Cloud Computing Patterns
Foundations and Introduction

Tutorial at SummerSoC 2013 (1 July — 6 July, 2013, Hersonissos, Crete, Greece)

Christoph Fehling, Prof. Dr. Frank Leymann
Institute of Architecture of Application Systems (IAAS)

Universitat Stuttgart Phone +49-711-7816 470
Universitatsstr. 38 Fax +49-711-7816 472
70569 Stuttgart e-mail Leymann| Fehling
Germany

@iaas.uni-stuttgart.de

Christoph Fehling - Frank Leymann - Ralph Retter - Walter Schupeck - Peter Arbitter

Cloud Computing Patterns
Fundamentals to Design, Build, and Manage Cloud Applications

This book provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of archi-
tectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing
patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers
are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this
book cloud-native applications can be implemented and best suited cloud vendors and tooling for individual usage scenarios
can be selected. The cloud computing patterns offer a unique blend of academic knowledge and practical experience due to
the mix of authors. Academic knowledge is brought in by Christoph Fehling and Professor Dr. Frank Leymann who work
on cloud research at the University of Stuttgart. Practical experience in building cloud applications, selecting cloud vendors,
and designing enterprise architecture as a cloud customer is brought in by Dr. Ralph Retter who works as an IT architect
at T Systems, Walter Schupeck logy Manager in the field of Enterprise Architecture at Daimler AG,
and Peter Arbitter, the former head of T Systems’ cloud architecture and IT portfolio team and now working for Microsoft.

who works as a Tect

Voices on Cloud Computing Patterns

Cloud computing is especially beneficial for large companies such as Daimler AG. Prerequisite is a thorough analysis of its
impact on the existing applications and the IT architectures. During our collaborative research with the University of Stuttgart,
we identified a vendor-neutral and structured approach to describe properties of cloud offerings and requirements on cloud
environments. The resulting Cloud Computing Patterns have profoundly impacted our corporate IT strategy regarding the
adoption of cloud computing. They help our architects, project managers and developers in the of archi al

A

and ¢ icate requi to our integration partners and software suppliers.

Dr. Michael Gorriz - CIO Daimler AG

Ever since 2005 T-Systems has provided a flexible and reliable cloud platform with its “Dynamic Services” Today these cloud
services cover a huge variety of corporate applications, especially enterprise resource planning, business intelligence, video,
voice communication, collaboration, messaging and mobility services. The book was written by senior cloud pioneers shar-
ing their technology foresight combining essential information and practical experiences. This valuable compilation helps
both practitioners and clients to really understand which new types of services are readily available, how they really work
and importantly how to benefit from the cloud.

Dr. Marcus Hacke - Senior Vice President, T-Systems International GmbH

This book provides a conceptual framework and very timely guidance for people and organizations building applications
for the cloud. Patterns are a proven approach to building robust and sustainable applications and systems. The authors
adapt and extend it to cloud computing, drawing on their own experience and deep contributions to the field. Each pattern
includes an extensive discussion of the state of the art, with implementation considerations and practical examples that the
reader can apply to their own projects.

By capturing our collective knowledge about building good cloud applications and by providing a format to integrate new
insights, this book provides an important tool not just for individual practitioners and teams, but for the cloud computing
community at large.

Kristof Kloeckner — General Manager, Rational Software, IBM Software Group

Computer Science
ISBN 978-3-7091-1567-1

MATERIALS

extras.springer.com

671

977837097115

» springer.com

Padnyds - 19113y
uuew£a7 - buiysq

1RQY

=
(=}
[==
oo
(o)
(=}
3
=]
[==
=3
>
o
)
Q)
~t
P
D
-
>
(7

Christoph Fehling - Frank Leymann
Ralph Retter - Walter Schupeck
Peter Arbitter

Cloud Computi
Patterns

Fundamentals to Design, Build,
and Manage Cloud Applications

MATERIALS

extras.springer.com

@ Springer

Queue-Based Programs

* Connection based programs
e are operating dependently
* based on predictable pairings
* specify program name of partner
 Queue based programs
e are operating independently
* based on predictable or unpredictable pairings

