
Cloud Computing Patterns
Fundamentals to Design, Build, and Manage Cloud Applications

Christoph Fehling , Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstr. 38
70569 Stuttgart
Germany

Phone +49-711-685-88 486
Fax +49-711-685-88 472
e-mail Fehling
 @iaas.uni-stuttgart.de

©Fehling

Tutorial at SummerSoC 2013 (1 July – 6 July, 2013, Hersonissos, Crete, Greece)

Design Steps for Cloud Applications using Patterns

or

to see a Cloud Application Architecture you should go out and have a…

http://benedik.deviantart.com/

Coffee Shop

Introduction

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

3 ©Fehling

Inspired by: G. Hohpe: Your Coffee Shop Doesn’t Use Two-Phase Commit, IEEE Software, 2005.

How to distribute Application Functionality?

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

5 Decomposition

Distributed Application
A cloud application divides provided functionality among multiple application
components that can be scaled out independently.

Components reside on separate functional layers
Often: user interface, processing, storage
Access is only allowed to same layer and the layer below
Dependencies between layers and interfaces are controlled

Layer-based Decomposition

©Fehling

Distributed Application
A cloud application divides provided functionality among multiple application
components that can be scaled out independently.

6 Decomposition

Business process model determines decomposition
Activities: tasks executed in a specific order (control flow)
Data elements: information handled by activities (data flow)
Functional application components (services) are accessed by process

Process-based Decomposition

Business Process

Data Elements

Services

©Fehling

Distributed Application
A cloud application divides provided functionality among multiple application
components that can be scaled out independently.

7 Decomposition

Decomposition based on the data processing function
Filter: application component processing data
Pipe: connection between filters (commonly messaging)

Pipes-and-Filters-based Decomposition

©Fehling

Have we seen this in the real world?

Yes: Migrating Batch Processes to the AWS Cloud

Application Architecture Patterns – Application Components ©Fehling, Leymann

• RDBMS Data: can be handled by a Relational Database

• Amazon SimpleDB: Key-value Storage

• Amazon S3: Blob Storage

• Auto Scaling Group: Elasticity Manager or Elastic Queue
(see Cloud Management Patterns)

• EC2 Worker Instance: Processing Component
(Batch Processing Component if media is only processed when the queue is full)

Source: Amazon Web Services White Paper: Migration Scenarios: Batch Processing

Pattern Mapping

9

Coffe Shop – Decomposition of Functions

Decomposition

Identify functional components.

User Interface

Request
Queue

Special Processing

Coffe Processing

Result
Queue

Distributed
Application

©Fehling 10

What workload do components experience?

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

Static Workload
IT resources with an equal utilization over time experience static workload.

13 Workload ©Fehling

14 Workload

Static Workload

©Fehling

cloudcomputingpatterns.org

http://cloudcomputingpatterns.org

16 Fundamental Patterns – Application Workloads ©Fehling, Leymann

50

25

Visitors

January – March 2013

Peak workload: often at beginning / end of week

 Probably a lot of meetings

Overall workload: does not utilize one server fully

 Hopefully this changes!

Low workload: every weekend

 Page is obviously work-related

Source: http://www.google.com/analytics

Periodic Workload
IT resources with a peaking utilization at reoccurring time intervals experience
periodic workload.

17 Workload ©Fehling

18 Workload

Periodic Workload

©Fehling

Amazon & YouTube

Amazon.com

20 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Source: http://www.alexa.com

1

0,5

Percent of all
page views
on Internet

2011 2012

Peak workload: very strong peaks at the end of every year

 Christmas shopping

Low workload: no significant peaks during the year

 Slight increase from year to year (we will cover such workload later)

Youtube.com

21 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Source: http://www.alexa.com

Peak workload: every weekend

 People are bored, listen to music etc.

Low workload: during the week

 People are at work

4

2

Percent of all
page views

On Internet

January February March

Once-in-a-Lifetime Workload
IT resources with an equal utilization over time disturbed by a strong peak
occurring only once experience once-in-a-lifetime workload.

22 Workload ©Fehling

23 Workload

Once-in-a-Lifetime Workload

©Fehling

Digitalization of the New Your Times Archive

Digitalization of New York Times Archive

25 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Original Data

• 150 years of news papers: 11 million articles

• Significant amount of public domain content

• Scanned to very large images in TIFF format (4 TB)

TIFF
Scans

Original Data

1

1

Digitalization of New York Times Archive

26 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Digitalization: articles in PDF files with full text search

• XML (Extensible Markup Language): region (rectangle) of article

• SGML (Standard Generalized Markup Language): text of articles

Digitalization took 24 hours on 100 Amazon EC2 machines

Was run twice due to an error during the first run:

Output: 1,5 TB of PDF files

Original Data

2

TIFF
Scans

SGML SGML SGML

SGML SGML XML

digitalized text

location
of article

Digitalization 2

Digitalization of New York Times Archive

27 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Web Application: web-based access to 3.3 million articles

• XML +SGML: converted to Java Script handling the user interface

• TIFF files (405,000) converted to 810,000 PNG files (file + thumbnail)

