
Elastic Computing and Engineering

Elastic Applications in the Cloud
Summer SOC, Crete, 2 July 2013

Schahram Dustdar and Hong-Linh Truong

Distributed Systems Group

TU Vienna

http://dsg.tuwien.ac.at/research/viecom/

Acknowledgements

NOTE: The content includes some ongoing work

Includes some joint work with Kamal Bhattacharya, Muhammad Z.C. Candra,

Georgiana Copil, Daniel Moldovan, Mirela Riveri, Ognjen Scekic

Outline

 Part 1: Elastic Computing

 Motivation for multi-dimensional elasticity

 Quality/cost/benefits analytics

 HBS cloud concepts

 Conclusions

 Part 2: Engineering Elastic Applications in the Cloud

 Programming hybrid services for solving (in)dependent tasks

 Programming incentives

 Controlling and monitoring elasticity

 Conclusions

 Part 3: Demonstration of elasticity control and monitoring

PART 2 – ENGINERING

ELASTIC APPLICATIONS

Engineering Elastic Applications in the

Cloud – using hybrid service units for

dependent tasks

HBS Instances Provisioning

Individual Compute Unit instances (iICU): iICU describe instances

of HBS built atop capabilities of individuals. An individual can provide

different iICU. Analogous to SBS, an iICU is similar to an instance of a

virtual machine or a software.

Social Compute Unit instances (iSCU): iSCU describe instances of

HBS built atop capabilities of multiple individuals and SBS. Analogous to

SBS, an iSCU is similar to a virtual cluster of machines or a complex set of

software services.

 Types of services :

 Individual Compute Unit (ICU)

 Social Compute Unit (SCU

HBS Instances Provisioning

• Based on utilization and types of tasks

• Declared by ICU/SCU

• Enforced by HBS cloud providers

Incentive
factors

• iICU(CS, HPU, archtype, price,
incentive, utilization,location, APIs)

• iSCU(CS,HPU, archtype, price,
incentive, utilization,connectedness,
location, APIs)

• Other (traditional) NFPs

Instances
Descriptions

• utilization

• offering communication APIs

• connectedness

Pricing
factors

ICU/SCU Archetypes

An „archetype“ characterizes the problem domain that the
ICU/SCU can solve (the type of solutions)

Archtype ={

({WebDataAnalytics,TwitterAnalytics}, DataAnalytics),

({DataCleansing,DataEnrichment},DataQualityImprovement)

}

Types of solutions:

WebDataAnalytics, TwitterAnalytics, DataCleansing, DataEnrichment

Problem domains:

DataAnalytics and DataQualityImprovement

Cloud APIs for Provisioning Hybrid

Services

APIs hide low-level platforms and utilize low level HBS

communication interfaces

APIs for HBS information and
management

• listSkills();listSkillLevels();

• listICU();listSCU()

• negotiateHBS()

• startHBS()

• suspendHBS ()

• resumeHBS ()

• stopHBS()

• reduceHBS()

• expandHBS()

APIs for HBS execution and
communication

• runRequestOnHBS ()

• receiveResultFromHBS()

• sendMessageToHBS()

• receiveMessageFromHBS()

Prototype

(simulated

environment)

Combined with Jcloud/boto for real

SBS

Dependent/evoling tasks – example

 Some problems happen in a M2M gateway in a

building

 Network problem?

 Storage problem?

 Something wrong in the interface to chillers?

 M2M cloud connector problem?

 What happens if we repair the gateway?

Modeling HPU-aware task

dependency graphs

Link management skill constraints to tasks required HBS

Utilizing hybrid services for

evolving/dependent task graphs

Hong-Linh Truong, Schahram

Dustdar, Kamal Bhattacharya

"Programming Hybrid Services

in the Cloud", 10th International

Conference on Service-oriented

Computing (ICSOC 2012),

November 12-16, 2012, Shanghai,

China. Best Paper Award.

Forming iSCUs

 Done by consumers or cloud providers

SCU Formation

Algorithms

Business As

Usual

Corrective

Action

HBS

Constraints

Configuring iSCU

 Establish „connectedness“ based on compliance

constraints and network topology

 Addional cost might occur!

 Program SBS and HBS for the iSCU to have a

complete working environment.

 Different connectedness

 E.g., ring-based, star-based, and master-slave

topologies

Selecting HBS: Some algorithms

 Several algorithms can be built based on existing team

formation algorithms which do not consider dependency

graphs

 Different weighted factors can be considered

Forming iSCU by minimizing cost

and considering no direction

Example of star-based iSCU using

Dropbox as a communication hub

Programming a combination of

HBS and SBS

e.g., preparing/managing inputs/outputs for HBS using SBS

Change model for task graph’s

Human Power Unit

Engineering Elastic Applications in the

Cloud – using HBS for independent

tasks

Independent tasks

 Requests that can be serialized into a sequence of

independent tasks

 Tasks can still be ressigned/delegated among service

units

Examples: urban planning support in smart city

management

Different influences on SCU formations and operations

 Techniques

 Using Elastic Profile to specify constructs that can be

used to model trade-offs and the dynamic provisioning of

resources

 Expanding/reducing SCUs using elastic profile,

performance, trust, etc.

