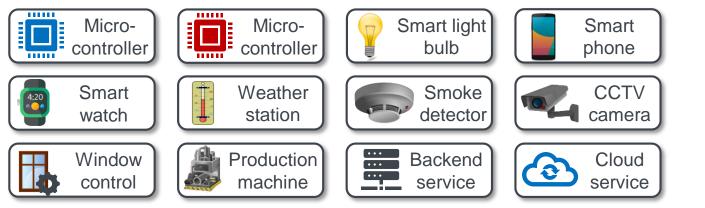


University of Stuttgart

Institute for Parallel and Distributed Systems Applications of Parallel and Distributed Systems

16th Symposium and Summer School On Service-Oriented Computing

Enhancing IoT Platforms for Autonomous Device Discovery and Selection


Jan Schneider, Pascal Hirmer

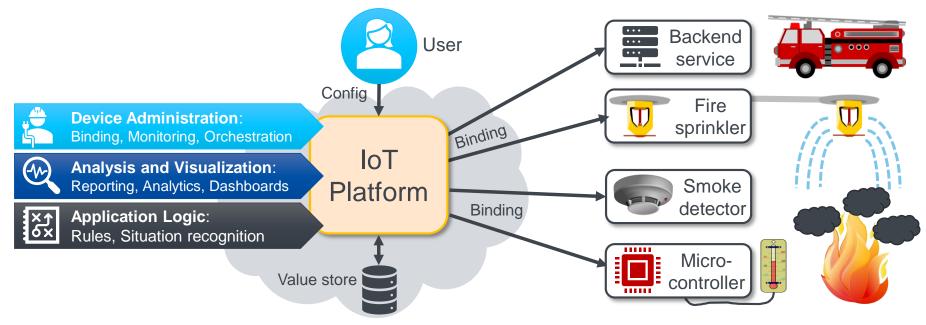
Background & Motivation IoT ecosystems

- Today, IoT ecosystems can encompass thousands of connected IoT devices
 ≈13 billion IoT devices worldwide in 2022, ≈30 billion predicted for 2030 [1]
 ≈0.5 devices per m² necessary in smart factories [2]
- Each device may be equipped with sensors and actuators
- All devices of an ecosystem may need to interact in order to achieve common goals

Challenges:

- Complexity
- Heterogenity
- Dynamics

[1] Statista GmbH. (2022, May). "Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2030".


[2] Telefonaktiebolaget L. M. Ericsson. (2018). "Ericsson Mobility Report June 2018".

University of Stuttgart

Background & Motivation

IoT platforms

- To cope with these challenges, IoT platforms [3] have emerged
- Provide tools to ease the management of IoT ecosystems

[3] Guth, J. et al. (2016). Comparison of IoT platform architectures: A field study based on a reference architecture. In 2016 CIoT. IEEE. University of Stuttgart

Background & Motivation IoT platforms

- To cope with these challenge
- Application logic for rule FIRE

(simplified)

Provide tools to ease the ma IF

value of [device 192.168.0.1] > 40 AND value of [device 192.168.0.2] == "smoke"

THEN

send "*activate*" to [device 192.168.0.3] send "*call fire brigade*" to [device 192.168.0.4]

Analysis and Vist Reporting, Analytics, L

۲× ۲°×

Application Logic: Rules, Situation Reco

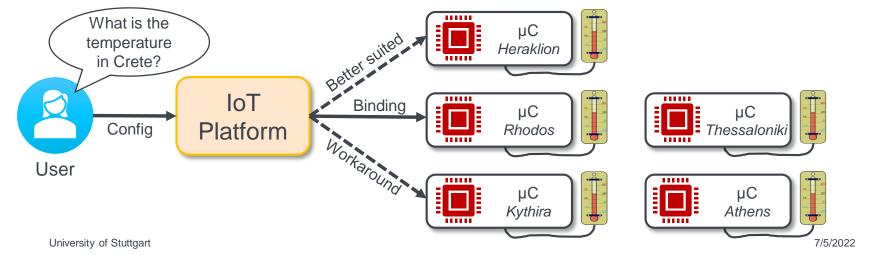
Binding, Mon

Platform

Bindi

Smoke

IP addresses or other unique identifiers refer to exactly one physical device


- controller

of IoT platform architector

tion:

