
W. Reisig

Conceptual foundations

of Service Oriented Computing

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

-- Formal Methods for SOC --

Prelude

1

Put into a general perspective

Is science driven by theory or by experiment?

Physics:

both

2

Biology:

so far: more by experiments, with increasing theory

Informatics:

so far: more by experiments (technology),

with decreasing theory

Paradigms of computing

Paradigms of computing

Classical programming

Object orientation

Corresponding Theory

Computable functions

ADT, Algebr. Spec, logic

3

SOC ??? Nothing;

driven by industry

Basic Assumption

SOC fundamentally differs from classical computing

� “always on”

� Non-terminating behaviors

� Not only computers run services,

but also organizations, machines, persons …

4

but also organizations, machines, persons …

State of the art

What do we see in SUMMERSOC, conceptually?

Plain English,

graphical representations (including BPMN etc)

program code.

5

May be, this is adequate

to cope with the problems actually considered.

My contributions

to recent SUMMERSOCS

� Loose Coupling

� Asynchronous Communication

� Open Petri Nets

6

� Open Petri Nets

Problems considered:

� The partners of a service (to meet a goal)

� Substitute a service by an other one

� Equivalence

� Adapter generation

� Tools

Learned from Frank
on Monday:

present a
commercial

7

Leaflets on the reception desk

20% discount

If you like Frank’s book

you will also like this one!

This year:
Synchronous Communication

… has deep theory.

Ultimate aim:

Learn from synchronous

communication

8

communication

for the asynchronous case.

Synchronous modeled asynchronous

9

Asynchronous modeled synchronous

10

Synchronous Processes etc:

their highlights in brief

1. Their definition: CCS

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

1. Their definition: CCS

2. Their canonical equivalence: Bisimulation

3. Their properties: CTL*

4. Their verification: Model Checking

11

Who is this?

After recent

face lifting:

12

Ἐπίκουρος

Born 341 bc
Propagating

the joy of live

Epikuros orders a pizza

Epikuros

hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!

idle

bu

sy

0
del!

Pizza Hut

wai

ting

prep

ared

tir

ed

0

0

ττττ eat! sleep!

= order!. del?. eat!. sleep!. 0

= order?. del!. 0

13

Epikuros|Pizza Huthun

gry

idle

ting

bu

sy

ared

0

ed

0

0

del?. eat!. sleep!. 0 | del!. 0 ττττ→→→→

eat!. sleep!. 0 | 0

(Epikuros|Pizza Hut) | Xanthippe ττττ→→→→ * 0|0|0

Ξανθίππη = eat?. sleep?. 0

ττττ→→→→

Idea: Xanthippe runs the delivery

Epikuros

hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!

idle

bu

sy

0
del!

Pizza Hut

= order!. del?. eat!. sleep!. 0

arri

ved

priv

ate

0eat? sleep?

= order?. del!. 0Pizza Hut’ = order?. del!.eat?.sleep?. 0

14

Problem: delivery now takes much time …

How improve?

Now : (Epikuros|Pizza Hut’) →→→→* 0|0

Ξανθίππη = eat?. sleep?. 0

hun

gry

wai

ting

prep

ared

tir

ed

del? eat! sleep!

idle

bu

sy

del!
arri

ved

priv

ate

eat? sleep?

bu

sy

0
del!

Epikuros = order!. del?. eat!. sleep!. 0

+ order?. del!. 0

… a second delivery branch

0

0
Pizza Hut’ = order?. del!.eat?.sleep?. 0

15

sy

Problem: delivery now takes much time …

How improve?

… yields two behaviors:

• The known one:

• The new one:

Epikuros|Pizza Hut’ ττττ→→→→ del?. eat!. sleep!. 0 | del!. 0 →→→→ ???

Epikuros does not like the blue branch …

Now : (Epikuros|Pizza Hut’) →→→→* 0|0

hun

gry

wai

ting

prep

ared

tir

ed

del? eat! sleep!

idle

bu

sy

del!
arri

ved

priv

ate

eat? sleep?

bu

sy

0
del!

