SUMMERSOC 2013

W. Reisig
Conceptual foundations
of Service Oriented Computing
-- Formal Methods for SOC --
Prelude

HHHHHHHH
Universitat

T[oXP)

Theory of
Programming

Prof. Dr. W.
Reisig

Put into a general perspective

|s science driven by theory or by experiment?

Physics:
both

Biology:
so far: more by experiments, with increasing theory

Informatics:
so far: more by experiments (technology),
with decreasing theory

Paradigms of computing

Paradigms of computing Corresponding Theory

Classical programming Computable functions
Object orientation ADT, Algebr. Spec, logic
SOC ??? Nothing;

driven by industry

Basic Assumption

SOC fundamentally differs from classical computing

= “always on”
= Non-terminating behaviors
= Not only computers run services,

but also organizations, machines, persons ...

Have the dream of a different' world
With rich conceptual foundations
Not just giving better answers,

but soliciting better questions ...

State of the art

What do we see in SUMMERSOC, conceptually?

Plain English,
graphical representations (including BPMN etc)
program code.

May be, this is adequate
to cope with the problems actually considered.

My contributions
to recent SUMMERSOCS

Loose Coupling

Asynchronous Communication
Etri NEtSI

@) Petri Net is: P
pen Fetri ets ptual bas (automata)

Conceé
Transition systems

Problems considered:

The partners of a service (to meet a goal)
Substitute a service by an other one
Equivalence

Adapter generation

Tools

Learned from Frank
on Monday:

present a
commercial

'Understandmg

Petri Nets

Leaflets on the reception desk
20% discount

If you like Frank’s book
you will also like this one!

‘5::1 Springer

This year:
Synchronous Communication

... has deep theory.

Ultimate aim:

Learn from synchronous
communication

for the asynchronous case.

Synchronous modeled asynchronous

® Y T

o<
i @
I

=

Async
ynchronous modeled synchronous

(9) O

End of
Prelude

= W Nk

SUMMERSOC 2013

Synchronous Processes etc:

their highlights in brief

Their definition: CCS

neir canonical equivalence: Bisimulation
neir properties: CTL*

neir verification: Model Checking

HHHHHHHH
Universitat

T[oXP)

Theory of
Programming

Prof. Dr. W.
Reisig

Who is this?

After recent
face lifting:

ETtikoupocg

Born 341 bc
Propagating
the joy of live

12

Epikuros orders a pizza

del? eat! . sleep!
e‘\‘ wai — > prep -> tir B o Epikuros = order!. del?. eat!. sleep!. 0
huno‘ ting ared ed
gry
del!
63(7- s Pizza Hut = order?. del!. 0
il of sy
idle
/
1 e 4R orep eat! - sleep! o
' 0
hun / tt')ng ars d e;l Epikuros|Pizza Hut ——
u
gry sy T del?. eat!. sleep!. 0 | del!. 0 ——
idle -

eat!. sleep!. 0| 0

—aveiTrTn = eat?. sleep?. 0

(Epikuros|Pizza Hut) | Xanthippe —— * 0|0|0

13

ldea: Xanthippe runs the delivery

del? eat! . sleep!
\ » wai — > prep -> tir B o Epikuros = order!. del?. eat!. sleep!. 0

el
huno‘d ting ared ed
gry
dell; meGllam sIeeg?
&7 bu aaoll pi'v 0 Piz#ejitutHut ordet@r2ialeFa0?.sleep?. 0
. (o) sy ve ate
idle

Now : (Epikuros|Pizza Hut’) —* 0|0

—aveiTrTn = eat?. sleep?. 0

Problem: delivery now takes much time ...
How improve?

