
Norbert Ritter, Felix Gessert
{ritter,gessert}@informatik.uni-hamburg.de

Tutorial on Scalable Cloud-Databases
in Research and Practice

Outline

• Overview
• The New Field Cloud

Data Management
• Cloud Database

Models
• Research Challenges

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Introduction: Which classes of
cloud databases are there?

Infrastructure-as-a-Service

Platform-as-a-Service

… Database-as-a-Service
Heroku Pos.

Amazon RDS

SQL Azure

Cloudant

Compose

Parse

Orestes

Google F1

DynamoDB

Managed NoSQL
Databases

Managed
RDBMS

Backend-as-a-
Service

Cloud-Deployment
of DBMSs

Cloud-only
DBaaS-Systems

BigQuery

EMR

Analytics-as-
a-Service

Cloud Databases

Typical Data Architecture:

Architecture

Applications

Data
Warehouse

Operative
Database

Reporting Data Mining Analytics

D
a
ta

 M
a
n
ag

em
en

t
D
a
ta

 A
n
a
ly

ti
cs

DBaaS
The era of one-size-fits-all database systems is over

 Specialized cloud databases

Database Sweetspots

RDBMS

General-purpose
ACID transactions

Wide-Column Store

Long scans over
structured data

Parallel DWH

Aggregations/OLAP for
massive data amounts

Document Store

Deeply nested
data models

NewSQL

High throughput
relational OLTP

Key-Value Store

Large-scale
session storage

Graph Database

Graph algorithms
& queries

In-Memory KV-Store

Counting & statistics

Wide-Column Store

Massive user-
generated content

Cloud-Database Sweetspots

Amazon Elastic

MapReduce

Hadoop-as-a-Service

Big Data Analytics

Managed RDBMS

General-purpose
ACID transactions

Managed Cache

Caching and
transient storage

Azure Tables

Wide-Column Store

Very large tables

Wide-Column Store

Massive user-
generated content

Backend-as-a-Service

Small Websites
and Apps

Managed NoSQL

Full-Text Search

Google Cloud

Storage

Object Store

Massive File
Storage

Realtime BaaS

Communication and
collaboration

 New field tackling the design, implementation,
evaluation and application implications of database
systems in cloud environments:

Cloud Data Management

Application
architecture,
Data Models

Load distribution, Auto-Scaling, SLAs
Workload Management, Metering

Multi-Tenancy,
Consistency, Availability,
Query Processing, Security

Replication,
Partitioning,
Transactions,
Indexing

Protocols, APIs,
Caching

Cloud-Database Models

Deployment
Model

Data
Model

structured

unstructured

RDBMS
machine

image
relational

schema-
free

unstructured

NoSQL
machine

image

Analytics
machine

image

Managed
RDBMS/

DWH

Managed
NoSQL

Analytics-
as-a-

Service

RDBMS/
DWH

Service

NoSQL
Service

Analytics/
ML
APIs

Database-as-a-Service

Cloud-Deployed Database
 Database-image provisioned in IaaS/PaaS-cloud

IaaS-Cloud

IaaS/PaaS deployment of
database system

Does not solve:
Provisioning, Backups, Security,
Scaling, Elasticity, Performance
Tuning, Failover, Replication, ...

Managed RDBMS/DWH/NoSQL DB
 Cloud-hosted database

IaaS-Cloud

RDBMS DWH NoSQL DB

DBaaS-Provider

Provisioning, Backups, Security,
Scaling, Elasticity, Performance
Tuning, Failover, Replication, ...

Amazon Redshift

SQL Azure

Google

Cloud SQL

R
D

B
M

S
N

o
SQ

L D
B

D

W
H

Proprietary Cloud Database
 Designed for and deployed in vendor-specific cloud environment

Cloud

Black-box system

Managed by
Cloud Provider

Pro
vid

er‘s A
P

I

Amazon

SimpleDB

Google Cloud

Storage

Azure Blob

Storage

Google Cloud

Datastore
Azure Tables

Openstack

Swift

Database.com

BigTable, Megastore, Spanner, F1, Dynamo,

PNuts, Relational Cloud, …

D
atab

ase
O

b
ject Sto

re

Analytics-as-a-Service
 Analytic frameworks and machine learning with service APIs

Cloud

Analytics Cluster

Provisioning,
Data Ingest

Azure

HDInsight

Google

BigQuery

Google

Prediction API

Amazon Elastic

MapReduce

A
n

alytics
M

L

Backend-as-a-Service
 DBaaS with embedded custom and predefined application logic

IaaS-Cloud

Backend API

Service-Layer

Data API

Authentication,
Users, Validation,etc.