Epikuros = order!. del?. eat!. sleep!. 0

+ order?. del!. 0

0

0

How avoid the blue branch ?

Pizza Hut’ = order?. del!.eat?.sleep?. 0

16

sy

… yields two behaviors:

• The known one:

• The new one:

Epikuros|Pizza Hut’ ττττ→→→→ del?. eat!. sleep!. 0 | del!. 0 →→→→ ???

Epikuros does not like the blue branch …

Now : (Epikuros|Pizza Hut’) →→→→* 0|0

hun

gry

wai

ting

prep

ared

tir

ed

del? eat! sleep!
Epikuros

How avoid the blue branch ?

0

idle

bu

sy

del!
arri

ved

priv

ate

eat? sleep?

buZ

sy

0
del!

+ order?. del!. 0

0
Pizza Hut’ = order?. del!.eat?.sleep?. 0

= order!. del?. eat!. sleep!. 0

17

idle
bu

sy
order?

arri

ved

priv

ate

0
eat? sleep?

0

Pizza Hut’’ =

order?. (del!.eat?.sleep!. 0 + del!. 0)

… yields one behavior:

Epikuros | Pizza Hut’’ →→→→* 0|0

Epikuros is happy

sy

hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!
Epikuros

Epikuros wants it repeatedly

= order!. del?. eat!. sleep!. 0

idle
bu

sy
order?

arri

ved

priv

ate

0
eat? sleep?

0

18

order?. (del!.eat?.sleep!. 0 + del!. 0)

Write equations:

Epikuros = order!. del?. eat!. sleep!. 0

Pizza Hut’’ = order?. (del!.eat?.sleep?. 0 + del!. 0)

Epikuros

Observe: Epikuros | Pizza Hut’’ →→→→* Epikuros | Pizza Hut’’

… which leaves him very happy

Pizza Hut’’ =

. Pizza Hut’’) . Pizza Hut’’

hun

gry

wai

ting

prep

ared

tir

ed

fin.
del? eat! sleep!

Epikuros turns jealous of

Xerxes = order!. del?. eat!. sleep!. Xerxes

What may happen:

(Epikuros | Pizza Hut’’) | Xerxes τ∗τ∗τ∗τ∗→→→→

(Epikuros | eat?.sleep?. Pizza Hut’’)| eat!. sleep!. Xerxes →→→→ …

Ξέρξης

After

recent

face

lifting

19

idle
bus

y
order?

arri

ved

priv

ate

fin.
eat? sleep?

fin.

Pizza Hut’’

Write equations:

Epikuros = order!. del?. eat!. sleep!. 0

Pizza Hut’’ = order?. (del!.eat?.sleep?. 0 + del!. 0) . Pizza Hut’’)

Epikuros

: (Epikuros | Pizza Hut’’) \ {del}

. Pizza Hut’’

Epikuros: Xerxes, don’t engage del !!!

Summing up: processes

Given sets N (names) and A (actions), νννν ∈ N.

For a ∈ A let αααα = a! or α α α α = a?; let B ⊆ A. CCS expressions:

P := 0| νννν | αααα.P | P1+P2 | P1|P2 | P\B

Epikuros
sleep!. Epikuros

20

Equations

ν = ν = ν = ν = P

sleep!. Epikuros
del!.eat?.sleep!. 0 + del!. 0

Epikuros | Pizza Hut’’
Epikuros | Pizza Hut’’ \ {del}

Epikuros = order!. del?. eat!. sleep!. Epikuros

α.P α→ P

P α→ P’

P + Q α→ P’

Q α→ Q’

P + Q α→ Q’

Replacement rules

P α→ P’

P | Q α→ P’ | Q

Q α→ Q’

P | Q α→ P | Q’

P α→ P’, Q α→ Q’

P | Q τ→ P’ | Q’

P α→ P’ , a∉ B

P\B α→ P’ \B

X = P, P α→ P’

X α→ P’

Extensions and variants

Most important:

Message passing.