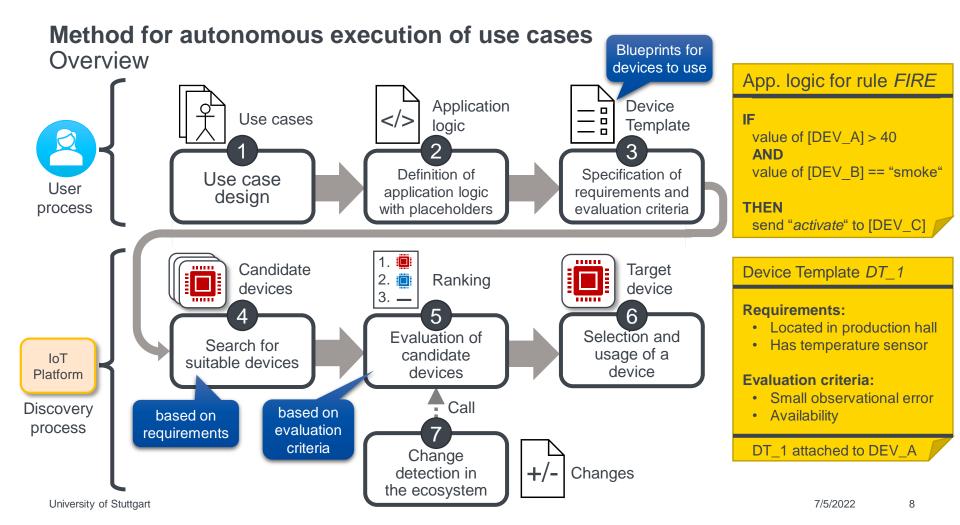
Background & Motivation Shortcomings of static device references

- · Users need to select devices for use cases on their own
- What if the device reference changes (e.g. dynamic IP addresses)?
- What if the selected device fails or leaves the ecosystem?
- What if a device joins the ecosystem that is even better suited for the use case?

Huge manual maintainance efforts, infeasible for large ecosystems

Literature review

Shortcomings of existing discovery approaches

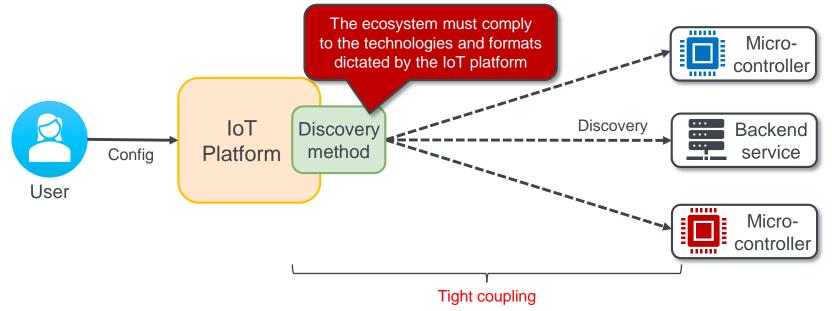

- Device discovery approaches allow to autonomously find devices within an IoT ecosystem
- Device and service discovery are well-established fields
 → we reviewed > 30 discovery approaches related to the IoT
- However, they exploit specific characteristics of the communication infrastructure and the involved devices
 → only applicable to ecosystems supporting these technologies
- IoT platforms intend to be rather universally applicable and are not tailored towards individual ecosystems
 → adaption of *some* approaches would severely limit their applicability

