Lifecycle

9

Quantum
Workflow
Lifecycle

Quantum
Workflow
Lifecycle

Modeling

Quantum-Classical
Splitting

Analysis
& Rewrite

Transformation

Observability

Analysis

IT RefinementDeployment



R
e
se
a
rc
h

10

Quantum Modeling Extension (QuantME)

▪ Guide quantum experts to model the execution of quantum algorithms in 
workflows

▪ Hide technical details when invoking predefined quantum algorithms

?

OracleExpansion
Task

QuantumCircuit
LoadingTask

ReadoutError
MitigationTask

QuantumCircuit
ExecutionTask

DataPreparation
Task

QuantumComputation
Task

Encoding: [encoding schema]
UnfoldingTechnique: [technique to use]
MaxAge: [max age of the error model]

Algorithm: [algorithm to execute]
Provider: [provider to use]

B. Weder, U. Breitenbücher, F. Leymann, and K. Wild. IntegratingQuantum Computing into Workflow Modeling and Execution. In: UCC 2020 



R
e
se
a
rc
h

Operations 
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Detailed View of the Quantum Workflow Lifecycle

11

Quantum
Workflow
Lifecycle

Quantum
Workflow
Lifecycle

Modeling

Quantum-Classical
Splitting

Analysis
& Rewrite

Transformation

Observability

Analysis

IT RefinementDeployment



R
e
se
a
rc
h

Executing Hybrid Loops using Workflows

12

▪ Inefficient execution:

▪ Problems: 

▪ 1. Latency due to queue-based access
➔ Reserve time slot for complete execution

▪ 2. Data transfer between classical and quantum parts inefficient
➔ Deploy quantum and classical parts closely together

Initialize

Algorithm

Execute

Ansatz

Evaluate 

Costs

Optimize

Parameters

Converged?

Yes

No

Cloud

QPU



R
e
se
a
rc
h

Executing Hybrid Loops using Workflows

13

▪ Inefficient execution:

▪ Problems: 

▪ 1. Latency due to queue-based access
➔ Reserve time slot for complete execution

▪ 2. Data transfer between classical and quantum parts inefficient
➔ Deploy quantum and classical parts closely together

➔ Usage of hybrid runtimes (e.g., Qiskit Runtime) for execution of hybrid loops

Initialize

Algorithm

Execute

Ansatz

Evaluate 

Costs

Optimize

Parameters

Converged?

Yes

No

Cloud

QPU

Hybrid Runtime



R
e
se
a
rc
h

Analysis and Rewrite Method

14

Workflow
Modeling

I

Candidate
Detection

II

Candidate
Filtering

III V

Workflow
Rewrite

VI

Deployment
& Workflow

Execution

Cloud

Hybrid
Runtime

…

Hybrid
Program

Generation

IV

Extracted
Programs

Hybrid
Program

B. Weder, J. Barzen, M. Beisel, and F. Leymann. Analysis and Rewrite of Quantum Workflows: 

Improving the Execution of Hybrid Quantum Algorithms. In: CLOSER 2022



R
e
se
a
rc
h

Detailed View of the Quantum Circuit Lifecycle

15

Operations 
Lifecycle

Classical
Software
Lifecycle

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Quantum
Circuit

Lifecycle

Quantum-Classical
Splitting

Hardware-
Independent

Implementation

Quantum Circuit
Enrichment

Quantum 
Hardware
Selection

Execution

Error
Mitigation

Testing
& Verification

Optimization
& Compilation



R
e
se
a
rc
h

Detailed View of the Quantum Circuit Lifecycle

16

Operations 
Lifecycle

Classical
Software
Lifecycle

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Quantum
Circuit

Lifecycle

Quantum-Classical
Splitting

Hardware-
Independent

Implementation

Quantum Circuit
Enrichment

Quantum 
Hardware
Selection

Execution

Error
Mitigation

Testing
& Verification

Optimization
& Compilation



R
e
se
a
rc
h

Quantum Circuit Enrichment

▪ Enrichment with details for a certain problem instance

▪ Oracle expansion: 

▪ Data preparation: 

▪ Adding an initialization circuit to the beginning of the original circuit

▪ Different encodings: basis encoding, angle encoding, …

17

O
ra

cl
e

B. Weder, J. Barzen, F. Leymann, M. Salm, and D. Vietz. The Quantum Software Lifecycle. In: APEQS 2020 



R
e
se
a
rc
h

Detailed View of the Quantum Circuit Lifecycle

18

Operations 
Lifecycle

Classical
Software
Lifecycle

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Quantum
Circuit

Lifecycle

Quantum-Classical
Splitting

Hardware-
Independent

Implementation

Quantum Circuit
Enrichment

Quantum 
Hardware
Selection

Execution

Error
Mitigation

Testing
& Verification

Optimization
& Compilation



R
e
se
a
rc
h

Optimization: Cutting Quantum Circuits

▪ Quantum circuits might be too large (width, depth) to retrieve good results

▪ Execute multiple smaller circuits 
➔ Classical post-processing to combine results

19

QPU
QPU

QPU
ṧ

Large quantum circuit

Smaller sub-circuits

Execution

Sub-circuit results

Result



R
e
se
a
rc
h

Compilation of Quantum Circuits

▪ Compilation to machine instructions required

▪ Replacement of not physically implemented gates

▪ Qubit allocation on the quantum computer

▪ Optimization based on:

