
ARCHITECTURAL REFACTORING FOR
THE CLOUD:
A DECISION-CENTRIC VIEW ON
CLOUD MIGRATION

Prof. Dr. Olaf Zimmermann
Distinguished (Chief/Lead) IT Architect, The Open Group
Institute für Software, HSR FHO
Hersonissos, June 30, 2015

9th Symposium and Summer School On Service-Oriented
Computing

Objectives (Research Projects and this Presentation)

1. Share Architectural Knowledge (AK)
 Here: Identify baseline/principles for Cloud Application Development (CAD)

2. Advance state of the art in AK Management (AKM)
 Here: Establish Architectural Refactoring (AR) as a novel software

evolution and reengineering practice – and apply it to CAD

3. Help bridge the gap between agile practices and software architecture
along the way.
 Here: Use user stories, introduce quality stories, propose interface to agile

task management

© Olaf Zimmermann, 2015.
Page 2

Abstract

Unlike code refactoring of programs, architectural refactoring of systems is not
commonly practiced yet. However, legacy systems typically have to be
refactored when migrating them to the cloud; otherwise, these systems may run
in the cloud, but cannot fully benefit from cloud properties such as elasticity.
One reason for the lack of adoption of architectural refactoring is that many of
the involved artefacts are intangible – architectural refactoring therefore is
harder to grasp than code refactoring.

To overcome this inhibitor, we take a task-centric view on the subject and
introduce an architectural refactoring template that highlights the architectural
decisions to be revisited when refactoring application architectures for the
cloud; in our approach, architectural smells are derived from quality stories. We
also present a number of common architectural refactorings and evaluate
existing patterns regarding their cloud affinity.

The final contribution of this paper is the identification of an initial catalog of
architectural refactorings for cloud application design. This refactoring catalog
was compiled from the cloud patterns literature as well as project experiences.
Cloud knowledge and supporting templates have been validated via action
research and in cooperation with industry practitioners.

© Olaf Zimmermann, 2015.
Page 3

Agenda

 Motivation

 Cloud Computing Fundamentals

 IDEAL Cloud Applications and Cloud Computing Patterns

 Architectural Refactoring vs. Code Refactoring

 Quality Attribute Stories and Architectural Refactoring Templates

 Architectural Refactoring for the Cloud

 Tool Support for Architectural Knowledge Management (AKM)

© Olaf Zimmermann, 2015.
Page 4

Motivation: Typical Service-Oriented System (Pre-Cloud Age)

 Core banking application, shared service/service provider model
 Layers pattern, data stored in backend, Web frontend, Web services

Reference: ACM
OOPSLA 2004 &

Informatik-Spektrum
Heft 2/2004

© Olaf Zimmermann, 2013.
Page 5

Simple, User-Centered Definition of Cloud Computing

Cloud computing provides a set of computing resources with the
following testable characteristics:

1. On-demand: the server is already setup and ready to be deployed
(so the user can sign-up for the service without waiting)

2. Self-service: customer chooses what they want, when they want it
(the user can use the service anytime, without waiting)

3. Scalable: customer can choose how much they want and ramp up if
necessary (the user can scale-up the service when needed, without
waiting for the provider to add more capacity)

4. Measurable: there’s metering/reporting so you know you are getting
what you pay for (the user can access measurable data to determine the
status of the service)

In summary, cloud computing is OSSM (pronounced ‘awesome’).
Reference: B. Kepes, CloudU (online training, sponsored by RackSpace),

Dave Nielsen, Cloud Camps, http://www.daveslist.com

© Olaf Zimmermann, 2015.
Page 6

http://www.daveslist.com/
http://www.daveslist.com/
http://www.daveslist.com/

A Cloud User Story*: Cloud-Native Application Development

Page 7
© Olaf Zimmermann, 2015.

Lean Startup Developer

As a developer and owner of a novel Web application who is unsure about user
reception and business value of this software,

I would like to rapidly deploy my application into production without having to invest
into hardware, data center space and operations staff (and be able to scale it up on
demand)

so that I can get user feedback to improve my software and the business model –
without investing too many resources and taking unnecessary financial risk.

To do so, I need to know the characteristics of cloud-native application architectures.

*see agile practices guide at http://guide.agilealliance.org/

http://guide.agilealliance.org/
http://guide.agilealliance.org/

Cloud Computing Patterns (CCP)

© Olaf Zimmermann, 2015.
Page 8

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

IDEAL Cloud Application Properties (Fehling, Leymann et al.)