	CR	D		M	IN	K	\mathbf{C}	R		Technologies	Device Description
42]	single	×	×	1	unspec.	1	X	×	s	REST	SensorML
[53]	single	x	1	×	device	×	1	1	s	SOA stack	WSDL, QoS readings
[2]	single	X	×	×	device	×	X	×	-	CoAP, CoRE-RD	comm. behaviour
[16]	federated	X	X	1	device	1	1	×	s	DNS-SD	DNS names, TXT-RRs
[31]	per ecosys.	1	×	×	device	×	1	×	s	CoAP, CoRE-RD, P2P	(range) attributes
[12]	none	1	×	×	device/P2P	×	1	1	s	unstructured P2P	QoS attributes
[36]	single	x	×	×	device or	×	×	×	-	SSDP/UPNP, HTTP,	JSON
	-				IoT hub					MQTT	
[33]	single	X	1	1	user	1	X	1	s	REST	JSON-LD
[4]	per	x	×	×	device	1	X	×	s	DNS-SD, mDNS,	resource records
	gateway									CoAP, 6LoWPAN	
[6]	arbitrary	1	×	1	device	1	1	×	b	DNS-SD, mDNS, CoAP,	WoT Thing Descriptio
										JSONPath, SPARQL	
[10]	Blockchain	x	×	1	provider	×	1	×	s	SPARQL	SSN/SOSA extension
17	federated	x	×	1	user	×	1	×	b	MQTT, SPARQL	SSN, SAN, OWL-S
[43]	none	x	×	×	scanner	×	X	×	-	network/port scanner	open network ports
[40]	per sniffer	1	×	×	device	×	×	×	b	MQTT, multicast	JSON
[49]	none	1	×	×	device	×	1	×	s	unspecified	feature list
13	arbitrary	1	×	×	device	1	1	×	s	CoAP, CoRE-RD, P2P	e.g. CoRE Link Forma
[39]	single	x	X	×	device	×	x	x	-	HTTP proxy	XML, JSON
50	per gatew.	1	X	X	device	1	X	X	b	CoAP, CoRE-RD, P2P	CoRE Link Format
[1]	federated	×	×	×	device	1	×	×	s	CoAP, CoRE-RD	JSON
[14]	per router	1	×	X	device	1	X	×		ICN, CoAP	CoRE Link Format
[27]	single	X	1	X	device	X	X	X		DPWS, multicast,	JSON
		Ľ		[`				ľ.		MQTT	
[5]	single	x	×	1	user	×	1	x	s	SPARQL	custom ontology
[26]	single	X			device	1	1	X	s	REST, Bluetooth,	JSON
	0	ľ.								ZigBee, Wi-Fi	
[18]	federated	x	×	1	user	×	1	×	b	SPARQL	SSN, SAN, OWL-S
[32]	single	x	1	X	user/MW	1	X	1	s	SOA middleware	XML
47	single	X	X	1	device	?	1	?	s	X-GSN, SPARQL	SSN extension
[9]	single	X	X	×	device	1	×	1		REST, LWM2M, CoAP	CoRE Link Format
[30]	none	1	×	1	n.a.	1	1	1	s	P2P Skipnet	context ontologies
[7]	per	1	×	×	device or	1	×	×	s	DNS-SD, mDNS, P2P,	CoRE Link Format or
	gateway	ľ.		[`	gateway			· ·		CoAP	JSON-WSP
[28]	arbitrary	1	x	×	device	1	x	x	b	DNS-SD, mDNS,	TXT-RR
		1	1	_		Ľ	1	[1	Bonjour	
[20]	single	x	1	×	device or	1	1	1	s	WS-Discovery, DPWS,	WSDL
[3]		l .	ľ	1	disc. unit	Ľ	Ľ	Ľ		multicast	
[48]	federated	x	×	1	device	1	1	x	s	AtomPub, mDNS	Atom Syndic. Format

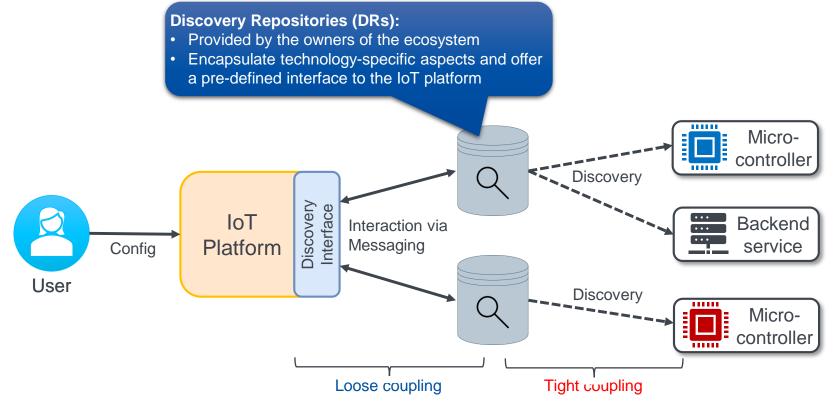
Our Contribution Overview

To overcome these issues, we propose...

