
RADON: A Story of One Serverless Journey

Slides courtesy: RADON Consortium

Vladimir Yussupov, University of Stuttgart

2

Agenda

RADON – Motivation & Overview1

TOSCA & (Graphical) Modeling2

RADON Quality Assurance Tools3

RADON Runtime Environment & IDE4

3Rational Decomposition and Orchestration
for Serverless Computing

• 30 months EU H2020
project, 8 organizations
(completed in June 2021)

• Value Proposition:
a DevOps framework to
help the EU software
industry adopting
serverless FaaS without
vendor lock-in

4

Serverless Computing & Function-as-a-Service

Often associated with the term “serverless”
• Function-as-a-Service (FaaS) offerings

• AWS Lambda, Azure Functions, OpenFaaS, …

• FaaS execution model

What serverless also encompasses
• FaaS / DBaaS / Message Queues as a Service / SaaS / …
• focus: shift management efforts on providers

Core differences from serverful computing*
• Compute / storage are provisioned & priced separately

• separate services, computation is stateless, …

• Automated, provider-managed resources allocation
• Billing associated with execution

Serverless

FaaS

* Jonas et al. “Cloud Programming Simplified: A Berkeley View on Serverless Computing”

5

Function-as-a-Service (FaaS) Processing Model

• Fine-grained functions hosted in the cloud
and fully managed by the provider

• Cost-savings in event-driven workloads
(e.g., IoT)

• Strong synergy with microservices
• Resource decoupling
• stateless functions
• state persisted via storage
• state change can produce events

Illustration from the CNCF Serverless White Paper

6

Serverless Architectures & Microservices

* From https://docs.microsoft.com/en-us/samples/azure-samples/serverless-microservices-
reference-architecture/serverless-microservices-reference-architecture/

Serverless Microservices reference architecture (Ride sharing) *

7

• A way to quickly prototype cloud-based applications
• Customer demonstration without infrastructure management issues

• In some cases, demos can be built in hours

• A way to avoid unwarranted costs
• Functions are deallocated automatically

• Risk reduction for SME/startups

• Natural to combine with microservices-based architectures
• Fine-grained software architecture

• Automated autoscaling

• Flexibility and responsiveness

• High-degree of reuse of platform services

Why serverless/FaaS is a key software technology?

8

Various application domains

• Real-time data analytics & file processing

• Serverless APIs

• Periodic function invocations

• Batch processing, Map-Reduce

• IoT, e.g. using FaaS to connect devices with end-users through cloud

• Financial data analytics as data processing of transactions for insider trading

• Managing accounts and trading actions

• Serving static content/websites

• Extract, transform, load data

…

9

Serverless Architecture Examples

Serverless ETL Pipeline*

*From https://docs.microsoft.com/en-us/dotnet/architecture/serverless/serverless-design-examples

10

Problem: (Models) Heterogeneity

10

11

Deployment Models Example

11

Deploy HTTP Endpoint to AWS
using Serverless Framework

Deploy HTTP Endpoint to AWS
using AWS SAM

12

Modeling Not Only for Deployment Automation

12

An executable deployment model contains valuable details about:

▪relations among components (connectivity)

▪ their types (function, storage, message queue, …)

* From https://docs.microsoft.com/en-us/samples/azure-samples/serverless-microservices-
reference-architecture/serverless-microservices-reference-architecture/

13

Modeling Not Only for Deployment Automation

13

An executable deployment model contains valuable details about:

▪Component properties and attributes

Runtime: Java8

Runtime: Python3

14

Modeling Not Only for Deployment Automation

14

An executable deployment model contains valuable details about:

▪Components business logic

Runtime: Java8

Runtime: Python3

15

Modeling Not Only for Deployment Automation

15

An executable deployment model contains valuable details about:

▪Component deployment / configuration logic
▪scripts to run before / after deployment, etc.