* specify queue name

Program A Program B Program C Program D

MQI

M_:,éssage Queuing Interface

Problems in Direct TP

~

Client

)

o QT

Server Availability

\ /

| Server 1 | Server 2 | Server 3 ‘

Request

Request

Request
Request

Request

Request

Unbalanced Load

8068

Reply

e)

o

Client Availability

/

| Server

\ (

| Server

Request

Request

Request

"

Request
Agnostic

e g
Fenverg
Fenverg
o g
=

Priority

VAR

A\

Loose Coupling

| Core principle:
Reduce number of assumptions two parties make
about each other when they exchange information

* But: Making more assumptions facilitates to
increase efficiency =2 Tight coupling for high-
performance environments

e But less tolerance to changes at a partner’s side

“Loose Coupling” is a very important new term in practice today!

Sometimes, it is used nearly as a synonym for
“being message-based”... ©

&

Loose Coupling: Autonomy Aspects [5,6
* Reference Autonomy

* Producers and consumers don’t know each other
* Platform Autonomy

* Producers and consumers may be in different environments, written
in different languages,...

* Time Autonomy

* Producers and consumers access channel at their own pace
* Communication is asynchronous
* Data exchanged is persistent
* Format Autonomy
* Producers and consumers may use different formats of data

exchanged

* Requires transformation “on the wire” (aka mediation)

Messaging Styles

¢ POi nt'tO' POi nt (that’s what has been discussed until now)

Zero or one

_____ - Receiver?
\\\ Receiver
* Publish-Subscribe
: * Receiver"
e Sender “publishes”

a message on a “topic”

e Zero or more “subscribers” on that topic
get that message delivered

Receiverl

v

Sender Receiver

v

Zero or more

© Receiver"

consumer

consumer

Message Queue Manager (MQM)

* Message queue manager (MQM) provides environment for
gueuing applications including the MQl
e provides reliable storage for queued messages
* manages concurrent access to data
* ensures security and authorization
e provides special queuing functions (like triggering)

e Applications that need queuing facilities must first connect
to an MQM

* The MQM an application is directly connected to is called its
local queue manager

 The application may run as clients using the Message
Queuing Interface (MQl)

&

Local/Remote Queues And The MQl

Program A Program B Program C

3 y MQI
(Message Queue Interface)

“Send-and-Forget”

MQM1 \< MQM2 w

>
© “Store-and-Forward”

The Mover

<transmission queue>

MQM1

L

Channel

<target queue>

MQM2

10

Multi-Hop Forwarding

Application

PUT to Q1

|

“wavoc

Q2 = MQM3.Q3

MQM 3

Q3is local 1 [

11

Message Delivery: Summary

Program A

<queue directory>
QI=(MQM2, Q7)

<transmission queue>

MQM1

PUT into Q1

GET from Q7

Program B

I

Channel

)_

Q.LL

12

...In Case You Know Databases ©

Application Application
Tuple Message

13

Transactions Across DBMS And MIQM

Application

UPDATE|TABLE PUT|INTO Q

-
_
Qi o

MQM As Resource Manager

Application

Begin Transaction

|__#PUT INTO Q

UPDATE TABLE
Commit ‘55557\)
MQM wII

=
< o
S 2
—30.)
@ 3
2\0'
S

* Application can manipulate resources in multiple resource managers
e All manipulations can be grouped into a single transaction

* Transaction manager will run Two-Phase-Commit protocol to ensure that all manipulations
are committed or undone

* Note the “Poisoned Message Problem”: If a message cannot be processed and results in
ROLLBACK it will be put into the queue and processing begins again, i.e. ROLLBACK +
processing + ROLLBACK + ... (ad infinity)

* Multiple solutions: Synchronization points, maximum number of retries maintained my MQM

Queued TP

Server
InputQ
Client pushes request Server pulls request
Xact 1 ET

Xact 2

Transaction

Xact 3

Client pulls response

Client
ResponseQ

16

Problems Solved With Queued TP

No need for server
to be available when

request is send Urgent Fully dynamic loadbalancing

PUT e

| A | \‘ I

Requests can be reordered
according to priority
G
NOTE
PUT

Request scheduling can be done
more flexible: servers can be split
based on request priority class.
This enables to guarantee certain
service level for each priority class.