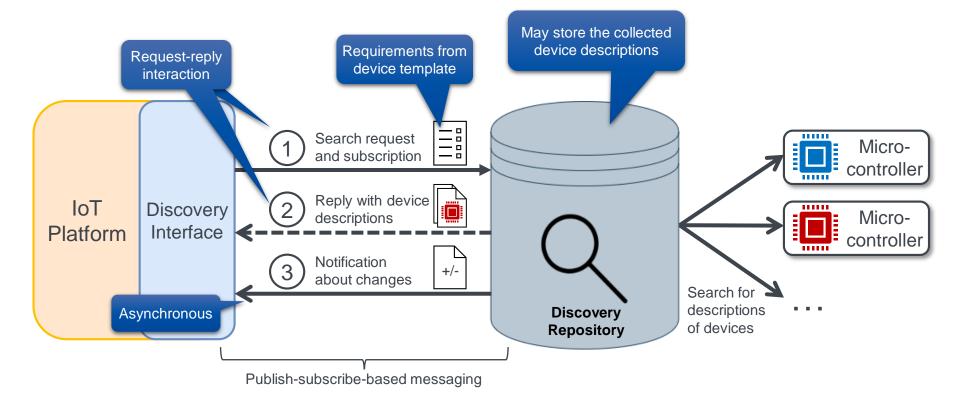
- 1. A **method** allowing IoT platforms to execute pre-defined use cases in IoT ecosystems
 - By dynamically discovering and selecting the most suitable devices
 - Autonomously and reliably
- 2. An **architecture** supporting this method
 - Introduces an abstraction layer to decouple IoT platforms from the ecosystems
 - Avoids that the IoT platform imposes major constraints on the ecosystem in which it is operated

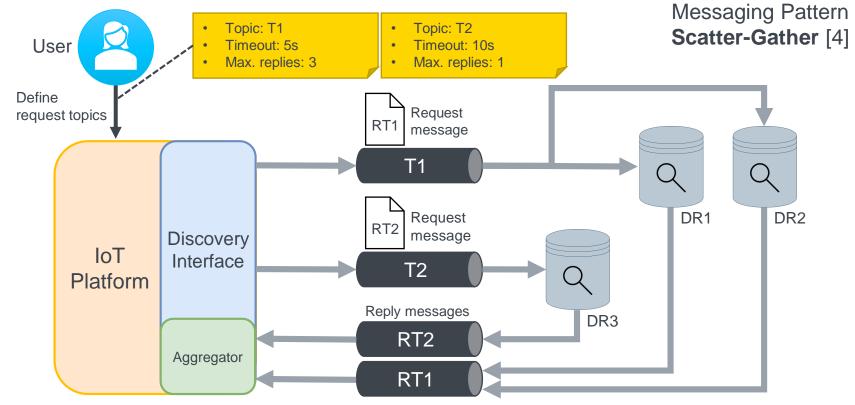

Method for autonomous execution of use cases Summary

- Ensures that always the most suitable available devices are utilized by the IoT platform
- Detects changes in the ecosystem and handles them:
 - Devices leaving the ecosystem
 - New devices joining the ecosystem
 - Capability changes of devices

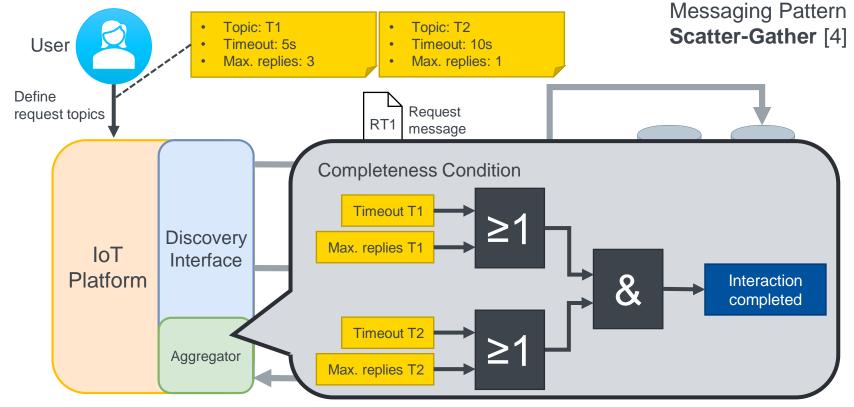

Re-evaluation of candidate devices and adaption of target devices if necessary

Supporting Architecture Overview


- Step 4 and 7 rely on a discovery approach for finding devices matching the requirements
- However, discovery approaches from literature would limit the applicability of the IoT platform → Loosely-coupled architecture for more flexibility