16

Modeling Not Only for Deployment Automation

16

This information can be used:

▪ Find defects in code, e.g., Anti-patterns, Code smells

17

Modeling Not Only for Deployment Automation

17

This information can be used:

▪Verify if some constraints are satisfied
▪All data must reside on EU territory

▪Functions must only interact using API Gateway

Region: EU only

18

Modeling Not Only for Deployment Automation

18

This information can be used:

▪To enable continuous testing
▪Functional (deployment)

▪Non-functional

▪Baseline performance/costs of functions (and their configurations)

▪End-to-end times of function/bucket interactions

▪Levels: unit (function), integration/system (including triggering) || regression

Test:
A thumbnail is generated

successfully after deployment

19

Modeling Not Only for Deployment Automation

19

This information can be used:

▪Optimize deployment, e.g., memory settings based on runtime usage data

▪Decompose functionalities into smaller units

Runtime: node.js12

Memory: 256Mb 128Mb

Can be split into
2 microservices!

2020

Now Imagine Supporting
These Use Cases for ALL

Deployment Technologies!

21

RADON: Model-driven DevOps Framework

21

Software Designer

Release
Manager

QoS
Engineer

Developer

{OPS}

Ops-Engineer

Brief Introduction to OASIS TOSCA

23

23

▪ The Topology and Orchestration Specification for Cloud Applications (TOSCA):
an standard for automating the deployment and management of
cloud applications in a portable manner

▪ The major goals of TOSCA are:

▪ Automation of Deployment and Management

▪ Portability

▪ Interoperability

▪ Vendor-neutral ecosystem

→ OASIS Awards 2017 Open Standards Cup to TOSCA for Cloud Portability

Standards-based Deployment Modeling: TOSCA 101

24

24

Application Structure

Deployment & Management

TOSCA:

Topology and Orchestration
Specification for Cloud Applications

Standards-based Deployment Modeling: TOSCA 101

25

25

Application Structure

Deployment & Management

TOSCA:

Topology and Orchestration
Specification for Cloud Applications

Standards-based Deployment Modeling: TOSCA 101

26
Standards-based Deployment Modeling: TOSCA 101

26

Excerpt from a TOSCA model

▪ YAML-based specification

▪ Thumbnail generation deployed to AWS

Standards-based Deployment Modeling: TOSCA 101

27

▪ TOSCA enables describing the structure of the
application to be deployed in the form of a
directed, acyclic graph

▪ Nodes of the graph represent components

▪ e.g., an Apache Webserver, a VM, a PHP Application,
or a MySQL database

▪ These nodes are called Node Templates

▪ Edges of the graph represent relationships

▪ e.g., that one componenti is hosted on another
component or connects to another component

▪ These edges are called Relationship Templates

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

Node Template

Relationship Template

DA

Standards-based Deployment Modeling: TOSCA 101

28

▪ Both Node Templates and Relationship Templates
are typed to define the semantics of templates

▪ Node Types define the semantics of Node Templates

▪ e.g., a Node Template may be of Node Type “Apache2.4“

▪ Relationship Types define the semantics of
Relationship Templates

▪ e.g., a Relationship Template may be of Relationship Type
„hostedOn“ or „SQLConnection“

▪ The type system is extensible: New Node and
Relationship Types can be defined arbitrarily

▪ Also inheritance is supported

= hostedOn

= dependsOn

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

Node Type

Standards-based Deployment Modeling: TOSCA 101

29

▪ To configure the deployment, Node and
Relationship Templates may specify properties

▪ For example, to specify that the Apache
Webserver shall serve HTTP requests at port 80

▪ Or to specify the desired RAM of a virtual machine
to be provisioned

▪ Properties may also contain instance information
at runtime about a node or relationship

▪ For example, the IP-address of a provisioned virtual
machine, which is not known at modelling time

▪ The properties a Node or Relationship Template
provides and their schemas are defined by the
respective Node or Relationship Type

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

Property

Standards-based Deployment Modeling: TOSCA 101

30

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

ReqCanHostVM

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

CapCanHostVM

Requirement Capability

▪ Requirements and Capabilities can be attached to
Node Templates

▪ Each defined Requirement Types has a
requiredCapabilityType defined (matchmaking)

▪ For example a Node Template requires a host

▪ To identify capable Node Templates able to serve as
host a matching between requirement and capability is
required

▪ Based on Req and Cap a suitable Relationship Type to
connect these two can be determine

Standards-based Deployment Modeling: TOSCA 101

31

▪ To specify the implementations of components
Deployment Artifacts (DA) are used

▪ For example, a Deployment Artifact can be the
PHP files of a Web application

▪ A Deployment Artifact typically specifies one or
more files and some properties about the artifact

