

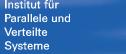
The TPL Mission: We Bring Customized Cloud Technology to Your Private Data Centers

Tim Waizenegger

University of Stuttgart, Technology Partnership Lab, Universitätsstr. 38, 70569 Stuttgart, Germany tim.waizenegger@ipvs.uni-stuttgart.de http://www.ipvs.uni-stuttgart.de

Agenda

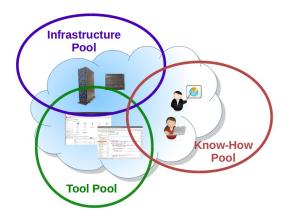
- Introduction what is the TPL?
- Our Projects: ECM on Cloud
- Our Projects: ECM DSL
- Our Projects: SDOS


What is the TPL?

 The Technology Partnership Lab is part of the University of Stuttgart Cooperative Research Campus

 It provides an umbrella organization for conducting research projects with industry partners

- For more information search for *"tpl uni stuttgart"*
- Find us on youtube, search for *"ibm uni stuttgart"*



Universität Stuttgart

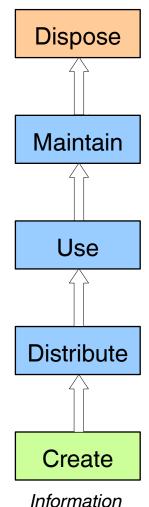
Our Goals

IPVS

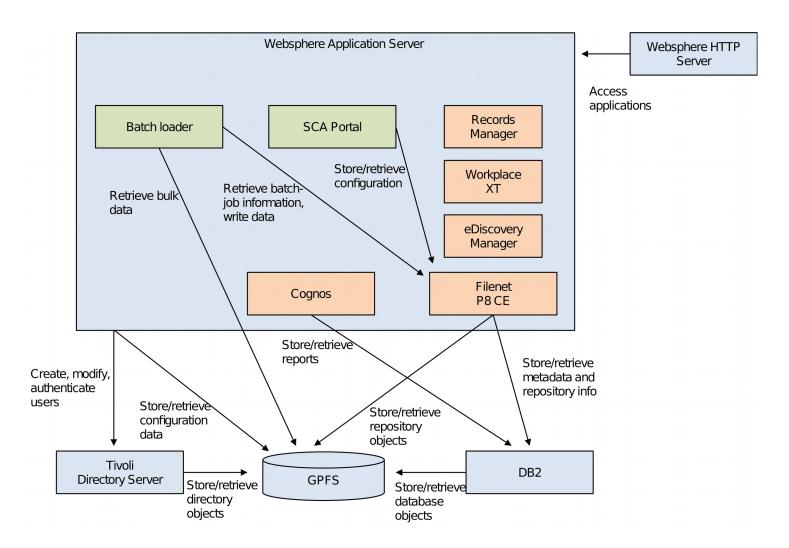
 Provide infrastructure, software-tools and know-how in order to successfully conduct research projects

- Bring industry experience and current problem statements into the university curriculum
- Finalize and polish research findings and transfer them to industry products

Tim Waizenegger - SummerSOC 2015


- Introduction what is the TPL?
- Our Projects: ECM on Cloud
- Our Projects: ECM DSL
- Our Projects: SDOS

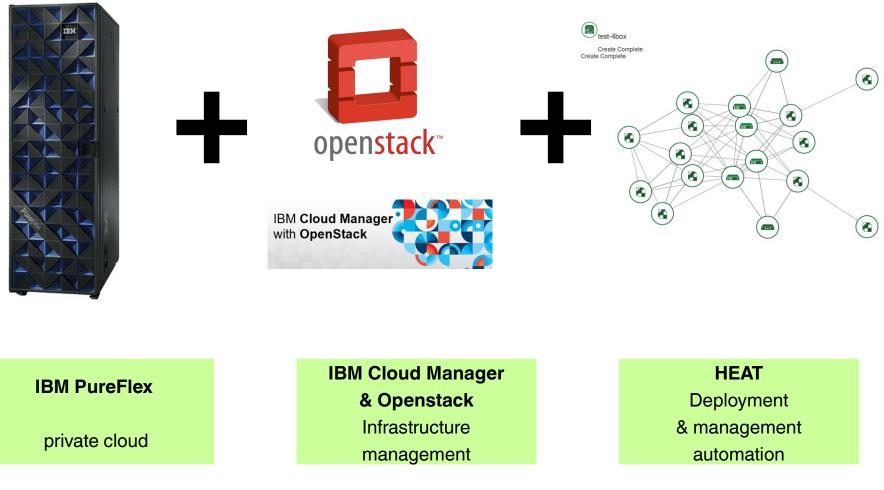
What is Enterprise Content Management?


