"You have zero Privacy. Get over it."

Scott McNealy, 1999

When to say NO to protect Privacy in the Context of Services.

Prof. Johann-Christoph Freytag, Ph.D.

Datenbanken und Infomationssysteme (DBIS) Institut für Informatik (CS Department) Humboldt-Universität zu Berlin freytag@dbis.informatik.hu-berlin.de

SummerSoc 2013 - Privacy Talk

1

Who am I?? - My Background

Overview

• What's the problem with Privacy?

- Brief intro to K-anonymity
- Data Requests (Queries) in a (distributed) World
 - Problem: When does the Adversary know too much?
 - Modeling the adversary's knowledge
 - Approaches for saying enough is enough

Privacy violation ...

Sensitive and personal Information

Sensitive Information (slightly changed)

information which through loss, or misuse, or unauthorized access to, or modification of which could adversely affect the interests of groups, organizations (such as the government or businesses), or the privacy to which individuals are entitled to by national or international law.

FEDSTD-1037C

Personal (private) data/information

shall mean any information relating to an **identified or identifiable natural person**; an **identifiable person** is one who can be identified, directly or indirectly, in particular by reference to an identification number or to one or more factors specific to his physical, physiological, mental, economic, cultural, or social identity

What is Privacy?

• Definition 1:

[Sweeney, 2002]

"Privacy reflects the ability of a person, organization, government, or entity to control its own space, where the concept of space (or "privacy space") takes on different contexts."

- Physical space, against invasion
- Bodily space, medical consent
- Computer space, spam
- Web browsing space, Internet privacy

• Definition 2:

[Agrawal et al., 2002]

"Privacy is the right of individuals to determine for themselves when, how, and to what extent information about them is communicated to others." (We shall call this data/information privacy)

SummerSoc 2013 - Privacy Talk

8

Is it always obvious?

- Is it always obvious that privacy is violated or breached?
- Sweeney's Finding
 - In Massachusetts, USA, the Group Insurance Commission (GIC) is responsible for purchasing health insurance for state employees

GIC

Diagnostic

GIC has to publish the data:

ZIP

Date of

birth

Sex

Medication

http://lab.privacy.cs.cmu.edu/people/sweeney/

...

[Sweeney, 2002]

Sweeney's Finding (1)

• Sweeney paid \$20 to buy the voter registration list for Cambridge, MA:

		Voter						
Name	Address		ZIP	Date of birth	Sex			
						GIC		
			ZIP	Date of birth	Sex	Diagnostic	Medication	

- William Weld (former governor) lives in Cambridge, hence is in VOTER
- 6 people in VOTER share his date of birth
- only 3 of them were man (same sex)
- Weld was the only one in that zip
- Sweeney learned Weld's medical records!
- 87 % of population in U. S. can be identified by ZIP, dob, sex

Sweeney's Finding (2)

- **Observation:** All systems worked as specified, yet an important data has leaked
 - "Information leakage" occurred
 - Despite the observation that all "participating sites" worked as specified
 - Beyond correctness!
 - What's missing/causing the problem?
- How do we protect against this kind of "lack (leakage) of privacy"?

Privacy-Preserving Data Publishing Challenge

- Objective
 - Publish privacy-relevant data
 - e.g., personal data
 - Preserve privacy of data subjects
 - e.g., individuals
- Purpose
 - e.g., statistic analyzes, legal regulations
- Challenge
 - Given
 - privacy-relevant data in microdata table T
 - attribute types: identifying, sensitive, other
 - Goal
 - generate privacy-preserving public release table T*
 - information should remain practically useful

Name	Zipcode	Age	Sex	Disease
Alison	10000	18	F	Asthma
Ben	11000	19	М	Bronchitis
Clark	12000	20	М	Cold
Debra	12000	21	F	Diabetes
Elaine	12000	22	F	Earache
Fiona	12000	23	F	Flu
Gary	14000	24	М	Earache

Microdata table T

Privacy-Preserving Data Publishing Insufficient Approach

- Insufficient approach
 - remove only identifying attributes
- Problem
 - set of other attributes could be used to identify individuals
 - call these attributes quasi-identifier
- Example
 - combination of Zipcode, Age, Sex is unique
 - with help of external data (e.g., voter list) identify individuals