No need for client
to be available when

Client response is send

Response Queue

1717

Definition & Solution Principles

Performed workload is usually required to be linear proportional to
resources (linear scalability):

performed workload = y X resources,

where the factor is ideally close to one: y<1

In principle, this can be achieved in three different ways:

e Work harder

Processing speed o N
Scalability is the ability to

endure increasing workloads
without decreasing an agreed service level when
underlying resources are also increased

 Work smarter
Better algorithms

* Gethelp

antroduce parallelism

18

Clusters: Definition

A cluster is a distributed system that
= consists of a collection of interconnected whole computers

" jsused as asingle, unified computing resource

& .

Clusters In Client/Server Applications (1/2)

20

Clusters In Client/Server Applications (2/2)

Client request service from cluster
= (Cluster selects node for performing requested function
= Selection can be done by client-stub of cluster
= Node accesses shared data
= Physically shared disc, 1/O shipping, shared DB,...
=» 3-Tier-Architecture: Convenient implementation!

S

21

Definitions

e System called available if it is up and running and produces
correct results

* The availability of a system is the fraction of time it is available

* Asystem is high available if its availability is close to 1

* Thus, high availability is the property of a system to be up and
running all the time, always producing correct results

* |.e.the famous requirementis...

e Mission critical systems (DBMS, TPM, WEMS,...) must be high
available
A system fails if it gives a wrong answer or no answer at all

e Thus:

 The more a system fails, the less it is available
* The longer it takes to repair a system after it fails,
the less it is available

& .

Relevant Points in Time

Observation Interval (= MTBF + MTTR)

System is up and running System is unavailable
(uptime) (downtime)
Fault
Detection Recovery
Time Time
A N
N ~
A N _/
~ ~
MTBF MTTR
(Mean Time Between Failure) (Mean Time
. . . To Repair)
(time system is available)
Fault is System is
detected available
again

23

Formalization

Mean Time Between Failures (MTBF or@)
« ... the average time a system runs before it fails

« MTBF measures system reliability

« Mean Time To Repair (MTTR orp)
« ... the average time it takes to repair a system after failure

« MTTR measures system downtime

. Availabilityot] g =—2_
P®+o
« Thus, availability can be improved by 0
o ' iabilitv. i — oo lim——=1
improving reliability, i.e. MTBF @ o o+ g
- decreasing downtime, i.e. MTTR 0 —0: Iimi =1
0P+

& .

Availability Classes

(3 seconds / year)

1 hour / day 95.8 (~96) Unmanaged
Customers minimum expectation today

1 hour / week 99.41 (~99) 2 Managed

1 hour / month

(fow minutes / day) 99.86 (~99.9) 3 Well managed

1 hour / year 99.9886 (~99.99) 4 Fault tolerant

1 hour / 20 years . .

(5 minutes / year) 99.99942 (~99.999) 5 High available

30 seconds /year 1 69 9999048 (~99.9999)| 6 é“f

Class 1: This really bad!

Class 2: Commodity uni-processor system
Class 3: Standard open-system cluster

Class 4: Cluster with special HW/SW - Achieving class 4 is already a challenge!
Class 5: IBM S/390 Parallel Sysplex HW
Class 6: In-flight aircraft computer

© Some vendors already call class 3...4 “High Available” ©

=1
id

The number of 9’s
is characterizing
the system type

]
&

Application Server Hot-Pooling B

J

* Hot Pool:
* A collection of application servers with identical functionality sharing a common
pool input queue
* Client sends requests to pool input queue

* Whenever a member of the hot pool finished processing particular request it
immediately gets next request from pool input queue

* When a member fails the other members will continue processing requests from
pool input queue: Hot pool appears as “virtual application server”
* Watchdog will initiate failed member’s restart

Relevance of
Queued TP!

PUT

~
pdate -
Hot Pool

26

Ensuring Availability In Hot Pools: Transactions

* Assumption:
e poolinput queue is persistent
e each hot pool member ensures message integrity

* Consequence: As long as single member is running “virtual application
server” is available
e MTTRis further reduced!