▪ For example, the type of the files

Deployment Artifact

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

Standards-based Deployment Modeling: TOSCA 101

32

▪ Types may specify Management Interfaces that
define Management Operations

▪ Management Operations can be invoked to manage
the respective template

▪ For example, to install a component, to start a
component, or to run a script on a component

▪ These Management Operations can be called by the
TOSCA runtime or Management Plans (see next)

runScript (…)

Management Interface

Management Operation

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

Standards-based Deployment Modeling: TOSCA 101

33

▪ To implement the defined Management
Operations, Implementation Artifacts are used

▪ An Implementation Artifact implements a certain
Management Operation and can be executed

▪ For example, the runScript operation could be
implemented as Java-based Web Service

▪ Install operations of components are often
implemented as SH scripts when they shall be hosted
on a Virtual Machine

IA Implementation Artifact

runScript (…)

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

Standards-based Deployment Modeling: TOSCA 101

34

Topology
Template

Account: USTUTT
[…]

AmazonEC2
(AmazonEC2)

EntryPath: /index.php
[…]

My-PHP5-App
(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

WebServer
(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

Ubuntu-VM
(Ubuntu16.04VM)

[…]

PHP5
(PHP5)

DA

▪ A Topology Template represents the
deployment model with all Node and
Relationship Templates of the application

▪ A Service Template contains one or more
Topology Templates as well as all used type
definitions and artifacts

▪ A Service Template can be used also to
package only type definitions or artifacts

▪ A Cloud Service Archive (CSAR) is an archive
format standardized by TOSCA to package
Service Templates as well as all required files,
plans, etc. into a ZIP file

Standards-based Deployment Modeling: TOSCA 101

35

Cloud Service Archive (CSAR)

36

36

Application Structure

Deployment & Management

TOSCA:

Topology and Orchestration
Specification for Cloud Applications

Standards-based Deployment Modeling: TOSCA 101

Only Declarative

37

Standards-based Deployment Modeling: TOSCA 101

37

A TOSCA-compliant Orchestrator

▪ provisions modelled applications using the Topology Template and provided IAs

▪ Hence, TOSCA enables the declarative deployment modelling

TOSCA-compliant
Deployment
Orchestrator

CSAR

Virtual MachineVirtual Machine

Software Database

Cloud

38

Standards-based Deployment Modeling: TOSCA 101

38

TOSCA-compliant
Deployment
Orchestrator

CSAR

Virtual MachineVirtual Machine

Software Database

Cloud

A declarative runtime interprets the model based on defined semantics

▪ Lifecycle Interface operations, e.g., create, start, configure, stop, delete

▪ HostedOn relationships enable deriving the provisioning order of components and
executes the required Lifecycle operations install, start, and configure in this order
for each component

39

Account: USTUTT
[…]

(AmazonEC2)

EntryPath: /index.php
[…]

(PHP5Application)

Port: 80
Username: Admin
Password: QJtW4
[…]

(Apache2.4)

RAM: 8GB
SSHCredentials: […]
[…]

(Ubuntu16.04VM)

[…]

(PHP5)

Topology Template

DA

Provision
VM on EC2

Plan

Install
Apache
and PHP

Configure
PHP App

RADON Framework

41Modeling in RADON

Graphical
Modeling Tool

(+ Blueprint Generation)

2

RADON
Models

1

Constraint
Definition Language

(+ Verification Tool)

3

41

42

42

RADON Models

▪ TOSCA-based modeling profile

▪ Modeling of abstract and platform-
specific serverless functions

▪ Function types: invocable/scheduled

▪ Event specification using TOSCA
relationships, data types based on
CloudEvents spec
(https://cloudevents.io/)

▪ A set of data pipeline types

43

tosca_definitions_version: tosca_simple_yaml_1_3
topology_template:
node_templates:

platform:
type: radon.nodes.aws.AwsPlatform
properties:

omitted for brevity
resize:
type: radon.nodes.aws.LambdaFunction
properties:
handler: index.handler
memory: 512