Distribution: applications are decomposed to…
… use multiple cloud resources
… support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically
Scale out: performance increase through addition of resources
Scale up: performance increase by increasing resource capabilities

? Loose Coupling: influence of application components is limited
Example: failures should not impact other components
Example: addition / removal of components is simplified

Isolated State: most of the application is stateless with respect to:
Session State: state of the communication with the application
Application State: data handled by the application

Automated Management: runtime tasks have to be handled quickly
Example: exploitation of pay-per-use by changing resource numbers
Example: resiliency by reacting to resource failures

© Olaf Zimmermann, 2015.
Page 9

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

The Twelve-Factor App (Author: Heroku Co-Founder)

 Not cloud-specific

 Mix of agile and DevOps practices

 In line with IDEAL, Amazon,
ARC/CDAR

© Olaf Zimmermann, 2015.
Page 10

http://12factor.net/

http://12factor.net/

From Traditional Layer-Tier Architectures to Cloud Services

Logic

Data

On which tier
should
existing
 and new

applications be
integrated?

Traditional

Applications

SOA

Services

Basket of Services Discrete Applications
(Two or Three Tiers)

Users

UI

© Olaf Zimmermann, 2015.
Page 11

Decision-Centric
Architectural Refactoring

for Cloud (ARC)

Another Cloud User Story: Cloud Migration

Page 12
© Olaf Zimmermann, 2015.

Application Maintainer

As a developer who maintains and operates an existing application on behalf of a client,

I would like to move the on-premises production site into a cloud

so that I no longer have to worry about security updates and other administrative tasks
on the operating system and the middleware level – and my client has to spend less on
operations, which frees resources to develop new features.

To do so, I need to find out what/how my application architecture has to be changed to
be ready for the cloud (first and foremost, it should be able to run in the cloud; as a
second step, it should take advantage of cloud features such as elasticity).

Agenda

 Motivation

 Cloud Computing Fundamentals

 IDEAL Cloud Applications and Cloud Computing Patterns

 Architectural Refactoring vs. Code Refactoring

 Quality Attribute Stories and Architectural Refactoring Templates

 Architectural Refactoring for the Cloud

 Tool Support for Architectural Knowledge Management (AKM)

© Olaf Zimmermann, 2015.
Page 13

Code Refactoring vs. Architectural Refactoring

 Refactoring are “small behavior-preserving transformations”
(M. Fowler 1999)

 Code refactorings, e.g. “extract method”
 Operate on Abstract Syntax Tree (AST)
 Based on compiler theory, so automation possible

(e.g., in Eclipse Java/C++)

 Catalog and commentry: http://refactoring.com/

 Architectural refactorings
 Resolve one or more architectural smells, have an impact on quality attributes
 Architectural smell: suspicion that architecture is no longer adequate (“good enough”)

under current requirements and constraints (which may differ form original ones)
 Are carriers of reengineering knowledge (patterns?)
 Can only be partially automated

© Olaf Zimmermann, 2015.
Page 14

http://refactoring.com/

Early Work on Architectural Refactoring: Michael Stal (Siemens)

 First blog post on architecture refactoring
 Motivation, discussion, pattern template

 OOPSLA 2007 tutorial (and OOP session)
 First catalog of architectural refactorings

 CompArch/WICSA 2011 industry day keynote
 Catalog update (available here)

© Olaf Zimmermann, 2015.
Page 15

http://stal.blogspot.ch/2007/01/architecture-refactoring.html
http://www.sigs.de/download/oop_08/Stal%20Mi3-4.pdf
http://www.di.univaq.it/diruscio/wicsa2011/CompArchWICSA2011-KeynotesAndCAseStudies.zip

Quality Story* (Inspired by User Stories) – Example

Page 16
© Olaf Zimmermann, 2015

DevOps Engineer

As a Development and Operations (DevOps) engineer at a social network/media firm,

I would like to be able to add attributes to my database w/o having to migrate data
– without changing the functional scope of the system –

so that in future versions of the system:
• New features of the Web software can be introduced more often.
• It is no longer needed to migrate the large amount of existing data to new schemas.
• We become independent of the provider of the current RDBMS.

To achieve this goal, I am willing to accept:
• Data access and data validation logic becomes more complex.
• Five developer days have to be invested .
• Technical feasibility and performance have to be validated in a PoC.