14

a second delivery branch

del? eat! sleep!
e‘\' wai — > prep =2t B o Epikuros = order!. del?. eat!. sleep!. 0

of ting ared ed

hun
gry
del! ea sIeeg? 0
69‘? bu >arri 2955 priv Pizza Hut’ = order?. dell.eat?.sleep?. 0
()‘/7 sy ved ate
idle + order?. del!. 0
del!
O’de,? by =2 [
sy

... yields two behaviors: Now : (Eﬂ';“" os|Pizza Hut’) —* 0|0

e The known one:
e The new one:
Epikuros|Pizza Hut’ —— del?. eat!. sleep!. 0 | dell. 0 — ???

Epikuros does not like the blue branch ...

Problem: delivery now takes much time ...
How improve?

15

How avoid the blue branch ?

del? eat! sleep!
e‘\' e T (S =2t B o Epikuros = orderl!. del?. eat!. sleep!. 0

of ting ared ed

hun
gry
del! ea sleeg? 0
63‘? bu >arri 2955 priv Pizza Hut’ = order?. dell.eat?.sleep?. 0
o(/7 sy ved ate
idle + order?. dell. 0
del;
O,O'e/..p bU 0
sy

... yields two behaviors: Now : (Eﬂ';“" os|Pizza Hut’) —* 0|0

e The known one:
e The new one:
Epikuros|Pizza Hut’ —— del?. eat!. sleep!. 0 | dell. 0 — ???

Epikuros does not like the blue branch ...

16

How avoid the blue branch ?

2 / sleep!
et wai—%prep 298 1ir 2228 0
of i ared ed
hun ting
gry
del! ea slﬂ?
63‘? bu ——>arri ——>pr|v 0
()(/7 ved ate
idle >Y
del
v puz—22lh. 5
>Y ? leen?
de\‘- arri L privu £ER’ o
ved ate

idle order;? bu

sy
%lo

... yields one behavior:

Epikuros | Pizza Hut” —* 0|0

Epikuros is happy

Epikuros = order!. del?. eat!. sleep!. 0

Pizza Hut’ = order?. del!.eat?.sleep?. 0

+ order?. del!l. 0

Pizza Hut” =

order?. (dell.eat?.sleep!. 0 + del!. 0)

17

Epikuros wants it repeatedly

et
of ting ared ed
hun<
gry
? ?
s\ arri 2o, 1 1082 piggg Hut
A order? bu ved ate order?. (dell.eat?.sleep!. 0 + del!. 0)

8%
w

Write equations:
Epikuros = order!. del?. eat!. sleep!. Epikuros
Pizza Hut”’ = order?. (del!.eat?.sleep?. . Pizza Hut”” + del!. . Pizza Hut”’)

Observe: Epikuros | Pizza Hut”” —* Epikuros | Pizza Hut”’
... which leaves him very happy 18

ZEpENg

After
recent
face
lifting

Xerxes = order!. del?. eat!. sleep!. Xerxes

What may happen:
(Epikuros | Pizza Hut”’) | Xerxes — ">
(Epikuros | eat?.sleep?. Pizza Hut”)| eat!. sleep!. Xerxes — ...

: flames sleeg?; ; =
de\‘- arn%pnv Pizza Hut

ved ate

. # order? bus
. = o EMLKOUPOS

V4
Perfect _,
w (nOt SO nice for :8p5,\’\C,)

Write equations:
Epikuros = order!. del?. eat!. sleep!. Epikuros
Pizza Hut”’ = order?. (del!.eat?.sleep?. . Pizza Hut”” + del!. . Pizza Hut”’)

Epikuros: Xerxes, don’t engage del !!! : (Epikuros | Pizza Hut””) \ {del}

19

Summing up: processes

Given sets N (names) and A (actions), V € N.
For ae Aleta=alora =a?;, let Bc A. CCS expressions:

P:=0|v|ar]| P+pr,| P, P,|P\B

Epikuros \\\
sleep!. Epikuros
pr- EPIRU dell.eat?.sleep!. 0 + del!. 0

Epikuros | Pizza Hut”
Epikuros | Pizza Hut” \ {del}

Equations
V=P

Epikuros = order!. del?. eat!. sleep!. Epikuros

20

Replacement rules

:a?
ap_—asp o=alore
— > P Q—>qQ
P+Q —%—> P’ P+Q ——> Q’ _
al=a?, a?=a
P —9— p’ Q——>Q —95 P, Q —> Q

PlQ——>P|Q PlQ—"->P|Q PlQ—T>P|Q

— 9> P ,agB BCA perfect partners
P\B —9 P’\B e 10
0, 0\0, 0““0
X=P P _—9_p’ otc

X ——> P’

Extensions and variants

Most important:
Message passing.

