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Put into a general perspective

Is science driven by theory or by experiment?

Physics: 

both
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Biology: 

so far: more by experiments, with increasing theory

Informatics: 

so far: more by experiments (technology), 

with decreasing theory



Paradigms of computing

Paradigms of computing

Classical programming

Object orientation

Corresponding Theory

Computable functions

ADT, Algebr. Spec, logic
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SOC ??? Nothing; 

driven by industry



Basic Assumption

SOC  fundamentally differs  from classical computing

� “always on” 

� Non-terminating behaviors

� Not only computers run services, 

but also organizations, machines, persons … 
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but also organizations, machines, persons … 



State of the art

What do we see in SUMMERSOC, conceptually?

Plain English, 

graphical representations (including BPMN etc)

program code.
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May be, this is adequate

to cope with the problems actually considered.



My contributions

to recent SUMMERSOCS

� Loose Coupling 

� Asynchronous Communication

� Open Petri Nets
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� Open Petri Nets

Problems considered:

� The partners of a service (to meet a goal)

� Substitute a service by an other one

� Equivalence

� Adapter generation

� Tools



Learned from Frank
on Monday:

present a 
commercial
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Leaflets on the reception desk

20% discount

If you like Frank’s book

you will also like this one! 



This year: 
Synchronous Communication

…  has deep theory.

Ultimate aim: 

Learn from synchronous 

communication
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communication

for the asynchronous case.



Synchronous modeled asynchronous
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Asynchronous modeled synchronous
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Synchronous Processes etc: 

their highlights in brief

1. Their definition: CCS

SUMMERSOC 2013

Theory of 
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1. Their definition: CCS

2. Their canonical equivalence: Bisimulation

3. Their properties: CTL*

4. Their verification: Model Checking
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Who is this?

After recent 

face lifting: 
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Ἐπίκουρος 

Born 341 bc
Propagating 

the joy of live 



Epikuros orders a pizza

Epikuros

hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!

idle

bu

sy

0
del!

Pizza Hut

wai

ting

prep

ared

tir

ed

0

0

ττττ eat! sleep!

= order!. del?. eat!. sleep!. 0

= order?. del!. 0

13

Epikuros|Pizza Huthun

gry 

idle

ting

bu

sy

ared

0

ed

0

0

del?. eat!. sleep!. 0 | del!. 0 ττττ→→→→

eat!. sleep!. 0 | 0

(Epikuros|Pizza Hut) | Xanthippe  ττττ→→→→ * 0|0|0

Ξανθίππη =   eat?. sleep?. 0

ττττ→→→→



Idea: Xanthippe runs the delivery

Epikuros

hun

gry

wai

ting
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tir

ed

0del? eat! sleep!

idle

bu

sy

0
del!

Pizza Hut

= order!. del?. eat!. sleep!. 0

arri

ved
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ate

0eat? sleep?

= order?. del!. 0Pizza Hut’  =  order?. del!.eat?.sleep?. 0
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Problem: delivery now takes much time …

How improve?

Now :  (Epikuros|Pizza Hut’ ) →→→→* 0|0

Ξανθίππη =   eat?. sleep?. 0



hun

gry
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ting
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ed

del? eat! sleep!

idle
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del!
arri

ved
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ate

eat? sleep?
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sy

0
del!

Epikuros = order!. del?. eat!. sleep!. 0

+  order?. del!. 0

… a second delivery branch

0

0
Pizza Hut’  =  order?. del!.eat?.sleep?. 0
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sy

Problem: delivery now takes much time …

How improve?

… yields two behaviors:

• The known one: 

• The new one: 

Epikuros|Pizza Hut’   ττττ→→→→ del?. eat!. sleep!. 0 | del!. 0 →→→→ ???

Epikuros does not like the  blue branch …

Now :  (Epikuros|Pizza Hut’ ) →→→→* 0|0



hun

gry

wai

ting

prep

ared

tir

ed

del? eat! sleep!

idle

bu

sy

del!
arri

ved

priv

ate

eat? sleep?

bu

sy

0
del!

Epikuros = order!. del?. eat!. sleep!. 0

+  order?. del!. 0

0

0

How avoid the blue branch ?

Pizza Hut’  =  order?. del!.eat?.sleep?. 0
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sy

… yields two behaviors:

• The known one: 

• The new one: 

Epikuros|Pizza Hut’   ττττ→→→→ del?. eat!. sleep!. 0 | del!. 0 →→→→ ???

Epikuros does not like the  blue branch …

Now :  (Epikuros|Pizza Hut’ ) →→→→* 0|0



hun

gry

wai

ting
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ed

del? eat! sleep!
Epikuros

How avoid the blue branch ?

0

idle
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del!
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eat? sleep?

buZ

sy

0
del!