- Manage all life-cycle stages of electronic content in an enterprise
- The functionality of these systems varies widely
- Many different software components comprise an ECM system
- The system topology and component configuration is customized
- The components are integrated with other IT-systems

Information life cycle [6/19]

Tim Waizenegger - SummerSOC 2015

What are the advantages of a cloud offering?


- Customers have lower upfront cost, lower entry hurdle for new customers
- Unified, homogeneous installations save overall operational and service cost

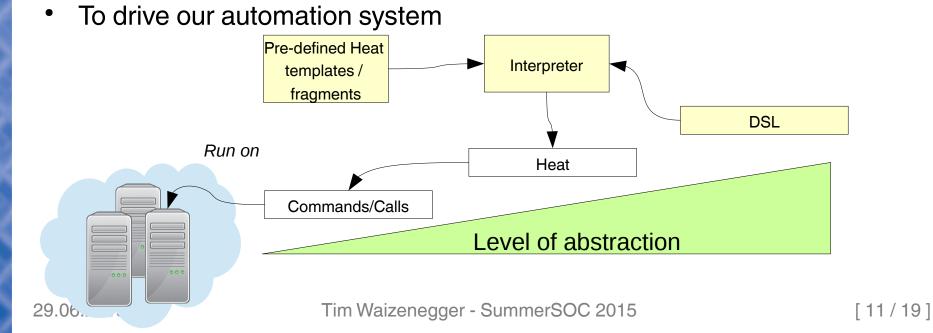
What are the challenges?

- We want to re-use existing ECM software, which is designed for single-tenant use
- Some components can be shared between customers, this needs to be evaluated
- Other components need to be instantiated for each new customer, this requires automation
- Operational procedures and best-practices for such an ECM infrastructure do not exist yet

29.06.2015

Tim Waizenegger - SummerSOC 2015

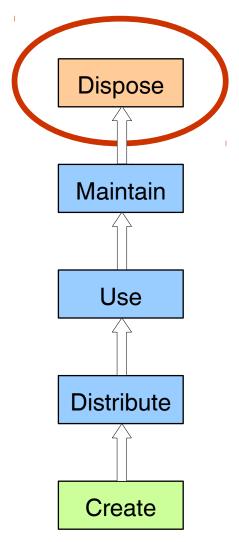
- Introduction what is the TPL?
- Our Projects: ECM on Cloud
- Our Projects: ECM DSL
- Our Projects: SDOS



Our Projects – ECM DSL

In this project, we develop a domain specific language (DSL) for describing ECM solutions

- To aid in communicating requirements with customers
- To document, in a formalized way, the specifications of the solution


- Introduction what is the TPL?
- Our Projects: ECM on Cloud
- Our Projects: ECM DSL
- Our Projects: SDOS

The Secure-Delete Object Store (SDOS)

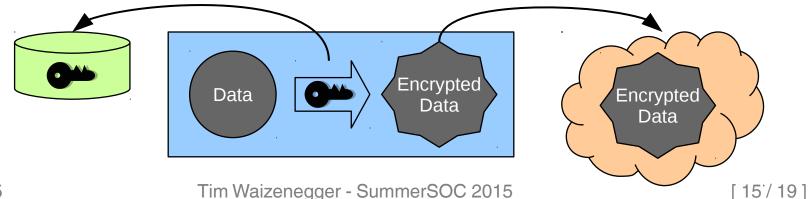
- Information life-cycle management defines 5 phases
- After retention or intended use ends, information needs to be disposed of
- Sensitive or compromising information needs to be deleted irrevocably
 - Protecting intellectual property
 - Due to regulations
 - To avoid legal risk