Xactl M GET
PUT \
/

[

GET
Xact3 PUT

LK

Xact3

&

Probability Considerations For Hot Pools

* Binomial Distribution:
Let E be an event that occurs with probability P; perform the same
experiment N times independently (e.g. in parallel) and count how often
a particular event E occurs. Then, the probability that E occurs exactly k

times is p :(N)Pk(1_P)N—k
k

k
* The availability of hot pool members is binomial distributed:
Each member in a hot pool runs a copy of the same software, so MTTR
and MTBEF, thus the availability is the same for each member. The N
independent experiments consists of running N hot pool members in
parallel, and the event observed is “member available”. Thus, the
probability that exactly k members are available of a hot pool having N

members is p - (,Z)ak(1_a)/v_k

* The probability of at least k members being available is
N N .
NY i N-=i
P, :Z:P/ :zkt(i) o (1—06)

: .
28

Availability Of A Hot Pool

* The services provided by its hot pool members is available as long as at
least one member of the hot pool is available:

rara =P = 2") @ 1-0)”
St § Je-er

:(oc+(1—oc))N—(1—(x)N
e Thus, the availability of o000 of a hot pool with N members each
member having the same availability or is:

member

o = 1 - (1 - amember)N

hot pool
* |f an event has a probability much less than one and if it is memoryless,
i.e. its occurrence is not influenced by the occurrence of the same event
before, then the mean time to such an event is the reciprocal of the
probability of the event

* The failing of a hot pool is such an event having the probability 1= 0y oo
thus: .

MTBF, . pool — (1 / (1 ~ et oo))
29

Hot Pool Availability (Sample Numbers)

Years

Hot Pool MTBF
50 -
3
B
40 /8
2
— i.\
30 7 ¥
20 5 E g /
" o~ o/
10 -5 % o
S =
0 = "
5 6 7 8
Hot Pool Cardinality

Assumptions: Hot pool member MTBF=24h, MTTR=6h, resulting
member availability is 80% (i.e. unacceptable)

But: Hot pool gets availability class 5 already with 8 members

3

Downtime
200
Y
X'}
N\
F:! 150 \\
[L
[<P) N\
> N\
- 100 - N
= N\ O
o \ b& S O,
i 50 \>,>)‘9"300 GbQQQQ V)Q,o’qq
0 . _m
5 6 7 8
Hot Pool Cardinality

Application Clusters

 An Application Cluster is defined to be
* acollection of interchangeable nodes
* each node hosts a hot pool of one and the same (application) server
* the nodes hosting the cluster fail independently
* Especially:
* All systems have access to all of the data (thus the DBMS is critical w.r.t.
availability of the cluster! Thus, the DBMS may run in a separate cluster!)
* The cluster provides a single system image, i.e. clients submit requests to the
cluster not to a particular system (especially, all systems run the same kind of hot
pool)

Relevance of Queued TP! B

Hot Pool

Node n

Cluster 31

Take-Over Across Hot Pools

* If complete hot pool fails (e.g. OS or processor fails) automatic reroute of
requests to available hot pool on different system: MTTR is further reduced

e Either...

* via cluster architecture (hardware, system software,...)

* or underlying messaging system supports reroute directly (aka virtual queue or

cluster queue)

* orclient exploits specific enhancements of underlying MOM (e.g. server APIs)

* Thus, client behaves as if it has a session with a hot-pool-plex

 Mechanism to restart the failed hot pool depends on particular fault

|
Hot Pool 1

\,\“ MOM ()

Hot Pool n

Cluster Availability Versus Cost

e Let O tom denote the availability of a system (i.e. a hosting environment), M the

number of systems in the cluster

* The services provided by a cluster is available as long as at least one system of
the cluster is available. As before:

o =1-(1-«
cluster system
* Basically, the cost C ., Of a cluster is the sum of the cost C ., of its systems :
Ccluster = I\/Icsystem
— Cost Of Availability
. . . > 90
* Assuming a unit price Cg ., of = 2
$8,000 per system and an availability ‘g 33 2
0 : . =
A tom of 66% the following results: g 60 |5 .
S 50 : -
3 40 AN N -~ N
=) 2 =)
a 30 5 2 & S
= 20 - 5. S 2
> 10 e S 2
= E— T 1)
@) 0

64000 72000 80000 88000 96000
Cluster Cost [$]
33

Scaling Applications Up in the Cloud

e Scale-up results in (massive) distributed systems

On Premise/ Scale-up
Private Cloud

Public Cloud B

Public Cloud A

34

The Problem

* Massive distributed systems operate on a large (even world-wide) scale

* Large scale creates additional challenges:

When a system processes billions (even trillions) of requests, events that
normally have a low probability of occurrence are now guaranteed to

happen

 These events need to be accounted for up front in the design and
architecture of the system

& .