Maps to (different)
databases

(m
o

b
ile) B

aaS

AppCelerator

Cloud

Pricing Models
Pay-per-use and plan-based

Usage

Account

Pay-per-use
Parameters: Network, Bandwidth,
Storage, CPU, Requests, etc.
Payment: Pre-Paid, Post-Paid
Variants: On-Demand, Auction, Reserved

End of
month

Plan-based
Parameters: Allocated Plan (e.g.
2 instances + X GB storage)

e.g. DynamoDB

e.g. Compose

Database-as-a-Service
Approaches to Multi-Tenancy

T. Kiefer, W. Lehner “Private table database virtualization for dbaas”
UCC, 2011

Private OS

VM

Hardware Resources

Database Process

Database

Schema

Private Process/DB Private Schema

VM

Hardware Resources

Database Process

Database

Schema

VM

Hardware Resources

Database Process

Database

Schema

Shared Schema

VM

Hardware Resources

Database Process

Database

Schema

Virtual Schema

e.g. Amazon RDS e.g. Compose e.g. Google DataStore Most SaaS Apps

Multi-Tenancy: Trade-Offs

W. Lehner, U. Sattler “Web-scale Data Management for the Cloud”
Springer, 2013

Private OS

Private
Process/DB

Private Schema

Shared Schema

App.
 indep.

Isolation
Ressource

Util.
Maintenance,
Provisioning

Authentication & Authorization
Checking Permissions and Indentity

Internal Schemes External Identity
Provider

Federated Identity
(Single Sign On)

e.g. Amazon IAM e.g. OpenID e.g. SAML

User-based Access
Control

Role-based Access
Control

Policies

e.g. Amazon S3 ACLs e.g. Amazon IAM e.g. XACML

Database-a-

a-Service

Authentication

Authorization

API

Authenticate/Login

Token

Authenticated Request

Response

Service Level Agreements (SLAs)
Specification of Application/Tenant Requirements

SLA

Legal Part
1. Fees
2. Penalties

Technical Part
1. SLO
2. SLO
3. SLO

Service Level Objectives:
• Availability
• Durability
• Consistency/Staleness
• Query Response Time

Functional Service Level Objectives
◦ Guarantee a „feature“

◦ Determined by database system

◦ Examples: transactions, join

Non-Functional Service Level Objectives
◦ Guarantee a certain quality of service (QoS)

◦ Determined by database system and service provider

◦ Examples:

 Continuous: response time (latency), throughput

 Binary: Elasticity, Read-your-writes

Service Level Agreements
Expressing application requirements

Service Level Objects
Making SLOs measurable through utilities

Typical approach:

Workload Management
Guaranteeing SLAs

W. Lehner, U. Sattler “Web-scale Data Management for the Cloud”
Springer, 2013

Maximize:

Goal: minimize penalty and
resource costs

Resource & Capacity Planning
From a DBaaS provider‘s perspective

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Expected
Load

Provisioned Resources:
• #No of Shard- or Replica

servers
• Computing, Storage,

Network Capacities

Actual
Load

Overprovisioning:
• SLAs met
• Excess Capacities

Underprovisioning:
• SLAs violated
• Usage maximized

SimpleDB
Table-Store
(NoSQL Service)

CP

Dynamo-DB
Table-Store
(NoSQL Service)

CP

Azure Tables
Table-Store
(NoSQL Service)

CP 99.9%
uptime

AE/Cloud DataStore
Entity-Group
Store
(NoSQL Service)

CP

S3, Az. Blob, GCS
Object-Store
(NoSQL Service)

AP 99.9%
uptime
(S3)

SLAs in the wild

Model CAP SLAs

Most DBaaS systems offer no SLAs, or
only a a simple uptime guarantee

 Service-Level Agreements
◦ How can SLAs be guaranteed in a virtualized, multi-tenant

cloud environment?

 Consistency
◦ Which consistency guarantees can be provided in a geo-

replicated system without sacrificing availability?

 Performance & Latency
◦ How can a DBaaS deliver low latency in face of distributed

storage and application tiers?

 Transactions
◦ Can ACID transactions be aligned with NoSQL and scalability?

Open Research Questions
in Cloud Data Management

www.scdm2015.com

Location : Santa Clara
Submission Deadline: August 30

Outline

• Two problems:
• Latency
• Polyglot Storage

• Vision: Orestes
Middleware

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Latency & Polyglot Storage
Two central problems

 Goal of ORESTES: Solve both problems through a scalable
cloud-database middleware

If the application is geographically
distributed, how can we guarantee
fast database access?

If one size doesn‘t fit all – how can
polyglot persistence be leveraged
on a declarative, automated basis?

Average: 9,3s

Problem I: Latency

Loading…

-1% Revenue

100 ms

-9% Visitors

400 ms 500 ms

-20% Traffic

1s

-7% Conversions

If perceived speed is such an
import factor

...what causes slow page load times?