Elastic profile for human-based

services

Muhammad Z.C. Candra, Hong-Linh Truong, and

Schahram Dustdar, "Modelling Elasticity Trade-offs in

Adaptive Mixed Systems", 11th Adaptive Computing

(and Agents) for Enhanced Collaboration (ACEC)

Conference Track @ IEEE WETICE 2013, Hammamet,

Tunisia, 17-20, June, 2013.

Elastic SCU provisioning atop ICUs

Elastic profile
SCU (pre-)runtime/static formation

HBS cloud APIs

Muhammad Z.C. Candra, Hong-Linh Truong, and Schahram

Dustdar, Provisioning Quality-aware Social Compute Units in

the Cloud, June 2013, On submission

Algorithms

 Ant Colony

Optimization

variants

 FCFS

 Greedy

SCU

extension/reduction

 Task reassignment

based on trust, cost,

availability

Mirela Riveni, Hong-Linh Truong, and Schahram

Dustdar, A Feedback Based Approach for Elasticity

Coordination of Social Compute Units, June 2013,

On submission

Engineering Elastic Applications in the

Cloud – Incentive programming

Programming and executing

Incentives

Ognjen Scekic, Hong Linh Truong, Schahram Dustdar: Modeling Rewards and Incentive Mechanisms for Social BPM. BPM 2012: 150-155

Ognjen Scekic, Hong-Linh Truong, Schahram Dustdar, "Programming Incentives in Information Systems", 25th International Conference on Advanced

Information Systems Engineering(CAiSE'13), Springer-Verlag, Valencia, Spain, 17-21 June, 2013.

PRogrammable INCentives Framework

(PRINC)

Representation of external system suitable for modeling application of incentives.

• State – Global state, individual worker attributes and performance metrics.
• Time – Records of past and future worker interactions supporting time conditions.
• Structure – Representation and manipulation of various types of relationships

Rewarding
Model
(RMod)

 Examples of mechanisms that RMod can encode

and execute:

 At the end of iteration, award each ICU who scored

better than the average score of his/her immediate

neighbors.

 Unless the productivity increases to a level p

within n next iterations, expand/reduce current SCU by

adding highly trusted ICU or removing inefficient ICU

The Rewarding Model (RMod)

PRINC Framework

• Definition of system-specific artifacts, actions, attributes and relation types.
• Definition and parameterization of metrics, messages, structural patterns

and custom incentive mechanisms.

Mapping
Model

(MMod)

The Mapping Model (MMod)
 Example: Adapting a general incentive mechanism for a software testing company.

DSL

When a bug

report is verified,

award points to

the submitter. library

?

PRINC Framework

Incentive
Model
(IMod)  Declarative, domain-specific language.

 High-level, platform independent, human-

friendly notation.

 Structural incentive mechanism rotating presidency.

Illustrating Examples

internal rule representation
1.

2.

3.

Engineering Cloud Applications --

modeling and controlling multi-level

elasticity of cloud services

Specifying and controling elasticity

Elasticitc
Control

Language
Familiy

Data/Compute-
intensive
services

Software/Huma
n-intensive

services

Business/E-
science

Hybrid Mixed
systems

Workflows/Appli
cation

Services/Middle
ware/Systems

Basic primitives

Domain-specific/

Customized features

Schahram Dustdar, Yike Guo, Rui Han, Benjamin Satzger, Hong

Linh Truong: Programming Directives for Elastic Computing. IEEE

Internet Computing 16(6): 72-77 (2012)

SYBL -- Simple Yet Beautiful

Language

 Stimulated by directive programming models

 Goals: easy to use, high-level, multiple levels

of control

 Language for elasticity requirements

specification

 Possible users: cloud provider, application

owner, application developer, software provider

 Targeted to data/compute intensive cloud

services

Multi-level elasticity needed

Cost
“If the cost is greater than 800 Euro…”

Quality
“Response time should be less than an amount varying…”

Resources
“allocated memory should be at least 6 GB…”

Cloud Service

Service

Topology

Service Unit

Code Region

Service structure

SYBL main concepts (1)

 „Monitoring“

Directives for describing what needs to be monitored

and under what conditions

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for

Controlling Elasticity in Cloud Applications", 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), May 14-16, 2013, Delft, the Netherlands

SYBL main concepts (2)

 „Constraint“

Directive for describing what needs to true and under

what conditions

SYBL main concepts (3)