+  order?. del!. 0

0
Pizza Hut’  =  order?. del!.eat?.sleep?. 0

= order!. del?. eat!. sleep!. 0
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idle
bu

sy
order?

arri

ved

priv

ate

0
eat? sleep?

0

Pizza Hut’’  =

order?. ( del!.eat?.sleep!. 0  +  del!. 0 )

… yields one behavior:

Epikuros | Pizza Hut’’  →→→→* 0|0

Epikuros is happy

sy



hun

gry

wai

ting

prep

ared

tir

ed

0del? eat! sleep!
Epikuros

Epikuros wants it repeatedly

= order!. del?. eat!. sleep!. 0

idle
bu

sy
order?

arri

ved

priv

ate

0
eat? sleep?

0

18

order?. ( del!.eat?.sleep!. 0  +  del!. 0 )

Write equations:

Epikuros  =  order!. del?. eat!. sleep!. 0

Pizza Hut’’  =  order?. ( del!.eat?.sleep?. 0                       +   del!. 0 )  

Epikuros

Observe:  Epikuros | Pizza Hut’’   →→→→*   Epikuros | Pizza Hut’’ 

… which leaves him very happy 

Pizza Hut’’  = 

. Pizza Hut’’ ) . Pizza Hut’’ 



hun

gry

wai

ting

prep

ared

tir

ed

fin.
del? eat! sleep!

Epikuros turns jealous of  

Xerxes  =  order!. del?. eat!. sleep!. Xerxes 

What may happen:   

(Epikuros | Pizza Hut’’) | Xerxes   τ∗τ∗τ∗τ∗→→→→

(Epikuros | eat?.sleep?. Pizza Hut’’  )| eat!. sleep!. Xerxes   →→→→ …

Ξέρξης

After 

recent 

face 

lifting
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idle
bus

y
order?

arri

ved

priv

ate

fin.
eat? sleep?

fin.

Pizza Hut’’ 

Write equations:

Epikuros  =  order!. del?. eat!. sleep!. 0

Pizza Hut’’  =  order?. ( del!.eat?.sleep?. 0                       +   del!. 0 )  . Pizza Hut’’ ) 

Epikuros

:    ( Epikuros | Pizza Hut’’ ) \ {del}

. Pizza Hut’’ 

Epikuros:  Xerxes, don’t engage  del  !!!



Summing up:  processes

Given sets  N (names) and  A (actions),   νννν ∈ N.  

For  a ∈ A let αααα = a! or α α α α = a?;  let B ⊆ A.  CCS expressions:

P :=    0| νννν | αααα.P | P1+P2 | P1|P2 | P\B

Epikuros
sleep!. Epikuros
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Equations

ν = ν = ν = ν = P

sleep!. Epikuros
del!.eat?.sleep!. 0  +  del!. 0

Epikuros | Pizza Hut’’ 
Epikuros | Pizza Hut’’  \ {del}

Epikuros  =  order!. del?. eat!. sleep!. Epikuros 



α.P α→ P

P α→ P’ 

P + Q α→ P’ 

Q α→ Q’ 

P + Q α→ Q’ 

Replacement rules

P α→ P’            

P | Q α→ P’ | Q 

Q α→ Q’            

P | Q α→ P | Q’ 

P α→ P’,  Q α→ Q’ 

P | Q τ→ P’ | Q’ 

P α→ P’ , a∉ B 

P\B α→ P’ \B

X = P,   P α→ P’ 

X α→ P’ 



Extensions and variants

Most important:

Message passing.

Replace  αααα = a!   by  αααα = a! (x) 

and          α α α α = a?  by  α α α α = a? (y),

with shared variables x and y



Synchronous Processes etc: 

their highlights in brief

1. Their definition: CCS
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Theory of 
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1. Their definition: CCS

2. Their canonical equivalence: Bisimulation

3. Their properties: Temporal Logic

4. Their verification: Model Checking
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Reminder

l0

l'1

l1a

a l3

l2
b

c

L: R:

r0 r1

r3

r2

a

b

c
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order?. ( del!.eat?.sleep!. 0  +  del!. 0 )

idle
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buz
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0
del!

+  order?. del!. 0

0
Pizza Hut’:   order?. del!.eat?.sleep?. 0



A problem of quivalence

L  has two traces:    a.b,  a.c

r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

L  has two traces:    a.b,  a.c

„Systems  with same traces are equivalent!“

R  has same traces.

L  and R  are not equivalent, … by no means!