...
artifacts:
deployment_package:
file: thumbnail.zip
type: radon.artifacts.archive.Zip

requirements:
- host: platform

bucket:
type: radon.nodes.aws.S3Bucket
requirements:
- host: platform
- invoker:

node: resize
relationship: trigger

relationship_templates:
trigger:
type: radon.relationships.aws.Triggers
properties:

event_types:
- wildcard:

type: radon.datatypes.Event
properties:

type: s3:ObjectCreated:*

RADON Models

Handler: index.handler
Memory: 512 MB
[…]

resize
(LambdaFunction)

bucket
(S3Bucket)

F

S3:ObjectCreated:*E

Handler: index.handler
Memory: 512 MB
[…]

platform
(AwsPlatform)

44

RADON Framework Overview

(Graphical) provider-agnostic application modeling

Graphical Modeling

RADON
IDE

45

▪ Extended Eclipse Winery as
modeling environment

▪ Official project

▪ Web-based environment

▪ Manage TOSCA types,
templates and related artifacts

▪ Graphically model TOSCA
topologies

▪ Added support for TOSCA
YAML 1.3

Graphical Modeling Tool

46

Modelling FaaS-based Applications in RADON

47

Modelling FaaS-based Applications in RADON

48Quality Guardrails in RADON

Application Source Code

Infrastructure Code... ...

e.g., GDPR constraints

49

RADON Framework Overview

Define application model constraints
to be verified

Verification of expensive constraints
(e.g., privacy, security, design pattern
violations) before deployment

Constraints Definition

RADON
IDE

Graphical Modelling

Verification Tool

50

Constraint Definition Language

▪ Express functional and non-functional requirements on a RADON model

▪ Built-in definitions of common runtime issues, such as deadlocks, race conditions

and execution loops + custom, user-defined definitions

▪ Verification Tool verifies that RADON models meet specifications in the CDL

▪ VT can be used at design-time, to search for issues that could occur at run-time

InconsistenciesRADON
Model

CDL Specification of
requirements

InconsistenciesInconsistenciesVT

51

Verification Tool Modes

InconsistenciesRADON

Model

CDL Specification

of requirements
InconsistenciesInconsistenciesVT

RADON

Model

CDL Specification

of requirements

Corrected

RADON model
VT

Space of

Corrections

Examples
Partial CDL

Specification

Learned CDL

constraints
VT

Space of CDL

Extensions

Verification Tool supports the following modes:

Verification Mode

Correction Mode

Learning Mode

52Verification Example

VT
Inconsistencies:

1. country_of_origin = US
2. country_of_origin = China

In
p

u
t

Constraints (expressed in CDL):

● When create_thumbnail is called, the thumbnail should be stored in a
bucket located in a country that the country of origin is willing to share with.

● The UK is willing to share with anyone.
● India is only willing to share with India and the US.
● The US is only willing to share with the US.
● China is only willing to share with China.

Input

53

Constraint Definition Language

54

RADON Framework Overview

Design-to-runtime defects /
anti-patterns analysis

Constraints Definition

Graphical Modelling

Verification Tool

Defect PredictionRADON
IDE

55

Why?
“Infrastructure-as-code (IaC) ⇒managing and provisioning

compute datacenters through machine-readable definition files”
Cit. TOSCA Simple Profile Yaml v1.3, CSD2

● As any other source code artifact, IaC files may contain defects that can preclude their correct functioning and
operations;

● The tool is intended for detecting defect-prone IaC blueprints at the end of a release cycle;

● Defect-Prediction from Dev. source-code is well-established in the use of Machine-Learning techniques:
○ Scripts prone to contain imperfections or deficiencies cause them not to meet their requirements or

specifications;
○ Metrics identify such qualities, so that smells or bug-proneness can be detected and possibly repaired;

Application Source Code Infrastructure Code

... ...

DEV OPS

Defect Prediction Tool

5656Defect Prediction Metrics

5757Defect Prediction Metrics

Implementation Artifact level: Ansible
Application topology level: TOSCA

58

RADON Framework Overview

End-to-end pipelines testing;
DevOps closing-the-loop;Continuous Testing Tool

Constraints Definition

Graphical Modelling

Verification Tool

Defect PredictionRADON
IDE

59
Continuous Testing

Why?