Replace a=a! by a=al(x)
and oa=a? by a=a?(y),
with shared variables x and y

SUMMERSOC 2013

Synchronous Processes etc:
their highlights in brief

HHHHHHHH
Universitat

1. Their definition: CCS
2. Their canonical equivalence: Bisimulation| 1 [1p)

Theory of

3. Their properties: Temporal Logic Programming

Prof. Dr. W.

4. Their verification: Model Checking Reisig

Reminder

R:
o A
()
NG
dell . eat? . sleeg?
&7 buz Barg > priv O Pizza Hut’: orderp. de 1.eat?.sleep?. 0
0 ve ate
idle o + order?. dell. 0
. del!
7%, , bz =2 0
zy ? ?
de\‘- arri Eai'—)priy% 0 Pizza Hut” :
idle order? buz ved ate order?. (dell.eat?.sleep!. 0 + del!. 0)

zy
%Ao

24

A problem of quivalence
R:

L has two traces: a.b, a.c

,Systems with same traces are equivalent!”
R has same traces.

L and R are not equivalent, ... by no means!

R is ,more liberal” than L: R simulates L
L does not simulate R

25

A problem of quivalence

Def. L is simulated by R with /7~ \ iff

NS

» lgis simulated by r, “

b) If then there exists

TN

r —9—> r’ and I‘is simulated by r’

\/

26

r ° 63

° @ m Li SS\mu\a’ted by R

“h\./

a) I/ \r

» lgis simulated by r, “

b) If then there exists

T

r —%—>r’ and |"is simulated by r*

\/

b

C

O

>

27

Vice versa

» lgis simulated by r, “

b) If then there exists

TN

— I r—%—>r’ and l'is simulated by r

N

28

Vice versa

lo ro, o, lgissimulated by r, “
b) If then there exists
— I r—%—>r’ and Iis simulated by r*

N

29

L, is simulated by R, with /7 ™

L,: R,

ab)\
a

(D——
* My
a)|/ \r

» lgis simulated by r, “

b) If then there exists

oo

r —%—>r’ and |"is simulated by r*

\/

30
30

R, is simulated by L; with «

o 3
lo ro o, lgis simulated by r,

b) If then there exists

T

r —%—>r’ and |"is simulated by r*

\/

31

R, is simulated by L; with «

Def. L and R are equivalent iff they simulate-orreanother.

Def. L and R are equivalent iff forsome -~ x,
R simulates L by ~—~ X, and

L simulates R by (/7)1 . (L and R are bisimular)

32

Bisimulation: yet another example

33

Bisimulation: yet another example

34

Why so complicated?

Why not

Def.L and R are equivalent
iff they simulate one another.

Why no rules
0+0 ——> 0
0]0 —— 0 ?

Because we want
Compositionality
(equivalence to be
a congruence):

Theorem.

Let P. Q, R be processes,
Let Pand Q be equivalent,
written P~ Q..

Then

P+R ~ Q+R
a.P ~ 0.Q
P|R ~ Q|R
P/B ~ Q/B

35

Variant: L is wekly simulated by R

a) I/ \r

» lgis simulated by r, “

b) If then there exists

Cot Y

r—to> o5t

N— A

Caution!
Weak bisimulation is no congruence

36

Complete Trace Equivalence

Combining termination and choice ...

a is a complete trace of L but not of R

37

Failure Equivalence
of a set M of actions

Def.: For an action w and a set of actions M:
[w,M] is a failure pair of P iff P may do a step

P—w — Q and no action of M is enabled in Q.