R  is „more liberal“  than L :     R  simulates L

L   does not simulate R      

25



A problem of quivalence

r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

Def. L  is simulated by R with iff

l α→ l‘ r 

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0  “

Def. L  is simulated by R with iff

b)  If

a)
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and l‘ is simulated by r‘



r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

Let’s construct
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l α→ l‘ r 

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0  “

b)  If

a)

and l‘ is simulated by r‘



r0 r1

r3

r2

a

b

c

l0

l'1

l1a

a l3

l2
b

c

L: R:

Vice versa
1st try

c
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l α→ l‘ r 

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0  “

b)  If

a)

and l‘ is simulated by r‘



l0

l'1

l1a

a l3

l2
b

c

L: R:

Vice versa

2nd try

r0 r1

r3

r2

a

b

c
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l α→ l‘ r 

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0  “

b)  If

a)

2nd try

and l‘ is simulated by r‘



L1 is simulated by  R1 with

r0 r1 r2

a b
l0

l'

l1a

a

l2
b

L1: R1:

l'1
a

30

30

l α→ l‘ r 

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0  “

b)  If

a)

and l‘ is simulated by r‘



R1 is simulated by  L1 with

r0 r1 r2

a b
l0

l'

l1a

a

l2
b

L1: R1:

l'1
a
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l α→ l‘ r 

then there exists

α→ r’

l0 r0 „ l0 is simulated by r0  “

b)  If

a)

and l‘ is simulated by r‘



R1 is simulated by  L1 with

r0 r1 r2

a b
l0

l'

l1a

a

l2
b

c

L1: R1:

l'1
a c

Def. L  and R  are equivalent iff they simulate one another.

Def. L  and R  are equivalent iff for some ,

R simulates L  by , and

L simulates R  by (            )-1   .
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(L and R are bisimular)



Bisimulation: yet another example

p0

p1a

a

a

b

q1

q0 a

b
a
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p2
a a

b
q2 a

b



p0

p1a

a

a

b

q1

q0 a

b
a

Bisimulation: yet another example
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p2
a a

b
q2 a

b



Why so complicated?
Why not

Def. L  and R  are equivalent

iff they simulate one another.

Why no rules

Theorem.  

Let  P, Q, R be processes,

Let  P and Q  be equivalent,

written P ∼ Q .

Then

P+R ∼ Q+RWhy no rules

0+0  τ→ 0

0|0  τ→ 0

Because we want

Compositionality

(equivalence to be

a congruence):

P+R ∼ Q+R

α.P ∼ α.Q

P|R ∼ Q|R

P/B ∼ Q/B
?

35



Variant:  L  is wekly simulated by  R

then there exists

l0 r0 „ l0 is simulated by r0  “

b)  If

a)

Caution!

Weak bisimulation is no congruence

36

l α→ l‘ r  τ∗→α→ τ∗ → r’



Complete Trace Equivalence

a

b

a a

b

L R

Combining termination and choice  …
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a is a complete trace of  L  but not of  R

b b



Failure Equivalence 

of a set M of actions

Def.:  For an action  w  and a set of actions  M:

[w,M] is a failure pair of P iff  P may do a step 

P –w → Q  and no action of M is enabled in Q.

38

a

b

a

b c

a

c

[a,{c}] is a failure pair of  L  but not of  R

b

L R



Failure Trace Equivalence

… like Failure equivalence. 

But now you continue along a trace

aa

L R
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a {f} c {e} d  is a failure trace of  L  but not of  R

a

c fb c

a

ed

a

c fb c

a

de



Ready Trace Equivalence

In a trace, between each two actions, 
present the alternative actions.

a
a

a aa

L R
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c c

[a,{c},b]  is a ready trace of L  but not of  R

b b cb



Tree Equivalence

Unfold the transition systems as trees

L          R iff both trees are isomorpic

L R

41

aa a

L R

Bisimulation 
equivalence



Structural Equivalence

Equivalence:

L         R  iff the transtion systems are isomorphic

42

aa
a

L R



Further equivalences

Ready equivalence
Ready Simulation equivalence
Ready Trace Simulation equivalence
Completed Simulation equivalence
Failure Simulation equivalence
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Failure Simulation equivalence
Failure Trace Simulation equivalence
Simulation equivalence
…

152 ones



The Linear Time – Branching Time 

Spectrum
Branching Linear

K ! U ! B ! RS ! RT ! FT ! F ! CT ! T
R

44

S

less                        identification                  more



Synchronous Processes etc: 

their highlights in brief

1. Their definition: CCS
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2. Their canonical equivalence: Bisimulation

3. Their properties: Temporal Logic

4. Their verification: Model Checking
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0
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0del? eat! sleep!
Epikuros

The  computation  graph

Pizza Hut’’ 
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hungry 

idle

waiting

buzzy

prepared

arrived

tired

private

ττττ

ττττ

hungry

buzzy

prepared

buzzy

tired

buzzy

waiting

idle

prepared

idle

tired

idle

eat! sleep!

eat!

