

A Service-oriented Approach for Improving Quality of Health Care Transitions

¹Transformation Services Laboratory University of Crete Heraklion, 70013, Greece

²Department of Electrical and Computer Engineering, North Carolina State University, North Carolina candice@ncsu.edu M. Bitsaki¹, Y. Viniotis²

bitsaki@tsl.gr

Outline

- Transition of Care
- Service System for Transition of Care
- The Mathematical Problem Formulation
- Example
- Conclusions and Future Work

Transition of Care

Transition of patients from a primary, expensive facility to a secondary, less expensive facility that provides medical support to ensure a successful recovery

Medical Problem

- Manage patients transitions between healthcare settings in a cost-effective way and at the same time improve their medical status
- The transferring party provides medical records and instructions to the receiving party
- The receiving party monitors predefined patient characteristics and evaluates the health status of the patient
- The communication and the coordination of services between the two health care providers are performed by an intermediary
 - provides electronic health record technologies to gather, share and exchange information.

Outline

- Transition of Care
- Service System for Transition of Care
- The Mathematical Problem Formulation
- Example
- Conclusions and Future Work

Our Approach

- We define a service system that describes the interconnections among
 - humans (doctors, patients, engineers),
 - organizations (hospitals, insurance companies, data management service companies) and
 - technology (cloud environments, data repositories, sensors, etc.
- **Objective**: facilitate the transition of patients in a cost effective way and at the same time improve their medical status

the Service System of Transition of Care

- The components of the proposed service system are
 - the entities that interact with each other and
 - the relationships that enable the flow of information, services and revenues among entities

The Service System of Transition of Care

- We define the following types of entities
 - A number of **primary facilities** (PF): they provide a healthcare service to patients
 - A number of secondary facilities (SF): they provide a healthcare service to patients
 - Transition of care **intermediary** (TCI):
 - handles the logistics of the patient transfer from PF to SF
 - matches PFs to SFs
 - there might be more than one competing TCIs
 - Patients: they use health services provided by PFs and SFs
 - Insurance company: covers hospitalization costs

The Service System of Transition of Care

- We use the following payment model to specify the flows of revenues over the relationships among the entities of the service system:
 - Bundled payments model (ACO):
 - The insurance company pays PF to insure a population of potential patients
 - The PF pays the SF and TCI, either on a per patient basis or as a bundled payment
 - There are cost limits on a per patient basis as well as per disease basis

- The performance of the service system is measured through a number of Key Performance Indicators (KPIs)
 - Cost of care per patient
 - Patient satisfaction
 - Readmission rate from SF back to PF that reflects the quality of service provided by SF
 - Market share each intermediary gains in a competitive environment

Factors that Affect KPIs

- Services provided by the various entities
 - High quality services reduce readmission rate
- Use of Infrastructure (EMR of the patient, sensors in the patient room, automation in transition process)
 - Decreases readmission rate \rightarrow decreases costs (indirectly)
 - Increases cost (directly)
- Matching of PFs to SFs
 - Considering patient preferences increases patient satisfaction
 - Considering geographical constraints reduces costs

- We analyze the proposed service system for solving the following problem
 - What is the **optimal matching** of PFs and SFs such that the overall cost is minimized provided that patients' preferences and economic constraints are satisfied?

The Problem of Matching Pfs to SFs

- The formulation of the service system and the interactions among the entities depend on the way the intermediaries match PFs to SFs
 - Match PFs to SFs statically, on a per facility basis: A PF may be matched to one or multiple SFs and an SF may be matched to one or multiple PFs
 - Match PFs to SFs dynamically, on a per patient basis
 - Match PFs to SFs on a per disease basis: SFs are specialized with patients of a common disease

Outline

- Transition of Care
- Service System for Transition of Care
- The Mathematical Problem Formulation
- Example
- Conclusions and Future Work

- The transition of care intermediary (TCI) aims at statically matching primary facilities (PFs) to secondary facilities (SFs) on a per facility basis
- Objective: choose the matching of each PF to a set of SFs so as to minimize the total cost of PFs

Properties of SFs

Let SCF = {SF₁, ..., SF_J} be the set of secondary facilities

- $-RR_j$: the readmission rate $(0 \le RR_j \le 1)$
- $-\overline{C}_{j}$: the cost per patient that SF_{j} charges ($\overline{C}_{j} > 0$)
- $-PSI_j$: the patient satisfaction index ($0 \le PSI_j \le 1$)

- Let $PCF = \{PF_1, \dots, PF_I\}$ be the set of primary facilities
 - GC_i : the geographical constraint (subset of the set $\{1, ..., J\}$)
 - $-MCP_i$: the maximum cost per patient ($MCP_i > 0$)
 - $-MRR_i$: the maximum tolerable readmission rate $(0 \le MRR_i \le 1)$
 - $MPSI_i$: the minimum tolerable patient satisfaction index ($0 \le MPSI_i \le 1$)

- Let M_i denote the set of SF_j that will receive patients from PF_i
- Let *M* denote the matching of all PFs to SFs

$$M = \{M_1, M_2, \dots, M_I\}$$

• **Total cost** for choice *M*:

$$C(M) = \sum_{i=1}^{I} C_i(M_i)$$

where $C_i(M_i) = \frac{1}{|M_i|} \sum_{j \in M_i} \overline{C_j}$

The Constraints

- The constraints to be satisfied are the following:
 - $M_i \in GC_i, \forall i \in \{1, \dots, I\}$
 - $RR_j \leq MRR_i, \forall j \in GC_i, \forall i \in \{1, \dots, I\}$
 - $PSI_j \ge MPSI_i, \ \forall j \in GC_i, \forall i \in \{1, \dots, I\}$
- The set of choices satisfying the constraints is denoted as ${\mathcal M}$

Cost Minimization

$\min_{M \in \mathcal{M}} C(M) \text{ such that} \\ C_i(M_i) \leq MCP_i, \forall i \in \{1, \dots, I\}$

Outline

- Transition of Care
- Service System for Transition of Care
- The Mathematical Problem Formulation
- Example
- Conclusions and Future Work

• Properties of primary care facilities

<i>PF</i> _i	GC _i	MCP _i	MRR _i	MPSI _i
1	{1,2,3}	1100	0.8	0.8
2	{2}	1100	0.8	0.8
3	{1,2,3,4,5}	1000	0.7	0.6

• Properties of secondary care facilities

SF _j	\overline{C}_{j}	RR _j	PSI _j
1	1100	0.7	0.9
2	1000	0.8	0.8
3	1000	0.8	0.7
4	1000	0.7	0.8
5	900	0.6	0.8

• Feasible choices with no constraints

$$|M| = (2^5 - 1)(2^5 - 1)(2^5 - 1) = 29791$$

• Feasible choices with constraints

$$|\mathcal{M}| = (2^2 - 1)(2^2 - 1) = 9$$

• The optimal solution

 $PF_1 \rightarrow SF_2, PF_2 \rightarrow SF_2, PF_3 \rightarrow SF_5$ $M = \{\{2\}, \{2\}, \{5\}\} \text{ with total cost } C(M) = 2900$

Future Work

 Model strategic interactions among healthcare facilities for improving the performance of the service system in terms of patient satisfaction or readmission rate