Replace αααα = a! by αααα = a! (x)

and α α α α = a? by α α α α = a? (y),

with shared variables x and y

Synchronous Processes etc:

their highlights in brief

1. Their definition: CCS

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

1. Their definition: CCS

2. Their canonical equivalence: Bisimulation

3. Their properties: Temporal Logic

4. Their verification: Model Checking

23

Reminder

l0

l'1

l1a

a l3

l2
b

c

L: R:

r0 r1

r3

r2

a

b

c

24

idle
buz

zy
order?

arri

ved

priv

ate

0
eat? sleep?

0

Pizza Hut’’ :

order?. (del!.eat?.sleep!. 0 + del!. 0)

idle

buz

zy

del!
arri

ved

priv

ate

eat? sleep?

buz

zy

0
del!

+ order?. del!. 0

0
Pizza Hut’: order?. del!.eat?.sleep?. 0

A problem of quivalence

L has two traces: a.b, a.c

r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

L has two traces: a.b, a.c

„Systems with same traces are equivalent!“

R has same traces.

L and R are not equivalent, … by no means!

R is „more liberal“ than L : R simulates L

L does not simulate R

25

A problem of quivalence

r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

Def. L is simulated by R with iff

l α→ l‘ r

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0 “

Def. L is simulated by R with iff

b) If

a)

26

and l‘ is simulated by r‘

r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

Let’s construct

27

l α→ l‘ r

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0 “

b) If

a)

and l‘ is simulated by r‘

r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

Vice versa
1st try

c

28

l α→ l‘ r

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0 “

b) If

a)

and l‘ is simulated by r‘

l0

l'1

l1a

a l3

l2
b

c

L: R:

Vice versa

2nd try

r0 r1

r3

r2

a

b

c

29

l α→ l‘ r

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0 “

b) If

a)

2nd try

and l‘ is simulated by r‘

L1 is simulated by R1 with

r0 r1 r2

a b
l0

l'

l1a

a

l2
b

L1: R1:

l'1
a

30

30

l α→ l‘ r

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0 “

b) If

a)

and l‘ is simulated by r‘

R1 is simulated by L1 with

r0 r1 r2

a b
l0

l'

l1a

a

l2
b

L1: R1:

l'1
a

31

l α→ l‘ r

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0 “

b) If

a)

and l‘ is simulated by r‘

R1 is simulated by L1 with

r0 r1 r2

a b
l0

l'

l1a

a

l2
b

c

L1: R1:

l'1
a c

Def. L and R are equivalent iff they simulate one another.

Def. L and R are equivalent iff for some ,

R simulates L by , and

L simulates R by ()-1 .

32

(L and R are bisimular)

Bisimulation: yet another example

p0

p1a

a

a

b

q1

q0 a

b
a

33

p2
a a

b
q2 a

b

p0

p1a

a

a

b

q1

q0 a

b
a

Bisimulation: yet another example

34

p2
a a

b
q2 a

b

Why so complicated?
Why not

Def. L and R are equivalent

iff they simulate one another.

Why no rules

Theorem.

Let P, Q, R be processes,

Let P and Q be equivalent,

written P ∼ Q .

Then

P+R ∼ Q+RWhy no rules

0+0 τ→ 0

0|0 τ→ 0

Because we want

Compositionality

(equivalence to be

a congruence):

P+R ∼ Q+R

α.P ∼ α.Q

P|R ∼ Q|R

P/B ∼ Q/B
?

35

Variant: L is wekly simulated by R

then there exists

l0 r0 „ l0 is simulated by r0 “

b) If

a)

Caution!