[a,{c}] is a failure pair of L but not of R

38

Failure Trace Equivalence

... like Failure equivalence.
But now you continue along a trace

a {f} c{e} d is a failure trace of L but not of R

39

Ready Trace Equivalence

In a trace, between each two actions,
present the alternative actions.

=FT

ZRT b c

[a,{c},b] Is a ready trace of L but not of R

40

Tree Equivalence

Unfold the transition systems as trees

L =y Riff both trees are isomorpic

L R
a a —B a
A e \x
Bisimulation

equivalence

41

Structural Equivalence

Equivalence:
L =k R iff the transtion systems are isomorphic

42

Further equivalences

Ready equivalence

Ready Simulation equivalence
Ready Trace Simulation equivalence
Completed Simulation equivalence
Failure Simulation equivalence
Failure Trace Simulation equivalence
Simulation equivalence

152 ones

43

The Linear Time — Branching Time
Spectrum

Branching Linear

KIUIBIRS!RT!FT!FICT!T

N

S

less Identification more

44

o A=

SUMMERSOC 2013

Synchronous Processes etc:
their highlights in brief

Their definition: CCS

Their canonical equivalence: Bisimulation
Their properties: Temporal Logic

Their verification: Model Checking

Humboldt
Universitat

T[oXP)

Theory of
Programming

Prof. Dr. W.
Reisig

The computation graph

P P
de\‘ arri ——)eat' priv—wee - Pizza Hut”’

order? buz ved ate

idle ——>
prepared r tirg?

zy
w
arrived private

waiting

hungry__ T buzzy %

i preparedeat! ~ tiredleep! hungry

Y‘ buzzy&A buzzy&buzzy
/4 /4

S/eep/ waiting de/? prepareg,; tired
idle > idle > idle

Epikuros | Pizza Hut

Make it a tree

of ting ared ed
B
P P
de\‘- arri e—at'—)privw Pizza Hut”
- order? buz ved ate

zy
w

prepared g AhungrL__)
/ idle

arrived private
waiting

hungrL__> buzzy %/
\preparedeat’ tired/eep! hungry del’ hungry T s

id
e/, buzzy, buzzy, buzzy—" idle
\/: \/:
Sleey waltmg del? preparegat, tirgd hungry T o

idle _ o, > idle idle Neep\ idle

/>

e{z‘i

Epikuros | Pizza Hut

From a transition graph
to its tree

'done

! b,
Fi !
’ “
'done/ |done
- r % \-. - '

\ _—
F A" kY

.. N

N =l Ry
li"done (done| |done
T e N
R q " £ B A A
'-\!dc"? \rdone f_dune::' \done | {;;inn&_f'
\"-\-___,- - '1_. e .:"._ e _.-.__.‘ G "’i\

Fooa 4 L 4

48

Computation Tree Logic CTL
p = [

finally p globally p next p o until

Computation Tree Logic CTL
p = &3

finally p globally p

AG (O VEX@®)
AGEF@

EFG@

Typical applications

“Never something bad happens” AG safely
“No deadlock reachable” AG enabled
,You can click to reach p“ EF p

“Whatever happens — you will succeed” AF Goal

“Each requirement is followed by an acknowledgement”
AG(reqg u AF ack)

“It makes sense to wait” AG AF avail

“You always can properly terminate” AG EF exit

55

Combining F and G

GF@ = oholds infinitely often
OOO@OOO@WOOOWYOWO -

FGo@ = stabilizes
OO@OOOO@O@O@O@@@@ -
G(®F1) = leadsto

OO O0OWO OWO () wrreeee

Tautologies: FGFo*GFo GFGoe*FGo

56

Why not just First order logic
(predicate logic)?

Example:
Whenever process A sends a message to process B,
then B eventually sends an acknowledgement to A.