Name	Zipcode	Age	Sex	Disease		Zipcode	Age	Sex	Disease	Nar	ne Zipo	ode	Age S	ex
Alison	10000	18	F	Asthma		10000	18	F	Asthma	Alis	<mark>on</mark> 100	000	18	F
Ben	11000	19	Μ	Bronchitis		11000	19	Μ	Bronchitis	Ber	11(000	19	M
Clark	12000	20	Μ	Cold	_	12000	20	Μ	Cold		exter	nal d	lata	
Debra	12000	21	F	Diabetes	-	12000	21	F	Diabetes					
Elaine	12000	22	F	Earache		12000	22	F	Earache		Name	Dis	ease	
Fiona	12000	23	F	Flu		12000	23	F	Flu		Alison	Ast	hma	- 4
Gary	14000	24	Μ	Earache		14000	24	Μ	Earache		Ben	Bro	nchiti	S
Microdata table <i>T</i> Insufficient release table <i>T</i> *														

Privacy-Preserving Data Publishing Improved Approach

- Improved Approach
 - remove identifying attributes
 - + generalize quasi-identifier
 - replace value with a less specific but semantically consistent value
- k-anonymity
 - for each tuple there exist k-1 other tuples which share the same values for all quasi-identifiers

Name	Zipcode	Age	Sex	Disease		Zipcode	Age	Sex	Disease	Nam	e Zipco	de Age Sex
Alison	10000	18	F	Asthma		10-12000	18–20	*	Asthma	Aliso	<mark>n</mark> 1000	0 18 F
Ben	11000	19	Μ	Bronchitis		10-12000	18–20	*	Bronchitis		externa	al data
Clark	12000	20	Μ	Cold	_	10-12000	18–20	*	Cold			
Debra	12000	21	F	Diabetes	-	12-14000	21–24	*	Diabetes			
Elaine	12000	22	F	Earache		12-14000	21–24	*	Earache		Name	Disease
Fiona	12000	23	F	Flu		12-14000	21–24	*	Flu		Alison	Asthma
Gary	14000	24	Μ	Earache		12-14000	21–24	*	Earache		Alison	Bronchitis
	Microdata table T 3-anonymous release table T*								Alison	Cold		

Privacy-Preserving Data Publishing Better Approach

- tuples in QI-group with same sensitive value
 - QI-group: set of tuples with *same values for all quasi-identifiers*
- Better Approach
 - Restrict sensitive values in each QI-group
 - e.g., *distinct I-diversity*: ≥ *I* distinct sensitive values
 - many other approaches

Privacy-Preserving Request (Query) Processing Scenario

Example

	Diogase
18	Asthma
19	Bronchitis
20	Cold
21	Diabetes
22	Earache
23	Flu
24	Earache
odata	a table T
	18 19 20 21 22 23 24 odata

Example Reasoning

Modeling – including Alternatives

- Simplification for presentation
 - identifiers (ID) are numbers: 1, 2, 3, ...
 - sensitive attribute (SA) values are letters: A, B, C, ...
- Reasoning of adversary after Query Q₁
 - tuples for 1, 2, 3
 - sensitive values A, B, C
 - $\rightarrow 6$ possible permutations (= value assignments A_i) of these values
 - e.g., A₄: 1 has B, 2 has C, 3 has A

ID	Name	Age	Disease	SA	Age	SA	ID	SA	ID	SA	SA	SA	SA	SA	SA
1	Alison	18	Asthma	А	18–20	А	1, 2, 3	A, B, C	1	А	А	В	В	С	С
2	Ben	19	Bronchitis	В	18–20	В	С	l_1	2	В	С	А	С	А	В
3	Clark	20	Cold	С	18–20	С	for rea	soning	3	С	В	С	А	В	А
4	Debra	21	Diabetes	D	Q ₁					A ₁	A_2	A ₃	A ₄	A ₅	A ₆
5	Elaine	22	Earache	Е	output to	o use	r		po	ssibl	e va	ue a	ssigr	nmer	nts
6	Fiona	23	Flu	F					1				0		
7	Gary	24	Earache	Е											
	Micr	odata	a table T												

Query Graph 1st Query

List of Query Graphs 2nd Query

List of Query Graphs 3rd Query

Query Graph

$\textbf{Merging of Graphs} \rightarrow \textbf{Not Correct}$

- List of query graphs: one graph for each query
- Idea
 - Merge query graphs \rightarrow only one graph for all queries
- Result
 - Modeling is not correct
 - There is no assignment 7-F but a matching with 7-F
 - remember example: Gary (7) has Cold (E) because he cannot have Cancer (F)

Privacy-Preserving Request (Query) Processing Privacy Criterion

• Goal

- Prevent linkage between individuals and sensitive values
 - Here: linkage between tuples and **SA** (Sensitive Attribute) values

Desirable

- For each individual/tuple
 - adversary cannot distinguish between k different SA values

• Privacy criterion

For each individual *I* there are at least *k* different SA values s with probability *P*(s is SA value of *I*) > 0

Example

 $P(s \text{ is SA value of } I) > 0 \text{ iff there is an assignment } A \text{ with } (I, s) \in A$