Generation took less than 36 hours

Utilized „hundreds“ of Amazon EC2 machines

Output: foundation code for web application

TIFF
Scans

SGML SGML SGML

SGML SGML XML

digitalized text

location
of article

Original Data Digitalization

3

PNG
SGML SGML Java

Script highlight article

display text

web-friendly
version

Web Application 3

Digitalization of New York Times Archive

28 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Sources

http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-
computing-fun/

http://open.blogs.nytimes.com/2008/05/21/the-new-york-times-
archives-amazon-web-services-timesmachine/

http://timesmachine.nytimes.com/

TIFF
Scans

SGML SGML SGML

SGML SGML XML

digitalized text

location
of article

PNG
SGML SGML Java

Script highlight article

display text

web-friendly
version

Original Data Digitalization Web Application

Unpredictable Workload
IT resources with a random and unforeseeable utilization over time experience
unpredictable workload.

29 Workload ©Fehling

30 Workload

 Unpredictable Workload

©Fehling

Eyeem.com Photo Sharing Website

Eyeem.com

Fundamental Patterns – Application Workloads ©Fehling, Leymann

0,0004

0,0002

Percent of all
page views
on Internet

2011 2012

Peak workload October 2012: High school Football Game in Nashville, TN

• One fan uploads pictures to Eyeem.com

• Sends picture on twitter

  User group in Tennessee increases drastically!

Peak workload October 2012: Instagram changes privacy policy

• Instagram is similar picture sharing application

• Users are worried to loose rights to their images

  Massive migration of users to Eyeem.com

2

2

1

1

32

Eyeem.com

Fundamental Patterns – Application Workloads ©Fehling, Leymann

Percent of all
page views
on Internet

2011 2012

Low workload: irregular and disturbed by small and sudden peaks

• User access frequency changes often

• Short peaks may be hard to detect without monitoring

0,0004

0,0002

Source: http://www.alexa.com
http://www.golem.de/news/

vom-erfolg-bedroht-der-kampf-ums-technische-ueberleben-1303-98323.html

33

Continuously Changing Workload
IT resources with a utilization that grows or shrinks constantly over time
experience continuously changing workload.

34 Workload ©Fehling

35 Workload

Continuously Changing Workload

©Fehling

Amazon

Amazon.com

37 Fundamental Patterns – Application Workloads ©Fehling, Leymann

Source: http://www.alexa.com

1

0,5

Percent of all
page views
on Internet

2011 2012

General growth: between peaks workload increases continuously

 Amazon is growing not only during Christmas

 Different workload patterns can be combined!

Coffe Shop – Workloads

Workload

Identify and compare workload generated by user groups at different components.

User Interface

Request
Queue

Special Processing

Coffe Processing

Result
Queue

=

=

<

>

=

<

<

©Fehling 38

Lesson Learned

39 Workload

Workload can differ significantly between components.
Scaling them as a holistic unit can be very inefficient.

©Fehling

Where does the application handle state?

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

Notion of State

41 Data (State)

We differentiate between…

• Session State

• State of a client‘s interaction with an application

• Commonly referred to when discussing „statelessness“

• Example: customer‘s shopping card of an online store

• Application State

• Data handled by an application

• We extend „statelessness“ to also incorporate application state

• Example: customers shipping information stored by an application

©Fehling

Stateless Component
State is handled external of application components to ease their scaling-out
and to make the application more tolerant to component failures.

Stateful Component
Multiple instances of a scaled-out application component synchronize their
internal state to provide a unified behavior.

43 Data (State) ©Fehling

44 Data (State)

Stateful Component

Stateless Component

©Fehling

Strict Consistency
Data is stored at different locations to improve response time and to avoid
data loss in case of failures while consistency of replicas is ensured at all times.

Eventual Consistency
Performance and availability of data in case of network partitioning are
enabled by ensuring data consistency eventually and not at all times.

45 Data (State) ©Fehling

46 Data (State)

Strict Consistency

n

w r

n ≤ r + w

Eventual Consistency

n

n > r + w

w
r

©Fehling

Data Abstractor
Data is abstracted to inherently support eventually consistent data storage
through the use of abstractions and approximations.

47 Data (State) ©Fehling

48 Data (State)

Data Abstractor

©Fehling

Data Abstraction at Amazon

Amazon

50 Application Architecture Patterns – Application Components ©Fehling, Leymann

Items are commonly
„in stock“.

Amazon

51 Application Architecture Patterns – Application Components ©Fehling, Leymann

Upon low availability,
concrete numbers are
reported.

Let‘s test if this is
really the number of
available items!

Amazon Test: Setup

52 Application Architecture Patterns – Application Components ©Fehling, Leymann

Account: Carina
Networking: Home Internet

Account: Christoph
Networking: University VPN

Simulation of two different customers shopping at two different locations.

Amazon: Shopping Carts

53 Application Architecture Patterns – Application Components ©Fehling, Leymann

Item could be added to both shopping carts.