▪ Decoherence times of different qubits

▪ Gate fidelities

▪ Qubit connectivity

20

Q0 Q1 Q2

Q3

Q4

ibmq_valencia topology



R
e
se
a
rc
h

Detailed View of the Quantum Circuit Lifecycle

21

Operations 
Lifecycle

Classical
Software
Lifecycle

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Quantum
Circuit

Lifecycle

Quantum-Classical
Splitting

Hardware-
Independent

Implementation

Quantum Circuit
Enrichment

Quantum 
Hardware
Selection

Execution

Error
Mitigation

Testing
& Verification

Optimization
& Compilation



R
e
se
a
rc
h

Error-Mitigation

▪ Reduce impact of errors based on data about the quantum computer

▪ Example: Readout-error mitigation using the calibration matrix

▪ Data collection:

▪ Mitigating the result:

22

Mitigated
Result

Error Model

0,95

0,98

0,02

0,05

Result

x

Error Model

0,95

0,98

0,02

0,05

Calibration Circuits

M. Beisel, J. Barzen, F. Leymann, F. Truger, B. Weder, and V. Yussupov. Patterns for Quantum Error Handling. In: PATTERNS 2022 



R
e
se
a
rc
h

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Detailed View of the Operations Lifecycle

23

Operations 
Lifecycle Operations

Lifecycle

Topology
Modeling

Packaging

Policy 
Specification

Deployment

Observability



R
e
se
a
rc
h

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Detailed View of the Operations Lifecycle

24

Operations 
Lifecycle Operations

Lifecycle

Topology
Modeling

Packaging

Policy 
Specification

Deployment

Observability



R
e
se
a
rc
h

Topology Modeling – TOSCA4QC

▪ Quantum programs are often deployed when they are invoked

▪ Common modeling principles do not apply

▪ TOSCA4QC:

▪ Introcude two modeling styles for quantum applications

▪ Automatic transformation between them

25

Port: 8081

Qiskit

[…]

Python 
Runtime

[…]

Virtual 
Machine

[…]

IBMQ

Token: […]

Quantum 
Program

Port: 8081

IBMQ

Token: […]

Quantum 
Program

K. Wild, U. Breitenbücher, L. Harzenetter, F. Leymann, D. Vietz, and M. Zimmermann. TOSCA4QC: 

Two Modeling Styles for TOSCA to Automate the Deployment and Orchestration of Quantum Applications. In: EDOC 2020



R
e
se
a
rc
h

Quantum
Workflow
Lifecycle

Quantum
Circuit

Lifecycle

Classical
Software
Lifecycle

Detailed View of the Operations Lifecycle

26

Operations 
Lifecycle Operations

Lifecycle

Topology
Modeling

Packaging

Policy 
Specification

Deployment

Observability



R
e
se
a
rc
h

Quantum Provenance

▪ Provenance

▪ Information describing a process or computation

▪ Goals: reproducibility, understandability, quality

▪ Especially important for quantum computing

▪ Noisy devices (decoherence, gate errors, …)

▪ Different realizations (trapped ions, superconducting, …)

▪ Example use cases:

▪ Quantum hardware selection

▪ Readout-error mitigation

▪ Optimization & compilation

27



R
e
se
a
rc
h

Quantum Provenance Attributes

28

Q2 Used Measurements

Q1 Used Gates

Q3 Execution Order

Q4 Circuit Width

Q5 Circuit Depth

Q6 Circuit Size

Quantum Circuit

QC2 Decoherence Times 

QC1 Number of Qubits

QC3 Qubit Connectivity

QC4 Gate Set

QC5 Gate Fidelities

QC7 Readout Fidelities

QC6 Gate Times

Quantum Computer

C2 Gate Mappings

C1 Qubit Assignments

C3 Optimization Goals

C4 Random Seed 

C5 Compilation Time

Compilation

E2 Output Data

E1 Input Data 

E4 Intermediate Results

E3 Number of Shots

E5 Number of Iterations 

E7 Applied Error-Mitigation

E6 Execution Time 

Execution

Quantum Provenance

Q7 Applied Encoding

B. Weder, J. Barzen, F. Leymann, M. Salm, and K. Wild.QProv: A provenance system for quantum computing. In: IET Quantum Communications 2021 



R
e
se
a
rc
h

The QProv System

▪ Quantum provenance framework:

▪ Continuously gather all required data

▪ E.g., through the provider API, by executing calibration circuits, …

29

QProv UI

Visualizer Querying Tool

HTTP REST API

QProv Backend

QProv Repository

Provenance
Database

Provenance
Import/Export

Provenance Analyzer
(ML, statistics, …)

Provenance 
Aggregator

Provenance Query
Processor

Provenance
Collector

Rigetti
Forest…IBMQ

OpenTOSCA
Container

NISQ Analyzer

…

B. Weder, J. Barzen, F. Leymann, M. Salm, and K. Wild.QProv: A provenance system for quantum computing. In: IET Quantum Communications 2021 



Conclusion & Outlook



R
e
se
a
rc
h

Conclusion & Outlook

▪ Quantum application development is complex and requires experts from different fields

▪ Common understanding of the various phases and tasks is needed

▪ Quantum Software Lifecycle:

▪ Interwoven lifecycles

▪ Workflow, classical, quantum circuit, operations lifecycles

▪ Future work:

▪ Many open problems, e.g., how to properly split a problem into quantum and classical parts?

▪ Tooling support required (e.g., test, circuit cutting, …)

31

Thank you for your attention ☺