Weak bisimulation is no congruence

36

l α→ l‘ r  τ∗→α→ τ∗ → r’

Complete Trace Equivalence

a

b

a a

b

L R

Combining termination and choice …

37

a is a complete trace of L but not of R

b b

Failure Equivalence

of a set M of actions

Def.: For an action w and a set of actions M:

[w,M] is a failure pair of P iff P may do a step

P –w → Q and no action of M is enabled in Q.

38

a

b

a

b c

a

c

[a,{c}] is a failure pair of L but not of R

b

L R

Failure Trace Equivalence

… like Failure equivalence.

But now you continue along a trace

aa

L R

39

a {f} c {e} d is a failure trace of L but not of R

a

c fb c

a

ed

a

c fb c

a

de

Ready Trace Equivalence

In a trace, between each two actions,
present the alternative actions.

a
a

a aa

L R

40

c c

[a,{c},b] is a ready trace of L but not of R

b b cb

Tree Equivalence

Unfold the transition systems as trees

L R iff both trees are isomorpic

L R

41

aa a

L R

Bisimulation
equivalence

Structural Equivalence

Equivalence:

L R iff the transtion systems are isomorphic

42

aa
a

L R

Further equivalences

Ready equivalence
Ready Simulation equivalence
Ready Trace Simulation equivalence
Completed Simulation equivalence
Failure Simulation equivalence

43

Failure Simulation equivalence
Failure Trace Simulation equivalence
Simulation equivalence
…

152 ones

The Linear Time – Branching Time

Spectrum
Branching Linear

K ! U ! B ! RS ! RT ! FT ! F ! CT ! T
R

44

S

less identification more

Synchronous Processes etc:

their highlights in brief

1. Their definition: CCS

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

2. Their canonical equivalence: Bisimulation

3. Their properties: Temporal Logic

4. Their verification: Model Checking

45

idle
buz

zy
order?

arri

ved

priv

ate

0
eat? sleep?

0

hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!
Epikuros

The computation graph

Pizza Hut’’

46

hungry

idle

waiting

buzzy

prepared

arrived

tired

private

ττττ

ττττ

hungry

buzzy

prepared

buzzy

tired

buzzy

waiting

idle

prepared

idle

tired

idle

eat! sleep!

eat!

Epikuros | Pizza Hut’’

idle
buz

zy
order?

arri

ved

priv

ate

0
eat? sleep?

0

hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!
Epikuros

Make it a tree

Pizza Hut’’

…

47

hungry

idle

waiting

buzzy

prepared

arrived

tired

private

ττττ

ττττ

hungry

buzzy

prepared

buzzy

tired

buzzy

waiting

idle

prepared

idle

tired

idle

eat! sleep!

eat!

Epikuros | Pizza Hut’’

hungry

idle

hungry

idle

hungry

idle

ττττ …

ττττ …

ττττ …

From a transition graph

to its tree

48

Once more: a process and its tree

49

Computation Tree Logic CTL*
p =

p p p p

50

Computation Tree Logic CTL*
p =

p p p p

51

AGEF

52

AGEG

53

Valid formulas

54

EX

AG (∨ EX)

AX

AGEF

EFG

Typical applications
“Never something bad happens” AG safely

“No deadlock reachable” AG enabled

„You can click to reach p“ EF p

“Whatever happens – you will succeed” AF Goal

55

“Each requirement is followed by an acknowledgement”
AG(req u AF ack)

“It makes sense to wait” AG AF avail

“You always can properly terminate” AG EF exit

Combining F and G

G F φ = φ holds infinitely often

.......φ φ φ φ φ

F G φ = φ stabilizes

..........

56

Tautologies: F G F φ � G F φ G F G φ � F G φ

..........φ φ φ φ φ φ φ φ

G (φ � F ψ) = φ leads to ψ

..........φ φ φ φψ ψ ψ

Why not just First order logic

(predicate logic)?

Example:

Whenever process A sends a message to process B,

then B eventually sends an acknowledgement to A.

