Shopper

Crowd-Sensing: an Internet of Things Approach Iacopo Carreras U-Hopper

Advanced School on Service Oriented Computing July, 2013, Hersonissos Crete Greece

Organization of the Talk

- Crowd-sensing: the why and the how
 - What is crowd-sensing
 - Motivating scenarios / Startups
- Architecture and challenges
- Internet of Things
- COMPOSE
- Conclusions

3 Jul 2013, Hersonissos, Crete

bluetooth ambient light microphone pression GPS WiFi accelerometer NFC gyroscope compass photo/video

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

societal scale ubiquitous sensing infrastructure

CROWD-SENSING:

HOW TO LEVERAGE SUCH A PERVASIVE SENSING INFRASTRUCTURE?

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

- Environmental
 - pollution levels
 - water, wildlife

IBM CreekWatch

- Environmental
 - pollution levels
 - water, wildlife

- Monitoring Urban Spaces
 - traffic congestion,
 - parking availability
 - road conditions

4.000

BM CreekWatch

- Environmental
 - pollution levels
 - water, wildlife

- Monitoring Urban Spaces
 - traffic congestion,
 - parking availability
 - road conditions
- Personal Sensing
 - Bike Net
 - DietSense

6

.000

BM CreekWatch

Dartmouth Bikenet

Pothole Detection

- Objectives
 - measure presence of potholes from geo-localized accelerometers traces
- Challenges
 - Loosely labeled training data
 - Anomalies similar to potholes (e.g., curbs, manholes)
 - False positives

NoiseMap

- Objectives
 - measure noise pollution
- Challenges
 - Incentives
 - Microphone data quality
 - Calibration
 - Combination of heterogeneous sources

BikeNet

Carbon dioxide Map

- Objectives:
 - share cycling experience
 - monitor urban environment
- Challenges
 - privacy
 - data delivery

Mobile Territorial Lab

Exploit smartphones' sensing capabilities to:

- infer individual and social dynamics
- improve personal awareness and self-knowledge,
- empower communities through citizens data (mobility, spending, mood and stress etc.),
- advance knowledge on a given territory

Big Data Better Life

BIG DATA AND PERSONAL DATA FOR BEHAVIORAL ANALYSIS AND BEHAVIORAL CHANGE

http://www.mobileterritoriallab.eu

3 Jul 2013, Hersonissos, Crete

Environmental Monitoring

Potholes

Biking

Traffic

Health Monitoring

Urban rhythms

Air quality

Emotional State

Stress

Noise Pollution

Diet

Garbage Urban sensing

WHAT ABOUT Startups?

3 Jul 2013, Hersonissos, Crete

Sense Networks

- Transforms raw location data into <u>actionable</u> intelligence
 - from opt-in locations
 - extract behavioral attributes
 - build anonymous profiles
- Example of applications
 - ad-targeting
 - recommend "hot" spots in the city

SenseNetworks in Action

3 Jul 2013, Hersonissos, Crete

behavio

An open source, reusable set of functionalities, enabling the collection, uploading, and configuration of a wide range of data signals accessible via mobile phones.

Architecture

source: Mobile Crowdsensing: Current State and Future Challenges, K. R. Fanti, F.Ye, H. Lei

3 Jul 2013, Hersonissos, Crete

Challenges

- Understanding and interpreting the sensed data
 from incomplete and sparse data
- Privacy
- Energy efficiency
- Incentive mechanisms
- Program human-based computations/tasks
 - recruitment, incentives, reliability

WHY

INTERNET OF THINGS?

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

18

Internet of Things

- Project Fact-sheet:
 - Integrated Project
 - Objective: I.2 (Internet of Services)
 - Number of partners: I2
 - Coordinator: IBM Haifa
 - 2 SMEs, W3C, 4 Research centers, I Telco,
 2 Universities, I Business Dev. company
 - Duration: 3 years
 - Started Nov. 2012
 - Total Cost: 7.4M Euros
 - EC contribution: 5.35M
 - Web site: <u>www.compose-project.eu</u>

3 Jul 2013, Hersonissos, Crete

20

COMPOSE Objectives

• Objectives:

- Design and implement an open and scalable service
 Market Place to easily and securely develop, deploy, share and maintain services
 based on Internet-connected smart objects
- Cover the whole service lifecycle
- Become the Appstore/Google
 Play for Smart Objects

Monday, 8 July, 13

Approach

@Copyright:Vlad Trifa, Evrythng

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

Technical Approach

Web-based architecture User Composite Service Service **Composite Smart Object Objects service management:** End-Users Service Object object and interaction Objects virtualization, discovery Open Market Place Services accounting events stream processing Service design and execution SO Service Objects discovery, composition, SO orchestration runtime **Objects** Marketplace support SDK/GUI for developers

Monday, 8 July, 13

experience

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

Smart City

day-by-day citizen experience

Smart Space

Augmented shopping experience

Smart Territory

highly distributed objects & services

Smart City

day-by-day citizen experience

Smart Space

Augmented shopping experience

3 Jul 2013, Hersonissos, Crete

Issues

- Scalability
 - at the Object level (# of objects generating data)
 - at the Application level (# of app consuming data)
- Dynamic system behavior
 - programmable real-time stream processing
 - unreliable data streams
- Service modeling
- Privacy and security
- Heterogeneity
 - of devices
 - of data streams

TO CONCLUDE

3 Jul 2013, Hersonissos, Crete

Take-Away Messages

- Smartphones are becoming a primary source of data pertaining to users daily patterns and the surrounding environment
 - can be considered as Internet connected (sensing) Objects
- It's "for free"
 - no infrastructural costs
 - (Big) data is there

Questions?

Iacopo Carreras Email: iacopo.carreras@u-hopper.com skype: i_carreras

Back-up

3 Jul 2013, Hersonissos, Crete

MATADOR: server side

Server Side

- Create and configure crowd-sensing tasks
- Visualize and analyze data

MATADOR: mobile app

Mobile application

- Synchronizes tasks
- Trigger tasks to users
- Deliver results to web application

Context-Aware Crowd-

Crowd-Sensing Task

User Context

Contextual validity

- Geographical
- temporal
- User activity
- User profile

Activity

- Data logging
- Questionnaire
- Other

User context

- Position
- Time/date
- Activity
- Profile

3 Jul 2013, Hersonissos, Crete

32

Problem Formulation

Design a context sampling algorithm which is able

- I. Minimize mobile devices' energy consumption
 - Temporal
 - User activity
 - User profile
- 2. Maximize the # of detected tasks

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

3 Jul 2013, Hersonissos, Crete

Monday, 8 July, 13

3 Jul 2013, Hersonissos, Crete

Preliminary Evaluation

Simulation study

- 30 Km route
- 50 Km/h
- NTWacc = I Km, GPSacc = 20

Task detection at different <u>constant</u> GPS sampling rates

Monday, 8 July, 13

Field Test

Small scale field test

- 400 Km of driving
- User carrying the MATADOR mobile application
- 40 tasks distributed over the path
 - Task radius from 250 to 500 meters

Trip duration	4h 20 mins
# of samples	252
# of GPS samples	103
# of Network samples	149
Average Network accuracy	2159 m
Average GPS accuracy	5 m
Detection Rate	76%