We call this property *k*-assign anonymity

Privacy-Preserving Request (Query) Processing Approach

- Transform problem of *privacy-preserving query processing* into a graph matching problem
 - List of 1, ..., n queries and results \rightarrow List of query graphs $G^{(n)}$
 - $P(s \text{ is SA value of } I) > 0 \Leftrightarrow \text{ perfect matching in } G^{(n)} \text{ with edge } (I, s)$
- *k*-assign anonymity
 - For each tuple t
 - There are at least k different SA values s and matchings M with $(t, s) \in M$
- Privacy violation if not *k*-assign anonymous for given *k*
- Approaches
 - Approach 1: Store all graphs, calculate all matchings
 - Approach 2: Store all perfect matchings
 - Unfortunately, both approaches are not trivial
 - Number of perfect matchings exponential in number of tuples
- Approaches
 - **1. Approximation**: reduced number of modeled matchings
 - 2. Heuristics: calculation of matchings

Idea

- Store List of graphs
 - For each query/result one graph
- After each query: calculate matchings
- Challenge
 - Given
 - list of query graphs $G^{(n)} = (G_1, ..., G_n)$
 - Wanted
 - For each tuple vertex *t* and SA vertex *s*
 - Calculate perfect matching including edge (t, s)
 - If there are $\geq k$ different sensitive values $s \rightarrow$ no privacy violation for t
- Approach
 - Reduce complexity of graphs
 - Delete as many unnecessary edges as possible
 - Use (integer) linear programming to solve problem
 - Unfortunately: exponential runtime

$$- x_{1C} = x_{2B} = x_{3A} = 1$$

$$- x_{1A} = x_{1B} = x_{2A} = x_{2C} = x_{3B} = x_{3C} = 0$$

Integer Linear Programming

- ILP (Integer Linear Programming)
 - Variables for all edges $e: x_e \in \{0, 1\}$
 - $x_e = 1 \rightarrow x_e$ is matching edge
 - Equation for all vertices: $x(\delta(v)) = 1$
 - Otherwise not a matching
 - Maximize size of matching = maximize sum of all x_{e} = max $\sum_{e \in F} x_{e}$
- Example
 - $-x_{\rho} \in \{0, 1\}$
 - Vertex 1: $x_{1A} + x_{1B} + x_{1C} = 1$
 - Vertex 2: $x_{2A} + x_{2B} + x_{2C} = 1$
 - Vertex 3: $x_{3A} + x_{3B} + x_{3C} = 1$
 - Vertex A: $x_{1A} + x_{2A} + x_{3A} = 1$
 - Vertex B: $x_{1B} + x_{2B} + x_{3B} = 1$
 - Vertex C: $x_{1c} + x_{2c} + x_{3c} = 1$
 - max: $x_{1A} + x_{1B} + x_{1C} + x_{2A} + x_{2B} + x_{2C} + x_{3A} + x_{3B} + x_{3C}$
- Solution (there are other solutions)

- Idea for Approach 2
 - Store (perfect) matchings (PMs)
 - Compute matchings from stored matchings (= "extension")
- Challenge
 - Given
 - set of perfect matchings $M_i^{(n)}$ for list of query graphs $G^{(n)} = (G_1, ..., G_n)$
 - new query graph G_{n+1}
 - Wanted
 - set of perfect matchings $M_i^{(n+1)}$ for $G^{(n+1)} = (G_1, ..., G_n, G_{n+1})$
- Approach
 - Reduce number of perfect matchings (PMs)
 - from exponential to polynomial
 - e.g., we only need to model a special type of "minimal" matchings
 - Consider differences of PMs
 - reduces number of stored edges/complexity of algorithm
 - Extend existing PMs for $M_i^{(n)}$ to PMs for $M_i^{(n+1)}$

Approach 2 Reduce Complexity

- Main task
 - Reduce number of stored PMs
 - from exponential to polynomial
- Idea
 - Store matchings
 - \rightarrow model only a subset of all matchings
 - Compute matchings from stored PMs
 - \rightarrow compute only a *subset* of all possible PMs
- Problem
 - Loss of matchings and assignments
 - Model is only an *approximation*
 - There are false positives
 - model says "no assignment" but there is one

Approach 2 Original (Perfect) Matching

- Original perfect matching M_{orig}
 - Each tuple vertex matches "correct" SA vertex
- Properties
 - Original PM can be directly derived from data
 - No need to be stored
 - Always exists!