„Strategy“

Directive for describing how to achieve certain goals

and under what conditions

SYBL main concepts (4)

Other constructs: predefined functions and

environment variables

#SYBL.CloudServiceLevel

Mon1 MONITORING rt = Quality.responseTime

Cons1 CONSTRAINT rt < 2 ms. when nbOfUsers < 1000

Cons2 CONSTRAINT rt < 4 ms. when nbOfUsers < 10000

Cons3 CONSTRAINT totalCost < 800 Euro

Str1 STRATEGY CASE Violated(Cons1) OR Violated(

Cons2): ScaleOut

Priority(Cons1)=3, Priority(Cons2)=5

#SYBL.ServiceUnitLevel

ComponentID = Component3; ComponentName= DataEngine

Cons4 CONSTRAINT totalCost < 600 Euro

#SYBL.ServiceUnitLevel

ComponentID = Component2 ComponentName= ComputingEngine

Cons5 CONSTRAINT cpuUsage < 80%

#SYBL.CodeRegionLevel

Cons6 CONSTRAINT dataAccuracy>90% AND cost<400

Examples of SYBL elasticity

requirements

SYBL and Implementation

 Current SYBL implementation

in Java using Java annotations
@SYBL_CloudServiceDirective(monitoring=„“,constraints=„“,strategies=„“)

in XML

Specific xml schema
<SYBLElasticityDirective><Constraints><Constraint

name=c1>...</Constraint></Constraints>...</SYBLElasticityDirective>

 Other possibilities

C# Attributes
[SYBLElasticityAttribute(monitoring=„“,constraints=„“,strategies=„“)]

Python Decorators
@SYBLElasticityDecorator(monitoring,constraints,strategies)

...

Controling the elasticity

Cloud Service

Service

Topology

Service Unit

Code Region

OS process

VM

Virtual Cluster

Provider

Runtime Metrics

Requirements

Capabilities

Service structure
Elasticity information

Infrastructure system information

Complex mapping and generation

actions for enforcing elasticity (1)

Constructing and maintaining the elastic cloud service dependengy graph

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "Multi-level Elasticity Control of

Cloud Services", June 2013, On Submission.

Complex mapping and generation

actions for enforcing elasticity (2)

Steps in enforcing elasticity

Cloud providers/tools must support higher

and richer APIs for elasticity controls

Elasticity Control as a Service

Currently, we support non-shared computational resources (VM)

Examples of Elasticity Controls

A service provider deploys its cloud service to an IaaS infrastructure

Service topology level

Service unit level

Elasticity actions and metrics

Engineering Cloud Applications –

elasticity monitoring and analysis

The complexity of elasticity

monitoring

How to detect and characterize the elasticity

behaviors?

Elasticity Requirements

Elasticity Boundaries

Refined based

on runtime views

Elasticity Model for applications
Moldovan D., G. Copil,Truong H.-L., Dustdar S. (2013). MELA -

Monitoring ELastic cloud Services. On Submission

functions to determine if a service unit/service is

in the “elasticity behavior”

functions to characterize the

elasticity behavior from a

general/particular view

Examples of functions for Elasticity

Space and Signature

Change point detection

algs

Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong Linh Truong,

Schahram Dustdar: On estimating actuation delays in elastic computing

systems. SEAMS 2013: 33-42

Elasticity Space Func

Elasticity Signature Func

cost

qualitySignature 2

cost

qualitySignature 1

Multi-level monitoring and analysis

of cloud services

Apply different

elasticity

signature/space

functions

Common

functions/user-

defined functions

Serveral possible Elasticity Space

and Signature functions

 for different types of service and

elasticity behaviors

Elastic test

frameworks

Benchmarks

Machine

learning

Current research focus

Elasticity Space for Cloud

Infrastructure

Amazon Elasticity Space Rackspace Elasticity Space

MELA -- Elasticity Monitoring as a

Service

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar, MELA - Monitoring ELastic cloud

Services. June 2013, on Submission.

Conclusions (1) – Engineering

Elasticity

 The evolution of underlying systems and the utilization

of different types of resources under different models for

elasticity requires

 Complex, open hybrid service unit provisioning

frameworks

 Different strategies for dealing with different types

of tasks

 quality issues for software, data and people in an

integrated manner for different perspectives

 We are just at an early stage of developing techniques

for engineering elastic applications wrt multi-dimensional

elasticity

Conclusions (2) – Engineering

Elasticity

 Service engineering analytics of elastic systems

 Programming hybrid compute units for elastic

processes

 Elasticity specifications and reasoning techniques

 Elasticity spaces analytics

 Application domains

 „Social computer“ and smart cities (FP 7 FET Smart

Cities and PC3L)

 Computational science and engineering (FP 7

CELAR)

Thanks for your attention!

Hong-Linh Truong

Distributed Systems Group
TU Wien

dsg.tuwien.ac.at