Epikuros | Pizza Hut’’
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0del? eat! sleep!
Epikuros

Make it a tree

Pizza Hut’’ 

…
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hungry 

idle

waiting

buzzy

prepared

arrived

tired

private

ττττ

ττττ

hungry
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buzzy

tired
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idle

hungry 

idle

hungry 

idle
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ττττ …

ττττ …



From a transition graph 

to its tree
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Once more: a process and its tree
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Computation Tree Logic CTL*
p =

p p p p 
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Computation Tree Logic CTL*
p =

p p p p 
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AGEF 
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AGEG 
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Valid formulas
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EX

AG (      ∨ EX      )

AX

AGEF 

EFG



Typical applications
“Never something bad happens”                 AG safely

“No deadlock reachable”                          AG enabled

„You can click to reach p“ EF p 

“Whatever happens – you will succeed”        AF Goal 
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“Each requirement is followed by an acknowledgement”  
AG(req u AF ack)

“It makes sense to wait” AG AF avail

“You always can properly terminate” AG EF exit



Combining  F  and  G

G F φ =    φ holds infinitely often

.......φ φ φ φ φ

F G φ =    φ stabilizes

..........

56

Tautologies:  F G F φ � G F φ G F G φ � F G φ

..........φ φ φ φ φ φ φ φ

G ( φ � F ψ)   = φ leads to ψ

..........φ φ φ φψ ψ ψ



Why not just First order logic

(predicate logic)?

Example: 

Whenever process  A  sends a message to process  B, 

then  B  eventually sends an acknowledgement to  A.

First order: 
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First order: 

� t (send(A,B,t) �� t’ (greater(t’,t)  � send(B,A,t’)))

CTL*:

AG ( Send (A,B) � AF Send (B,A) )



Expressiveness
Why just  THIS logic?

Theorem.   

Two states are bisimilar

iff they satisfy the same CTL* properties.

Consequence:

Specify a system in terms of CTL*. 

This may yield various different implementations. 

They all are bisimular.
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Synchronous Processes etc: 
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1. Their definition: CCS
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2. Their canonical equivalence: Bisimulation

3. Their properties: CTL*

4. Their verification: Model Checking
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to prove its correctness (theoretically)

To find subtle mistakes (practically)

In contrast: Testing

Testing shows presence of mistakes,

Why verify a system design?

60

Testing shows presence of mistakes,

but not their absence (E. Dijkstra)



Verification techniques

manually Hoare Logic, Invariants, descending functions, ...   

interactive Theorem proving
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automatically

interactive Theorem proving

Model Checking



Aim: Show that a CTL* formula φ holds in a transition system T .

Idea: Visit  each state of  T  and derive its properties.

Combine the results to prove  φ

First relevant results: 1986

Model Checking 
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First relevant results: 1986

Brake through: 1992

… a success story

with a fundamental problem: 

state explosion



State Explosion
Assume: 2.4 GHz, sufficient store, 

one new state per clock cycle: 
how many states can you visit?

2,400,000,000 per second

144,000,000,000 per minute
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144,000,000,000 per minute

8,840,000,000,000 per hour

207,360,000,000,000 per day

75,738,240,000,000,000 per year

1,514,764,800,000,000,000,000,000,000 since big bang
(< 1028)



Systems with 1028  states

Theoretically:  90 boolean variables  

Praktically: 200 boolean variables (in distributed sytems)

64

Milestones of Model Checking:

1986: 106

1992: 1020

1996: 10100

2000: 101000

Supporting techniques:

Abstract interpretation,
Symbolic Model checking. 

A miracle?
Cheating?

Clever technolgy?



Model Checking: How to use it

counter 

example

simulate refine

65

system

specification formalize log. formula

abstract model

Model Checker +

-

make precise

spillover



Efficient algorithms

… not for CTL*,
but for subsets of it

66

CTL*

CTL LTL



Path Formulas

proposition p 
p � (s0 s1 s2 s3 ... ) iff p � s0

X path formula
X φ � (s0 s1 s2 s3 ... ) iff φ � (s1 s2 s3 ... )

F path formula F path formula 
F φ � (s0 s1 s2 s3 ... ) iff φ � (si si+1 si+2 ... ) for some i

G path formula 
G φ � (s0 s1 s2 s3 ... ) iff φ � (si si+1 si+2 ... ) for all i

path formula  U  path formula
φ U ψ � (s0 s1 s2 s3 ... ) iff ...



State Formulas

E path formula
E φ � s iff for some path π starting at s holds: φ � π

A path formula
A φ � s iff for each path π starting at s holds: φ � π



Efficient algorithms

CTL* : O(2|φ| |TS|)

LTL: Only   path formulas : O(2|φ| |TS|)

CTL: Only  state formulas: O (|φ | |TS|)
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CTL*

CTL LTL



Fairness

p p p

a

b

d e
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p

a

b
c

d

e

f

p p p

GFp  �

GFp 	

Take GFp as part of 

the specification of
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process algebras

equivalences

temporal logics

There are dozens of versions of 

tools