State of the art
Two bottlenecks: latency und processing

High Latency

Processing Time

Network Latency
The underlying problem of high page load times

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

The low-latency vision
Data is served by ubiquitous web-caches

Low Latency

Less Processing

Expiration-based
Every object has a defined
Time-To-Live (TTL)

Revalidations
Allow clients and caches to
check freshness at the server

Stale
Data

The web‘s caching model
Staleness as a consequence of scalability

Research Question:
Can database services leverage the web
caching infrastructure for low latency with rich
consistency guarantees?

Problem II: Polyglot Persistence
Current best practice

Application Layer

Billing Data Nested
Application Data

Session data

Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage
Friend

network Cached data
& metrics

Recommen-
dation Engine

Research Question:

Can we automate the mapping problem?

data database

Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema

The Big Picture
Implementation in ORESTES

Internet

Cache
Sketch

Reverse-Proxy
Caches

Orestes
Servers

Desktop

Mobile

Tablet
Content-Delivery-
Network

 Polyglot Storage and Low Latency are the central goals
of ORESTES

Polyglot Storage

Database-as-a-Service
Middleware:
Caching, Transactions, Schemas,
Authorization, Multi-Tenancy Standard HTTP Caching

Unified REST
API

Outline

• Cache Sketch
Approach
• Caching Arbitrary

Data
• Predicting TTLs

• Polyglot Persistence
Mediator
• SLA-Approach
• Database

Selection

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

Expiration-based Caches:

 An object x is considered
fresh for TTLx seconds

 The server assigns TTLs
for each object

Invalidation-based Caches:

 Expose object eviction
operation to the server

Web Caching Concepts
Invalidation- and expiration-based caches

Client

Expiration-
based Caches

Invalidation-
based Caches

Request
Path

Server/DB

Cache
Hits

Browser Caches,
Forward Proxies,
ISP Caches

Content Delivery
Networks,
Reverse Proxies

at
connect

Periodic
every Δ

seconds

at
transaction

begin

2 31

Invalidations,
Records

Needs Invalidation?

Needs Revalidation?

The Cache Sketch approach
Letting the client handle cache coherence

St
al

en
es

s-
M

in
im

iz
at

io
n

In
va

lid
at

io
n-

M
in

im
iz

at
io

n

Client Cache Sketch

10101010 Bloom filter

Server Cache Sketch

10201040

10101010

Counting
Bloom Filter

Non-expired
Record Keys

Report Expirations
and Writes

The End-to-End Path of Requests
The Caching Hierarchy

Client-
(Browser-)

Cache
Proxy

Caches
ISP

Caches
CDN

Caches
Reverse-

Proxy Cache

Miss

Hit

Miss
Miss

Miss
Miss

Orestes

DB.posts.get(id) JavaScript GET /db/posts/{id} HTTP

Updated by
Cache Sketch

Updated by the
server

Cache-Hit: Return Object
Cache-Miss or Revalidation:
Forward Request

Return record from
DB with caching TTL

Low Latency
Reduced

Database Load
Flash-Crowd
Protection

Higher
Availability

 Let ct be the client Cache Sketch generated at time t, containing
the key keyx of every record x that was written before it expired
in all caches, i.e. every x for which holds:

The Client Cache Sketch

k hash functions m Bloom filter bits

1 0 0 1 1 0 1 1
h1

hk

...keyfind(key)

Client Cache Sketch

Bits = 1

no

yes

GET request

Revalidation

Cache

Hit

Miss

key

key

1 4 0 2 0

purge(obj)

hashB(oid) hashA(oid)

3 1 1 1 1 0
Flat(Counting Bloomfilter)

hashB(oid) hashA(oid)

Browser
Cache

CDN

1

 Solution: Cached Initialization
◦ Clients load the Cache Sketch at connection

◦ Every non-stale cached record can be reused
without degraded consistency

 Slow initial page loads 1

False-Positive

Rate:

Hash-

Functions:

With 20.000 distinct updates and 5% error rate: 11 KByte

 Slow CRUD performance

Client
Expiration-

based Caches
Invalidation-
based Caches

Server

Cache Sketch ct Query Cache
Sketch

fresh records

Revalidate record & Refresh Cache Sketch

Cache Hits

Fresh record & new Cache Sketch

-time t

-time t + Δ

2

 High Abort Rates in OCC

Cache

Cache

Cache

REST-Server

REST-Server

REST-Server

DB

Coordinator

Client

Begin Transaction

Bloom Filter
1

Reads

Writes
2

Writes

(Hidden)

validation 4

5Writes (Public)

Read all

prevent conflicting

validations

3

Committed OR aborted + stale objects

Commit: read- & write-set versions
3

TTL Estimation
Determining the cache expiration

Longer TTLs Shorter TTLs

• Higher cache-hit rates
• more invalidations

• less invalidations
• less stale reads

Performance

CDN

Northern California

Client MongoDBOrestes

Ireland

Setup:

Page load times with cached
initialization (simulation):

Average Latency for YCSB
Workloads A and B (real):

With Facebook‘s
cache hit rate: >2,5x
improvement

95% Read 5% Writes
5x latency
improvement

Low Latency

If the application is geographically
distributed, how can we guarantee
fast database access?