* missing in agile practices guide so far
(tradeoff: benefit vs. negative consequences)

http://en.blog.doodle.com/2011/04/14/doodles-technology-landscape

http://en.blog.doodle.com/2011/04/14/doodles-technology-landscape

Quality Story (Inspired by User Stories) – Template

Page 17

© Olaf Zimmermann, 2015

Software Maintainer

As a [role concerned with system quality, e.g. a leadership or maintenance role],

I would like to [achieve quality goal A]
– without changing the functional scope of the system –

so that in future versions of the system:
• [technical debt reduction effect]
• [improved service level/system property]
• [positive impact on other technical constraints and environment]

To achieve this goal, I am willing to invest/accept :
• [impact on other quality attributes, e.g. performance penalty for security feature]
• [impact on project plan (cost, timeline)]
• [impact on technical dependencies and risk]

Operator, Identity and Access Manager
(IAM), Database Administrator

Release Architect, Product Manager, Application Owner

Architectural Refactorings – Decision-/Task-Centric Template

Page 18
© Olaf Zimmermann, 2015.

Architectural Refactoring: [Name]
Context (viewpoint, refinement level):
• […]

Quality attributes and stories (forces):
• […]

Architectural smell (refactoring driver):
• […]

Architectural decision(s) to be revisited:
• […]

Refactoring (solution sketch/evolution outline):
• […]

Affected components and connectors (if modelled explicitly):
• […]

Execution tasks (in agile planning tool and/or full-fledged design method):
• […]

Previous Work
(SOAD/ADMentor)

Novelty

Architectural Refactoring – Example (of Filled Out Template)

© Olaf Zimmermann, 2015.
Page 19

Architectural Refactoring: Move Responsibility
Context (viewpoint, refinement level):
• Logical viewpoint, platform-independent level

Quality attributes and stories (forces):
• High cohesion and low coupling (metrics)

Smell (refactoring driver):
• A component seems to be overloaded and cluttered with diffuse features in its external interface

Architectural decision(s) to be revisited:
• Approach to modularization and component partitioning
• Use of industry reference models
• API design guidelines

Refactoring (solution sketch/evolution outline):
• Assess cohesion and coupling of a particular component (are responsibilities semantically related?)
• Move a responsibility that breaks cohesion to another component (note: this can be an existing

component or a new one; one or more responsibilities can be moved at once)

Affected components and connectors (if modelled explicitly):
• Component that currently provides a certain service (i.e., operation/feature)
• Component that will take over this responsibility

Execution tasks (in agile planning tool and/or full-fledged design method):
• Updates to component specification in word processor, drawing tool, documentation wiki
• Edit operations in UML or other modeling tool
• Updates to component realizations in code (note: architecturally evident coding style to be followed)

Fundamental Refactorings (Logical/Functional Viewpoint)

 Add Layer

 Collapse Layers (into Single One)

 Add Tier

 Collapse Tiers (into One)

 Split Component

 Merge Components

 Move Responsibility (to New/to Existing Component)
 Examples: component initialization, input validation, execution strategy

 Split Connector into Component and Connectors (Re-ify Collaboration)

 Expose Component Interface as Remote Service

 Replace Service Provider
 Note: some of these refactorings have impact on component collaborations

 © Olaf Zimmermann, 2015.
Page 20

Fundamental Refactorings (Infrastructure/Deployment Viewpoint)

 Move Deployment Unit (from One Server Node to Another)

 Introduce Clustering

 Add Cluster Node

 Add Load Balancer

 Add Firewall

 Introduce Cache

 Change Caching Policy

 Load Lazier

 Move Application State Management to Client/to Server/to Database

 Scale Up

 Scale Out

© Olaf Zimmermann, 2015.
Page 21

Architectural Refactoring – Example (in Infrastructure Viewpoint)

© Olaf Zimmermann, 2015.
Page 22

Architectural Refactoring: Introduce Cache
Context (viewpoint, refinement level):
• Logical, platform-specific refinements

Quality attributes and stories (forces):
• Performance (response time)

Smell (refactoring driver):
• A data store cannot handle concurrent queries (read requests) in reasonable time

Architectural decision(s) to be revisited:
• Lookup strategy
• Data structure selection
• Location of data store including replication (in memory, on disk)

Refactoring (solution sketch/evolution outline):
• Add an intermediate data structure such as memcached to speed up lookups
• Design cache interface and behavior (e.g., cache size and cache cleanup policies) and cache item

identifier (e.g., URI for HTML page/request caching)

Affected components and connectors (if modelled explicitly):
• Cached data and its master data store
• Clients accessing this data
• IT infrastructure hosting the cache (e.g., memory and/or disk storage)

Execution tasks (in agile planning tool and/or full-fledged design method):
• Analyze read-write access profile
• Measure improvement potential of caching in a PoC, assess impact on test and operations (tech. risk)
• Implement cache, test cache usage, document caching policies and configuration options