Amazon: Shopping Carts

54 Application Architecture Patterns – Application Components ©Fehling, Leymann

Item could be bought by both customers.

Amazon: Shopping Carts

55 Application Architecture Patterns – Application Components ©Fehling, Leymann

Item could be bought by both customers.

Amazon: Delivery

56 Application Architecture Patterns – Application Components ©Fehling, Leymann

• Both customers received the item at the same day!

• The movie was horrible!!!

• Amazon Website one day after the delivery:

So… the user interface
does not report actual
correct numbers! 

Coffee Shop – Data

Data (State)

Identify components storing data.

User Interface

Request
Queue

Special Processing

Coffe Processing

57 ©Fehling

Result
Queue

Lessons Learned

58 Data (State)

Avoid state in application components.

Handle state in…

 … requests (has to be provided with every access).

 … provider-supplied storage and communication offerings.

„Lie“ about state whenever possible / acceptable by the business case.

©Fehling

How are components implemented?

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

Message-oriented Middleware
Asynchronous communication is provided while hiding complexity of
addressing, routing, or data formats to make interaction robust and flexible.

61 Component Refinement ©Fehling

62 Component Refinement

Message-oriented Middleware

Assumptions of communication partners are reduced (Loose Coupling)
Platform: implementation language used
Reference: location of the communication partner (routing)
Time: communication partners are active at different time / speed
Format: message formats can change (transformation)

©Fehling

User Interface Component
Synchronous user interfaces are accessed by humans, while application-
internal interaction is realized asynchronously to ensure loose coupling.

63 Component Refinement ©Fehling

64 Component Refinement

User Interface Component

©Fehling

Processing Component
Processing functionality is handled by elastically scaled components.

Batch Processing Component
Requests are delayed until environmental conditions make their processing
feasible.

65 Component Refinement ©Fehling

66 Component Refinement

Processing Component

Batch Processing Component

©Fehling

Multi-component Image
Virtual servers host multiple application components that may not be active at
all times to reduce provisioning and decommissioning operations.

67 Component Refinement ©Fehling

68 Component Refinement

Multi-component Image

©Fehling

Coffee Shop – Refinement of Components

Component Refinement

Decide how to implement components.

©Fehling

User Interface

Request
Queue

Special Processing

Coffe Processing

Result
Queue

69

Lessons Learned

70 Component Refinement

Components should be interact via messaging to ensure loose coupling.

Resources supporting functional components should be flexible
(multi-component image).

©Fehling

Elasticity and Resiliency

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

Elastic Queue
The number of accesses via messaging is used to adjust the number of
required application component instances.

Elastic Load Balancer
The number of synchronous accesses to an elastically scaled-out application is
used to determine the number of required application component instances.

73 Elasticity and Resiliency ©Fehling

74 Elasticity and Resiliency

Elastic Load Balancer

©Fehling

75 Elasticity and Resiliency

Elastic Queue

©Fehling

Pitfalls of Elasticity Management

Pitfalls of Elasticity Management

77 Elasticity and Resiliency

• Configuration of provider-supplied functionality commonly requires

• Condition: monitored state to react upon.

• Time threshold: duration how long the condition has been observed.

• Action: tasks to be performed.

 (The same aspects have to be realized in custom implementation as well)

• These parameters are critical for the success of elasticity

• Bad conditions: need to scale is missed / not seen.

• Bad threshold: instances are added / removed too often.

• Inadequate actions: too few instances are added / removed.

• Heuristics have to be respected (holidays, seasons sales…)

 This behavior is very similar to a heating system in buildings

• Temperature is kept in a certain threshold

• Activations and deactivations of the heating shall be reduced!

Elasticity is hard to realize even if functionality is provider-supplied!

©Fehling

Node-based Availability
A cloud provider guarantees the availability of nodes, such as individual virtual
servers, middleware components or hosted application components.

Environment-based Availability
A cloud provider guarantees the availability of the environment hosting
individual nodes, such as virtual servers or hosted application components.

78 Elasticity and Resiliency ©Fehling

79 Elasticity and Resiliency

Node-based Availability

Environment-based Availability

©Fehling

Watchdog
Applications cope with failures by monitoring and replacing application
component instances if the provider-assured availability is insufficient.

80 Elasticity and Resiliency ©Fehling

81 Elasticity and Resiliency

Watchdog

©Fehling

Elasticity and Resiliency

Elasticity and Resiliency

What shall happen if workload changes or something fails?

©Fehling

User Interface

Request
Queue

Special Processing

Coffe Processing

Result
Queue

82

Lessons Learned

83 Elasticity and Resiliency

Analyze availability assured by provider
(node-based availability or environment-based).

In case of low node-based availability or environment-based availability
implement a watchdog.

Use messages and requests to determine necessary component instances.

©Fehling

Summary

Summary Architectural Questions

Summary

Decomposition Workload Data (State)
Component
Refinement

Elasticity and
Resiliency

©Fehling 85

And there are many more: http://www.cloudcomputingpatterns.org

©Fehling
86

Summary 87 ©Fehling

http://www.springer.com/978-3-7091-1567-1