Symmetric Difference of Perfect Matchings

- Goal
 - Reduce number of modeled PMs (exponential → polynomial)
- Idea
 - Consider only PMs with small differences to original matching
- Approach
 - Difference to original PM
 - = symmetric difference $M_i \Delta M_{\text{orig}}$
 - = Circles with certain length
 - Model only PMs with length = 4 (2 edges of each of both matchings)
 - $\rightarrow \Delta 2$ -matchings

SummerSoc 2013 - Privacy Talk

Representation of Perfect Matchings (PMs)

- Idea
 - Do not store complete PMs M (i.e., set of all edges)
 - store only difference $M M_{\text{orig}}$
 - → Reduce storage complexity/decrease algorithm runtime
- Identify vertices
 - Tuple vertices: tuple ID
 - SA vertices: SA value + tuple ID (of tuple in M_{orig})
- Matching table T_{Δ}
 - Columns for tuple (ID), SA value, matching edges in $G^{(n)}$
 - Rows for each tuple

SummerSoc 2013 - Privacy Talk

Approach 2 1st Query

- All combinations of tuples and SA values
 - Difference to original PM = 2 edges
 - Δ2-Matchings
 - Number of stored PMs with *n* tuples: $O(n^2)$
- Example
 - \rightarrow 3-assign anonymous after G_1

Extension of Perfect Matchings (PMs)

- Given
 - set of PMs $M_i^{(n)}$ for list of query graphs $G^{(n)} = (G_1, ..., G_n)$
 - new query graph G_{n+1}
- Wanted
 - set of PMs $M_i^{(n+1)}$ for $G^{(n+1)} = (G_1, ..., G_n, G_{n+1})$
 - $\Delta 2$ -matchings + Δ -minimal (= "as few edges as possible")
- Example

SummerSoc 2013 - Privacy Talk

S_{old} = set of old tuples (tuples in G_{n+1} and in $G^{(n)}$) S_{new} = set of new tuples (tuples in G_{n+1} , but not in $G^{(n)}$)

• forall old tuples $t \in S_{old}$ do

Approach 2

Algorithm

- **forall** matching edge $e_{\Delta} = (t, s'(S_{T}))$ **do**
 - Case 0: s' does not appear in G_{n+1}
 - Delete matching with e_{Δ}
 - Case 1: exactly 1 tuple of $\overline{S_T}$ in $G_{n+1} \rightarrow /*$ okay */
 - Case 2: at least 2 tuples of S_T in G_{n+1}
 - Delete matching with e_{Δ}
 - Fall 3: no tuple of S_T in G_{n+1}
 - Save *t* and e_{Δ} for extension
- **forall** new tuples $t, t' \in S_{neu}$ with different SA values **do**
 - Generate new PM with edges (t, s'({t'})) and (t', s({t}))
- forall SA values *s* of saved tuples *t* do
 - Extend all tuples with SA value s, so that no 2 tuples are extended with the same new tuple (→ extension algo)
 - Delete PM with e_{Δ} , which are not extended

Extension of Perfect Matchings (2)

- Complete example
 - Extension of all PMs
 - Delete M_2 because no C in G_2
 - $M_2 = \{(1, C(3)), (3, A(1))\}$
 - $\rightarrow 2$ -assign anonymous after G_2

ID	SA	G ⁽¹⁾	G ⁽²⁾	SA	# SA
1	A	B(2) C(3)	B(2,4) B(2,6) -	А, В	2
2	В	A(1) C(3)	A(1) C(3)	А, В, С	3
3	С	A(1) B(2)	– B(2)	В, С	2
4	В		A(1) D(5)	A, B, D	3
5	D		B(4) B(6)	B, D	2
6	В		A(1) D(5)	A, B, D	3
			T_Δ		

SummerSoc 2013 - Privacy Talk

Extension of Perfect matching (PMs) (3)

- Violation of privacy criterion
 - e.g., 3-assign anonymity
- Add additional SA value
 - "counterfeit tuple"
- Example
 - Add C to G_2
 - PM $M_2^{(1)}$ remains
 - \rightarrow 3-assign anonymous after G_2

ID	SA	G ⁽¹⁾	G ⁽²⁾	SA	# SA
1	А	B(2) C(3)	B(2,4) B(2,6) C(3)	А, В, С	3
2	В	A(1) C(3)	A(1) C(3)	А, В, С	3
3	С	A(1) B(2)	A(1) B(2)	А, В, С	3
4	В		A(1) C() D(5)	A, B, C, D	4
5	D		B(4) B(6) C()	B, C, D	3
6	В		A(1) C() D(5)	A, B, C, D	4
			T_{A}		

Summary

- Definition of Privacy
- Violation of Privacy
 - Several Approaches. k-anonymity, ...
- Using the results of a series/sequence of queries
 - Modeling by Graphs
 - Algorithms run on Graphs
 - Complete set of perfect matchings: exponential number
 - Reduce set: polynomial number

Questions???

Thank you!!