Updates in Massive Distributed Systems [
* Data are often replicated across the nodes : :
* Clients updates single node of the system
» System replicates updates to other nodes in a lazy manner

Write v, ..,

ol (od) . [

36

The Role of Queues in Replication

* Replication is typically based on (persistent) queues
* Updated node sends new value to other nodes via queues

* Other nodes update their local copy (lazily)

37

In an Ideal World...

e ...all replicas would be updated at the same time — resulting in data
consistency

* Each node holding a copy of a data item has the same value of the
C data item

 j.e. the client can access any of the nodes to retrieve the actual
latest value of the data item

...any responding node would offer all functions of the overall system —
A resulting in availability

* Failures have no impact of the available functions of the overall
systems

* j.e. the client can select any of the nodes to request all functions

...failure of network connections would not affect the correctness of the
P overall system — resulting in partition tolerance

* A partitioning of the network has no impact on the functionality of

the overall system

* j.e. the client can access any of the nodes for any function and
will always get same and correct results

But Life is Cruel

The CAP Theorem (Brewer, 2000)
Out of the following three properties of a
system:

Consistency
Availability

Partition tolerance
...only two can be achieved at the same time

* Since in larger distributed systems network partitions are a given, such
systems must be build with partition tolerance in mind!

* As aconsequence, in such systems consistency and availability cannot be
achieved at the same time!

& .

Architectural Relevance

There are only two choices:

 Demand consistency

This means that under certain conditions the system will not be
available

* Relax consistency
This will allow the system to remain highly available

&

40

Consistency Models (Vogels, 2008) @M
S &
* Strong consistency G
* After update completes, any subsequent access by anybody will %/\Z
return the updated value 5 S
 —

 Weak consistency

e System does not guarantee that subsequent accesses will return the
updated value

* Period between update and the moment when it is guaranteed that
any observer will read the updated value is called inconsistency
window

* Eventual consistency (specific form of weak consistency)

* Storage system guarantees that if no new updates are made to the
object, eventually all accesses will return the last updated value

& .

Tolerating Partitions

* Assume a partitioning is detected

* Each partition is treated as self-contained replica set
 j.e. reads and writes are done to partition only

* Merge is performed once partitioning is healed

=> This how Amazon’s shopping cart application works

&

42

The BASE Properties

* Transactional properties for large-scale applications
e ..proposed as ACID alternative...

* BASE means
* Basically Available

:= support partial failures without total failure

— E.g. if a node fails, only the users on that node are affected by the
failure

e Soft state

:= state changes triggered by an operation may be scattered across
different components of the system

— E.g. the debit of a funds transfer is in a database, but the credit of the
funds transfer is still in a message within some input queue

* Eventually consistent

:= at some point in time the effects of an operation is reflected in all
affected components, and in a consistent manner

— E.g. finally, the debit and the credit required for a successful and
consistent funds transfer are reflected on both databases

& .

Example

* Real world funds transfer follows the BASE paradigm

* Debit and Credit can succeed independently (Basically Available)
« State is scattered across Debit DB and Request queue at [2] (Soft state)
* Funds transfer finally consistently reflected in both DBs [3] (Eventually consistent)

Client Relevance of Queued TP!

Xfer 100€
from myAcc
to yourAcc

My Bank Your Bank

B myAcc — myAcc - 100l

.

I yourAcc — yourAcc + 100
ncrease
yourAcc a

by 100

A Note to Caution

* Consequently, large-scale distribute applications (e.g. applications
distributed across clouds) require message queuing etc.

* Such middleware is available as cloud offerings
 Amazon SQS, Microsoft Azure,...

* But: These queuing services behave differently than used from on-
premise middleware (MQSeries, MSMQ,...)

* No exactly-once delivery, but at-least-once delivery
* No 2PC transactions between MOM and DBMS

* Thus, building large-scale applications in the cloud requires to consider
these differences

e Build idempotent operations
* Detected duplicate messages

&

45

Q End of First Part of the Tutorial

46