First order:

57

First order:

� t (send(A,B,t) �� t’ (greater(t’,t) � send(B,A,t’)))

CTL*:

AG (Send (A,B) � AF Send (B,A))

Expressiveness
Why just THIS logic?

Theorem.

Two states are bisimilar

iff they satisfy the same CTL* properties.

Consequence:

Specify a system in terms of CTL*.

This may yield various different implementations.

They all are bisimular.

58

Synchronous Processes etc:

their highlights in brief

1. Their definition: CCS

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

2. Their canonical equivalence: Bisimulation

3. Their properties: CTL*

4. Their verification: Model Checking

59

to prove its correctness (theoretically)

To find subtle mistakes (practically)

In contrast: Testing

Testing shows presence of mistakes,

Why verify a system design?

60

Testing shows presence of mistakes,

but not their absence (E. Dijkstra)

Verification techniques

manually Hoare Logic, Invariants, descending functions, ...

interactive Theorem proving

61
automatically

interactive Theorem proving

Model Checking

Aim: Show that a CTL* formula φ holds in a transition system T .

Idea: Visit each state of T and derive its properties.

Combine the results to prove φ

First relevant results: 1986

Model Checking

62

First relevant results: 1986

Brake through: 1992

… a success story

with a fundamental problem:

state explosion

State Explosion
Assume: 2.4 GHz, sufficient store,

one new state per clock cycle:
how many states can you visit?

2,400,000,000 per second

144,000,000,000 per minute

63

144,000,000,000 per minute

8,840,000,000,000 per hour

207,360,000,000,000 per day

75,738,240,000,000,000 per year

1,514,764,800,000,000,000,000,000,000 since big bang
(< 1028)

Systems with 1028 states

Theoretically: 90 boolean variables

Praktically: 200 boolean variables (in distributed sytems)

64

Milestones of Model Checking:

1986: 106

1992: 1020

1996: 10100

2000: 101000

Supporting techniques:

Abstract interpretation,
Symbolic Model checking.

A miracle?
Cheating?

Clever technolgy?

Model Checking: How to use it

counter

example

simulate refine

65

system

specification formalize log. formula

abstract model

Model Checker +

-

make precise

spillover

Efficient algorithms

… not for CTL*,
but for subsets of it

66

CTL*

CTL LTL

Path Formulas

proposition p
p � (s0 s1 s2 s3 ...) iff p � s0

X path formula
X φ � (s0 s1 s2 s3 ...) iff φ � (s1 s2 s3 ...)

F path formula F path formula
F φ � (s0 s1 s2 s3 ...) iff φ � (si si+1 si+2 ...) for some i

G path formula
G φ � (s0 s1 s2 s3 ...) iff φ � (si si+1 si+2 ...) for all i

path formula U path formula
φ U ψ � (s0 s1 s2 s3 ...) iff ...

State Formulas

E path formula
E φ � s iff for some path π starting at s holds: φ � π

A path formula
A φ � s iff for each path π starting at s holds: φ � π

Efficient algorithms

CTL* : O(2|φ| |TS|)

LTL: Only path formulas : O(2|φ| |TS|)

CTL: Only state formulas: O (|φ | |TS|)

69

CTL*

CTL LTL

Fairness

p p p

a

b

d e

70

p

a

b
c

d

e

f

p p p

GFp �

GFp 	

Take GFp as part of

the specification of

W. Reisig

Synchronous Processes etc:

their highlights in brief

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

1. Their definition: CCS

2. Their canonical equivalence: Bisimulation

3. Their properties: Temporal Logic

4. Their verification: Model Checking

71

W. Reisig

Processes etc:

their highlights in brief

SUMMERSOC 2013

Theory of
Programming

Prof. Dr. W.
Reisig

1. Their definition: CCS

2. Their canonical equivalence: Bisimulation

3. Their properties: CTL*

4. Their verification: Model Checking

72

process algebras

equivalences

temporal logics

There are dozens of versions of

tools