Current Solutions

- Physical destruction of storage media
 - Not possible in shared infrastructures
- Logical destruction of storage sectors
 - Requires low-level access, not possible in virtualized cloud storage scenarios

Garner TS-1 electromagnet

SEM Model 0101 Sledgehammer Hard Drive Crusher

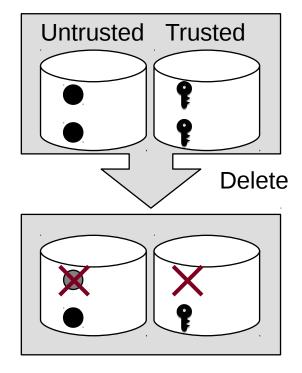

PGP shredder

Cryptographic deletion

- The deletion of objects by storing them in encrypted form and securely deleting the encryption key
 - \rightarrow secure deletion only needs to be provided for keys, not large data objects
 - \rightarrow Data can be stored in cheap, untrusted storage systems
 - \rightarrow Only small encryption keys must be stored in a trusted location

First approach: individual per-object keys

- Generate an individual, random key for each object on insertion (put operation)
- Store all keys in a separate, secure storage system that provides secure deletion


Delete operation

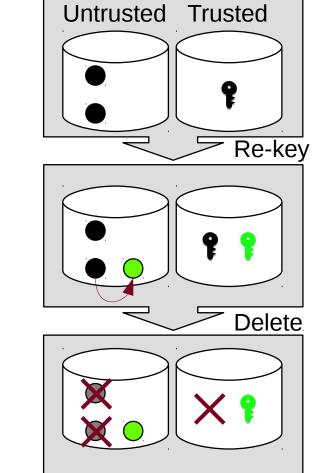
- Remove key from secure storage system
- Remove object

Overhead

- Put: key generation, key storage, encryption
- Get: key retrieval, decryption
- Delete: key deletion
- Secure storage system with a capacity of n* s_k

→ The secure storage system needs to hold a prohibitively large amount of objects

Second approach: single key

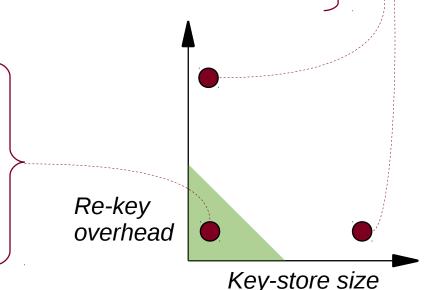

- Generate a single, random key for all objects
- Store key in a separate, secure storage system that provides secure deletion

Delete operation

- Generate a new key
- Decrypt all objects (except the one to-delete)
- Re-encrypt them with the new key
- Replace key in the secure storage system
- Remove all old objects

Overhead

- Put: encryption
- Get: key retrieval, decryption
- Delete: re-keying of all kept objects
- Secure storage system with a capacity of s_k


\rightarrow The re-keying operation will become prohibitively expensive in large object stores

- The **individual-key approach** requires a prohibitively large trusted key-store
 - But avoids re-keying overhead
- The single-key approach has a high re-keying overhead
 - But requires only a small trusted key-store

- → The key-cascade approach provides a mechanism for cryptographic deletion with
 - Minimal re-keying overhead
 - Small key-store size

Thank You!

Tim Waizenegger

University of Stuttgart, Institute of Parallel and Distributed Systems, Universitätsstr. 38, 70569 Stuttgart, Germany tim.waizenegger@ipvs.uni-stuttgart.de http://www.ipvs.uni-stuttgart.de

29.06.2015

Tim Waizenegger - SummerSOC 2015

[19/19]