● Testing is key to assess functional and non-functional properties (e.g., performance):
■ different scopes: FaaS functions, microservices, and data pipelines;

■ different test levels (unit, integration, system testing);

● Testing is not a one-time and manual activity but requires
■ continuity (on every CI/CD execution);

■ automation (e.g., test artifacts generation), and

■ selection (e.g., tailoring to workload scenarios and functions/microservices);

● Selected research challenges:
■ Frequent changes of the application and the operational profile;

■ Conflict: fast release cycles vs. time-consuming (e.g., performance and scalability) test runs;

● Scalability of data pipelines (CTT data pipeline module) and microservices;

■ Testing in cloud infrastructures (e.g., repeatability, access to metrics);

µ µ

µ

λ λ

Production environment

Production workload

Continuous delivery/deployment

60

● Functionalities grouped into 3 usage scenarios:

• Test case definition;

• Test execution;

• Test maintenance;

● CTT modules

• Microservices/FaaS

• Data pipelines

● Usage:

• Standalone tool (open-source);

• Invocation via the RADON IDE or CI/CD;

Continuous delivery/deployment

Continuous feedback

µ µ

µ

λ λ

Operational monitoring data

Production environment

Testing environments

µ

λ

TOSCA models
and tests

µ µ

µ

λ λ

µ

µ

Production workload

Continuous Testing

61

QoS
Engineer

Continuous Testing

62

Commerce Slides

Continuous Testing Tool & GMT

63CTT Modeling in GMT – SUT and TI

SUT

TI

64

RADON Framework Overview

Functional decomposition,
model optimizationDecomposition Tool

Continuous Testing Tool

Constraints Definition

Graphical Modelling

Verification Tool

Defect PredictionRADON
IDE

65Decomposition Tool

Why?

● Refactoring the architecture is never an easy job:

■ granularity level: coarse-grained, fine-grained and mixed-grain

■ heterogeneity: monoliths, microservices, serverless functions, object stores and data

pipelines

■ other considerations: security and privacy

● It is also difficult to decide the optimal deployment scheme for the decomposed

application (e.g. memory and concurrency of a serverless function):

■ minimize the operating costs on a target platform

■ satisfy the specified performance requirements

66

● Three typical usage scenarios:

■ architecture decomposition;

■ deployment optimization;

■ accuracy enhancement (enable an iterative DevOps design lifecycle)

(See https://github.com/radon-h2020/decomposition-tool)

Decomposition Tool

https://github.com/radon-h2020/decomposition-tool

67

RADON Framework Overview

Design / Development Tools

Constraints Definition

Graphical Modelling

Verification Tool

Decomposition Tool

Defect Prediction

Continuous Testing Tool

RADON
IDE

68

RADON Framework Overview

Design / Development Tools

Constraints Definition

Graphical Modelling

Verification Tool

Decomposition Tool

Defect Prediction

Continuous Testing Tool

RADON
IDE

Ops Tools

69

RADON Framework Overview

Constraints Definition

Graphical Modelling

Verification Tool

Decomposition Tool

Defect Prediction

Continuous Testing Tool

TOSCA
Blueprint

Template Library

Orchestrator
RADON

IDE

70

RADON Orchestrator

▪ Lightweight TOSCA orchestrator

▪ Ansible is used as orchestration

actuators within the TOSCA

interface operations

▪ Available as self-hosted CLI tool

and SaaS offering

71

RADON Orchestrator

72

RADON Template Library: Managed Models Repository

73

RADON Framework Overview

Constraints Definition

Graphical Modelling

Verification Tool

Decomposition Tool

Defect Prediction

Continuous Testing Tool

TOSCA
Blueprint

Template Library

Orchestrator

CI/CD

Function Hub

Monitoring

Data Pipelines

RADON
IDE

Design-time components
Runtime components

74

RADON Runtime Environment

75

RADON IDE: Overview

Continuous
Testing Tool

Decomposit.
Tool

Defect Pred.
Tool

Verification
Tool

RADON GMT

Orchestrator
Template

Library

{OP
S}

RADON

7676RADON IDE based on Eclipse Che technology

7777RADON IDE

Eclipse Che: https://www.eclipse.org/che/

78

RADON IDE Overview

RADON Workspace

RADON Kubernetes components

RADON Plugins

79

More About RADON

https://radon-h2020.eu/https://github.com/radon-h2020

Thank you for your attention! ☺