Supporting Architecture Overview

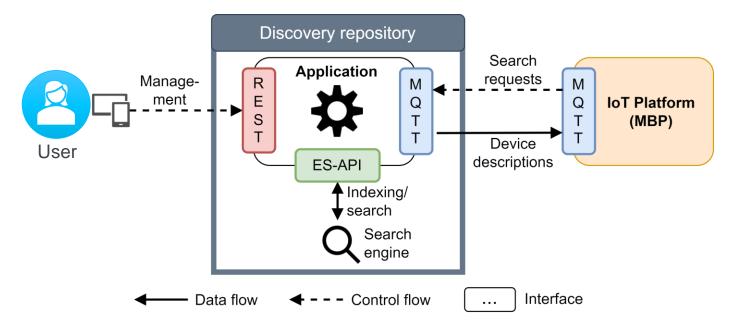
Supporting Architecture Discovery Repositories



Supporting Architecture Request-reply interaction

 [4] Hohpe, G. & Woolf, B. (2004). Enterprise integration patterns: Designing, building, and deploying messaging solutions. Addison-Wesley Professional. University of Stuttgart

Supporting Architecture Request-reply interaction


 [4] Hohpe, G. & Woolf, B. (2004). Enterprise integration patterns: Designing, building, and deploying messaging solutions. Addison-Wesley Professional. University of Stuttgart

Supporting Architecture Properties

- Discovery Repositories (DRs) hide technology-specific aspects from the IoT platform → flexibility
- Increasing number of devices can be countered by the deployment of additional DRs, without adjustments to the IoT platform → scalability
- Device descriptions can be made redundantly available in multiple DRs → availability
- But: The DRs need to be developed first → efforts

Prototype (Proof of Concept) Overview

- Integrated the presented method into a IoT platform [5] developed by our department
- Exemplary Discovery Repository, interacting with the IoT platform

[5] da Silva, A. C. F. et al. (2020). MBP: Not just an IoT platform. In 2020 PerCom. IEEE. University of Stuttgart

Summary & Outlook

We propose...

- a **method** allowing IoT platforms to autonomously and reliably execute pre-defined use cases within IoT ecosystems by discovering and selecting the most suitable devices
- an **architecture** supporting this method, introducing Discovery Repositories as additional abstraction layer between the IoT platform and the devices to achieve loose coupling

Result: Overcomes the issue of static references by dynamically finding suitable devices

Future Work:

- Tests in larger IoT ecosystems to empirically verify the results
- Inclusion of availability predictions into the evaluation of candidate devices

University of Stuttgart

Institute for Parallel and Distributed Systems Applications of Parallel and Distributed Systems

Thank you!

Jan Schneider

e-mail jan.schneider@ipvs.uni-stuttgart.de phone +49 (0) 711 685-88232 www.ipvs.uni-stuttgart.de

University of Stuttgart Institute for Parallel and Distributed Systems Universitätsstraße 38, 70569 Stuttgart, Germany

Image sources

Slide 1: https://pxhere.com/en/photo/1575621 [CC0 Public Domain, Free for personal and commercial use, no attribution required]

Slide 2: https://freesvg.org/surveillance-camera-icon [Public Domain]

Slide 2: https://pixabay.com/de/vectors/fenster-fenster-zur-welt-bereich-1975938 [Free to use, no attribution required]

Slide 2: https://pixabay.com/de/vectors/maschine-industrie-rohre-ofen-576435 [Free to use, no attribution required]

Slide 2: https://de.wikipedia.org/wiki/Datei:Light bulb icon tips.svg [GNU Free Documentation License, Author: YassineMrabet, slightly rotated]

Slide 2: https://commons.wikimedia.org/wiki/File:Nexus 5_Front_View.png [Creative Commons Attribution 2.5 Generic, Android Open Source Project, Google Android]

Slide 2: https://pixabay.com/de/vectors/beobachten-armbanduhr-zeit-uhr-2649380 [Free to use, no attribution required]

Slides 2, 3, 4: https://freesvg.org/grayscale-smoke-detector-vector-drawing [Public Domain]

Slides 2, 3, 4, 5: https://pixabay.com/de/vectors/thermometer-celsius-wetter-physik-145891 [Free to use, no attribution required]

Slide 3: https://pixabay.com/de/vectors/feuer-flamme-lagerfeuer-warm-w%C3%A4rme-295155 [Free to use, no attribution required]

Slide 3: https://pixabay.com/de/vectors/feuerwehrauto-kinder-kinder-kinder-logo [Free to use, no attribution required]

Slides 3, 4: https://freesvg.org/img/fire-supression-sprinkler-with-faceplate.png [Public domain]

In addition: Microsoft Power Point Pictograms, draw.io