Agenda

 Motivation

 Cloud Computing Fundamentals

 IDEAL Cloud Applications and Cloud Computing Patterns

 Architectural Refactoring vs. Code Refactoring

 Quality Attribute Stories and Architectural Refactoring Templates

 Architectural Refactoring for the Cloud

 Tool Support for Architectural Knowledge Management (AKM)

© Olaf Zimmermann, 2015.
Page 23

Towards an Architectural Refactoring Catalog for Cloud

 Change cloud application architecture pattern(s):
 E.g. from server session state to database session state management to

support horizontal scaling (sharding)
 E.g. from normalized to partitioned/replicated master data to support

NoSQL storage of transactional data
 E.g. from flat rate to usage-based billing to support elasticity in a cost-

efficient manner

© Olaf Zimmermann, 2015.
Page 24

Architectural Refactoring for Cloud – Example: De-SQL

© Olaf Zimmermann, 2015.
Page 25

Architectural Refactoring: De-SQL
Context (viewpoint, refinement level):
• Logical viewpoint, data viewpoint (all levels)

Quality attributes and stories (forces):
• Flexibility, data integrity

Architectural smell (refactoring driver):
• It takes rather long to update the data model and to migrate existing data

Architectural decision(s) to be revisited:
• Choice of data modeling paradigm (current decision is: relational)
• Choice of metamodel and query language (current decision is: SQL)

Refactoring (solution sketch/evolution outline):
• Use document-oriented database such as MongoDB instead of RDBMS such as MySQL
• Redesign transaction management and database administration

Affected components and connectors (if modelled explicitly):
• Database
• Data access layer

Execution tasks (in agile planning tool and/or full-fledged design method):
• Design document layout (i.e., the pendant to the machine-readable SQL DDL)
• Define index for document access
• Write new data access layer, implement SQLish query capabilities yourself
• Decide on transaction boundaries (if any), document database administration (CRUD, backup)

Candidate Architectural Refactorings for Cloud (Draft Catalog)

Category Refactorings

IaaS Virtualize Server Virtualize Storage Virtualize Network

IaaS, PaaS Swap Cloud Provider Change Operating System Open Port

PaaS “De-SQL” “BASEify” (remove ”ACID”) Replace DBMS

PaaS Change Messaging QoS Upgrade Queue Endpoint(s) Swap Messaging Provider

SaaS/application Increase Concurrency Add Cache Precompute Results

SaaS/application (CCP book, CBDI-SAE) (all Stal refactorings) (PoEAA/Fowler patterns)

Scalability Change Strategy (Scale
Up vs. Scale Out)

Replace Own Cache with
Provider Capability Add Cloud Resource

(xaaS)
Performance Add Lazy Loading Move State to Database

Communication Change Message
Exchange Pattern

Replace Transport Protocol Change Protocol Provider

User management Swap IAM Provider Replicate Credential Store Federate Identities

Service/deployment
model changes

Move Workload to Cloud
(use XaaS)

Privatize Deployment,
Publicize Deployment

Merge Deployments (Use
Hybrid Cloud)

© Olaf Zimmermann, 2015.
Page 26

http://cloudcomputingpatterns.org/
http://everware-cbdi.com/index.php?cID=pattern-index&tab=520
http://www.sigs.de/download/oop_08/Stal%20Mi3-4.pdf
http://martinfowler.com/eaaCatalog/index.html

Agenda

 Motivation

 Cloud Computing Fundamentals

 IDEAL Cloud Applications and Cloud Computing Patterns

 Architectural Refactoring vs. Code Refactoring

 Quality Attribute Stories and Architectural Refactoring Templates

 Architectural Refactoring for the Cloud

 Tool Support for Architectural Knowledge Management (AKM)

© Olaf Zimmermann, 2015.
Page 27

How to Manage this Architectural (Reengineering) Knowledge?

 Needed: Rich text, hyperlinks, collaboration (among users), tool integration

 Delivery: Knowledge base/software architecture handbook/Q&A site?
 “ArchiPedia”, StackOverflow (for Designers/Maintainers), ar-aaS?

© Olaf Zimmermann, 2015.
Page 28

Architectural Refactoring: [Name]

Context (viewpoint, refinement level):
• […]

Quality attributes and stories (forces):
• […]

Smell (refactoring driver):
• […]

Architectural decision(s) to be revisited:
• […]

Refactoring (solution sketch/evolution outline):
• […]

Affected components and connectors (if modelled explicitly):
• […]

Execution tasks (in agile planning tool and/or full-fledged design method):
• […]

Rich Text or
Entity in Req.

Eng. Tool

Enum/List

Text or Entity
in AR Tool Bullet List or Entities in

Arch. Decision Tool

Rich Text, Images

Link to UML or
Enterprise Architecture

Management Tool
(or plain text)

Link to project
planning artifact
(Atlassian JIRA?

