
AI-Assisted Performance Feedback in
API Programming

Malith Jayasinghe

VP of Research & AI, WSO2 inc.

2Picture credit: https://www.freepik.com/

Expecting a

DIGITAL DOUBLE

Digital Experience

REAL-TIMEPERSONALIZED

GEO-SENSITIVE

PREDICTIVE

https://unsplash.com/@photohunter?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Development teams focus less time on building digital experiences

3

Application lifecycle and time spent on each stage

4

Requirements

Architecture & design

Technology evaluation &
prototyping

Environment setup
& pipeline

Development

Testing

Deployment & CI/CD

Observe,
maintenance

5

Enterprises need a
readily available
platform for innovation
and an enhanced
engineering practice —
to do this right, we have
to adopt a new
engineering paradigm.

Digital Platform
A Digital Platform provides a collection of business and

technology capabilities that technologists within and beyond IT

can use to deliver their own digital capabilities.

Digital Experience Engineering
Digital Experience Engineering is how businesses create and

operate new digital experiences for their stakeholders by creating

digital applications.

Application lifecycle and time spent on each stage with Choreo

6

Requirements

Architecture & design

Rapid prototyping Development

Testing

Deployment

Observe, maintenance

Increase developer

productivity with low-code,

AI-assisted development,

and a pipeline tuned

environment.

Before

API Programming
● API (Application Programming Interface) programming

○ APIs offer a simple way to programmatically interact with a
separate software component or a resource

○ APIs hide (abstract) underlying implementation and only expose
objects/actions the developer needs

● API Programming in the cloud
○ API Integration/automation: create an integration application using

a set of APIs
(e.g. Send an SMS notification to a specific user when a GitHub
issue is assigned to the user)

○ API Composition: create a new API/Service using existing APIs
that other applications can consume

API Programming (contd.)

Program 1
 Provide COVID-19 cases per million people in a specific country

 API Programming (contd.)

API Programming (contd.)

 Performance Characteristics of API Programs
● Performance is one of the most important non-functional

requirements
○ Impacts the user experience
○ Poor performance can cause customer dissatisfaction (can lead to

customer churn)

● API programs
○ Handle a large volume of requests
○ Performance depends on

■ Workload characteristics (e.g. concurrency, message sizes)

■ Program characteristics
● Network calls (connector calls/actions)

Why Provide Performance Estimates?

● Can use estimates to check if SLAs are met
● Minimize performance related bugs in code
● Understand performance/scalability behaviours
● Save developer’s time (minimizes the number of performance

tests)
● Save resources (minimize the cost of running performance

tests)

Performance metrics
● Throughput

 Performance metrics
● Latency: Latency is a measure

 of time an operation
 spends waiting to be
 serviced (e.g. response time)

● Latency
○ Average latency
○ latency percentile

 (e.g. 90%, 99%, 99.99%)

Performance metrics

Estimating Performance of API programs
● Objective: Provide performance estimates at development time

System Model
● Model program/service as a queuing network/system

Model Training: Modelling Connector Actions (Calls)
● Train a model for each connector action/call (using historical data)

Model Training

● Model will estimate the latency
& throughput for a given
concurrency (i.e. concurrent
users)

● Data
○ Number of requests in

progress (work in progress)
○ Latency of requests

● Observability platform collects

the above performance metrics
from running applications and
stores this data in cloud storage

Model Training

● Models: Analytical models (e.g. USL), Machine learning models

Pattern 1

Pattern 2 (missing data in certain regions)

Bayesian Fit

Pattern 3 (Caching)

Data Collection & Model Training

Estimating performance

Providing performance estimates (at development time)
● Analyze the integration program and

extract connector calls, loops, etc.
(can parse the AST)

● Construct a message with this data and
send it to the estimator serviced

● Estimator service computes the
TPS & Latency (under different number of
concurrent users) using an analytical
model. This model is based on individual
models (described in previous slides)

● Show the estimates to the user on Web UI
or on IDE

● Each time user changes the program,
performance estimates are updated

 DEMO

Evaluating accuracy of estimates

● Two methods
○ Discrete event simulation (simulator code)

■ Build a simulation model
■ Compare simulation results with model results

○ System level testing
■ Run tests and populate data
■ Compare the results with the model results

https://github.com/wso2-incubator/server-architecture-simulator

Simulation vs Model

Simulation vs Model

● Orchestrator with 2 (back-end) services

Average
processing time
(ms)

Number of Cores Thread pool size

Service 1 5 2 10

Service 2 10 4 10

Simulation vs Model

Simulation vs Model

Comparison with actual (observability) results

Comparison with actual (observability) results

Pattern 4

Summary

● Presented a way to provide performance feedback for API
programs (at development time)

● How does this help developers? Ensure SLAs, avoid performance
bugs, understand scalability behaviours and minimize the number
of performance tests

● Modeled API program as a queuing network/system
● Trained a model for each type of network interaction (i.e.

connector action) using historical data (collected by the
observability framework) and compute the overall performance
using an analytical model

THANK YOU