Transparent end-to-end
caching using the Cache
Sketch.

If one size doesn‘t fit all – how can
polyglot persistence be leveraged
on a declarative, automated basis?

 Goal:
◦ Extend classic workload management to polyglot persistence

◦ Leverage hetereogeneous (NoSQL) databases

Tenant specifies
requirements as Service-
Level-Agreements

Find or provision a
suitable combination
of databases

Mediate data and
database operations

1. Requirements 2. Resolution 3. Mediation

Towards Automated Polyglot Persistence
Necessary steps

Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Table

Field

 Tenant annotates schema
with his requirements

Annotations
 Continuous non-functional

e.g. write latency < 15ms
 Binary functional

e.g. Atomic updates
 Binary non-functional

e.g. Read-your-writes

2. Annotate

Step II - Resolution
Finding the best database

 The Provider resolves the
requirements

 RANK: scores available
database systems

 Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element db
 transform db-independent to db-

specific operations

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

Schema Annotations

No annotation
recursive descent to child

RANK Algorithm

Binary requirement
1. Exclude DBs that do not

support it
2. Recursive descent

Continuous requirement
∀ databases calculate

DBs = { MongoDB, Riak,
Cassandra, CouchDB, Redis,

MySQL, S3, Hbase }

Database Availability

MongoDB 99%0.8

Redis 95%0.05

MySQL 94% 0.04

HBase 99.9%0.9

Latency

10ms1

1ms1

40ms0.2

50ms0.1

DBs = { MongoDB, Riak,
Cassandra, CouchDB, Redis,

MySQL, S3, Hbase }

Step II - Resolution
Ranking algorithm by example

Customers
Table

ECommerceDB
database

ShoppingBasket
List<String>

UserName
String

Lineariza-
bility

Availability

Read latency

Schema Annotations RANK Algorithm

Binary requirement
1. Exclude DBs that do not

support it
2. Recursive descent
3. Pick DB with best total

score and add it to
routing model

DB Score

MongoDB 0.9

Redis 0.525

MySQL 0.12

HBase 0.5

Routing Model:
Customers MongoDB

Step III - Mediation
Routing data and operations

 The PPM routes data

 Operation Rewriting:
translates from abstract to
database-specific operations

 Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

 Primary Database Option: All
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
 Uses Routing Model
 Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

2. route

Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article
Counter

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution

Outline

• Current/Future Work
• Summary
• Putting ORESTES into

practice

Motivation

ORESTES: a Cloud-
Database Middleware

Solving Latency and
Polyglot Storage

Wrap-up

Outlook: Real-Time
Combining Query Caching,
Continuous Queries, Polyglot Queries

ORESTES

Create
Update
Delete

Pub-Sub Pub-Sub

1 0 1 1 0 0 1 0 1 1

Fresh Cache Sketch

Continuous
Queries

(Websockets)

Fresh Caches

Polyglot Views

 Cache Sketch: web caching for database services
◦ Consistent (Δ-atomic) expiration-based caching

◦ Invalidation-based caching with minimal purges

◦ Bloom filter of stale objects & TTL Estimation

 Polyglot Persistence Mediator:

1. SLA-annotated Schemas

2. Score DBs and choose best

3. Route data and operations

Summary

Requirements Resolution Mediation

Team: Felix Gessert, Florian Bücklers, Hannes Kuhlmann,
Malte Lauenroth, Michael Schaarschmidt

19. August 2014

Page-Load Times
What impact does the Cache Sketch have?

0
,7

s 1
,8

s 2
,8

s 3
,6

s

3
,4

s

CALIFORNIEN

0
,5

s

1
,8

s 2
,9

s

1
,5

s

1
,3

s

FRANKFURT

0
,6

s

3
,0

s

7
,2

s

5
,0

s 5
,7

s

SYDNEY

0
,5

s

2
,4

s

4
,0

s

5
,7

s

4
,7

s

TOKYO

+156%

0,5s

[WE
RT]

FRANKFURT

Backend-as-a-Service
Tutorial on the BaaS paradigm from app perspective

www.baqend.com

Thank you

ritter,gessert@informatik.uni-hamburg.de

orestes.info, baqend.com