First order:
t (send(A,B,t) M. @ t’ (greater(t’,t) <@ send(B,A,t’)))

CTL*:
AG (Send (A,B) L AF Send (B,A))

S7

Expressiveness

Why just THIS logic?

Theorem.
Two states are bisimilar

iff they satisfy the same CTL* properties.

Consequence:
Specify a system in terms of CTL*.
This may yield various different implementations.
They all are bisimular.

58

A

SUMMERSOC 2013

Synchronous Processes etc:
their highlights in brief

Their definition: CCS

Their canonical equivalence: Bisimulation
Their properties: CTL*

Their verification: Model Checking

Humboldt
Universitat

T[oXP)

Theory of
Programming

Prof. Dr. W.
Reisig

Why verify a system design?
to prove its correctness (theoretically)
To find subtle mistakes (practically)
In contrast: Testing

Testing shows presence of mistakes,
but not their absence (E. Dijkstra)

60

Verification techniques

manually Hoare Logic, Invariants, descending functions, ..
interactive Theorem proving
automatically Model Checking

61

Model Checking

Aim: Show that a CTL* formula ¢ holds in a transition system T .
ldea: Visit each state of T and derive its properties.
Combine the results to prove @

First relevant results: 1986
Brake through: 1992
... @ success story
with a fundamental problem:

state explosion

62

State Explosion

Assume: 2.4 GHz, sufficient store,
one new state per clock cycle:
how many states can you visit?

2,400,000,000 per second

144,000,000,000 per minute

8,840,000,000,000 per hour

207,360,000,000,000 per day
75,738,240,000,000,000 per year

1,514,764,800,000,000,000,000,000,000 since big bang
(< 10%8)

63

Systems with 1072 states

Theoretically: 90 boolean variables

Praktically: 200 boolean variables (in distributed sytems)

Milestones of Model Checking:
Supporting techniques:

. 106

115526 11820 A miracle?
1996'. 10100 Cheating? Abstract interpretation,
| Clever technolgy? ~ Symbolic Model checkin

2000: 101000

64

Model Checking: How to use it

counter _
-~ A
example \

simulate refine

@ abstract " model

make precise Model Checker

TP formalize > :
specificatioy log. formul spillover

v

65

Efficient algorithms

... hot for CTL*,
but for subsets of it

CTL*

66

Path Formulas

proposition p
P”(SgS;S,S;...)Iff p” s,

X path formula
X@”(SgS;S,S3...) iff @ (s;S,8;5...)

F path formula
FO”(SyS;S,S;...)Iff@” (S;S;,1 Siy» ...) fOr some i

G path formula
G @ (SpS;S,S;3) Iff @7 (S;Sisq Sivp -) foralli

path formula U path formula
oUW ”(spS;S,S;...)Iff ...

State Formulas

E path formula
E ¢” s iff for some path 1tstarting at s holds: ¢” 1t

A path formula
A ¢@” s iff for each path Ttstarting at s holds: ¢” Tt

Efficient algorithms

CTL*: O(29 |TS|)
LTL: Only path formulas : O(219 |TS|)

CTL: Only state formulas: O (|| |TS])

CTL*

.

69

Fairness

|

e

=

f

d ~ €
»() .
=l
< at \)
]
o
GFp ity 28
Take GFp as part of
the specifichlrlf

70

A

SUMMERSOC 2013

W. Reisig
Synchronous Processes etc:

Humboldt
Universitat

their highlights in brief —

Their definition: CCS T %

Their canonical equivalence: Bisimulation Theory of
Programming

Their properties: Temporal Logic Prof. Dr. W.

Their verification: Model Checking Reisio

The end

-l A

SUMMERSOC 2013

W. Reisig

Processes etc:
their highlights in brief

There are dozens of versions of
Their definition: CCS
process algebras

Their canonical equivaiciice. visnnuiauun
Their properties: CTL* equivalences

Their verification: Mod temporal logics

tools

Humboldt
Universitat

T[oXP)

Theory of
Programming

Prof. Dr. W.
Reisig