Redmine?)

Architectural Refactoring Tool Support (Thesis Projects)

 Web Collaboration Tool based on AngularJS, Play, Postgres/MySQL

© Olaf Zimmermann, 2015.
Page 29

More Information – Architectural Refactoring

 Architectural Refactoring
 M. Stal, Refactoring Software Architecture, Chapter 3 in Agile Software

Architecture, Elsevier 2013

© Olaf Zimmermann, 2015.
Page 30

https://www.elsevier.com/books/agile-software-architecture/mistrik/978-0-12-407772-0
https://www.elsevier.com/books/agile-software-architecture/mistrik/978-0-12-407772-0
http://www.computer.org/csdl/mags/so/2015/02/mso2015020026-abs.html

ARCHITECTURAL REFACTORING FOR
THE CLOUD: A DECISION-CENTRIC
VIEW ON CLOUD MIGRATION –
BACKGROUND INFORMATION

Prof. Dr. Olaf Zimmermann
Distinguished (Chief/Lead) IT Architect, The Open Group
Institute für Software, HSR FHO

9th Symposium and Summer School On Service-Oriented
Computing

What are Architectural Decisions (ADs)? Why Care?

 “The design decisions that are costly to change” (Grady Booch, 2009)

 A more elaborate definition:

“Architectural decisions capture key design issues and the rationale behind chosen
solutions. They are conscious design decisions concerning a software-intensive

system as a whole or one or more of its core components and connectors in any given
view. The outcome of architectural decisions influences the system’s nonfunctional

characteristics including its software quality attributes.”

 From IBM UMF work product description ART 0513 (since 1998):
“The purpose of the Architectural Decisions work product is to:
 Provide a single place to find important architectural decisions
 Make explicit the rationale and justification of architectural decisions
 Preserve design integrity in the provision of functionality and its allocation to

system components
 Ensure that the architecture is extensible and can support an evolving system
 Provide a reference of documented decisions for new people who join the project
 Avoid unnecessary reconsideration of the same issues”

© Olaf Zimmermann, 2015.
Page 32

Reference: SEI SATURN 2010
(IBM presentation)

Y-Template for Architectural Decision Capturing

 Link to (non-)functional requirements and design context

 Tradeoffs between quality attributes

In the context of <use case uc
and/or component co>, … facing <non-functional concern c>,

… we decided for <option o1>

… to achieve <quality q>,

and neglected <options o2 to oN>,

… accepting downside <consequence c>.

© Olaf Zimmermann, 2015.
Page 33

Reference: Sustainable Architectural Design Decisions, IEEE Software 30(6): 46-53 (2013)

ARC Metamodel (at an Initial State of Elaboration) (1/2)

 Refactoring need arises from decision mismatches
 Decision actually made vs. recommended decision (IDEAL)
 Same problem (to be) solved differently (choosing different option)
 Refactoring improves at least one quality attribute and preserves functionality

© Olaf Zimmermann, 2015.
Page 34

class ArcCore Upper Half

DecisionRequired

- problemStatement :String
- optionSelectionCriteria :String

DecisionMade

- justification :Rationale
- dateAndTime

OptionConsidered

OptionChosen Option

- id :int
- name :String
- description :String

Decision

- id :int
- name :String
- owner :String
- status :int

OptionNeglected

leadingTo

incompatibleWith

ARC Metamodel (at an Initial State of Elaboration) (2/2)

Page 35
© Olaf Zimmermann, 2015.

class ArcCoreLowerHalf

DecisionMetadata

DecisionMismatch

- detectedBy :String
- severityLevel :int

TechnicalDebtItem

Rev iewFinding

EnforcementProblem

ArchitecturalRefactoring

- name :String
- type :String
- solutionSketch :String
- executionTasks :TaskList

DecisionTag

- name :String

ModernizationNeed

ArchitecturalPrincipleViolation

CodeDesignGap

QualityStory

- storyName :String
- role :String
- qualityGoal :String
- effects :StringList
- investment :StringList

1..*

resolves

PaaS Platform Selection/Evaluation Criteria (1/2)

 Support for defining cloud characteristics (“OSSM”):
 On demand, Self service, Scalable, Measured

 Billing model and Service Level Agreements (SLAs)
 Accountability of provider, penalties/refunds, customer obligations

 Physical location (of data)

 Country/place of jurisdiction (CH/EU/other)

 Service scope
 Platform middleware versions?
 Limitations:
 Can main programs (batch jobs) be run?
 Can JEE EARs be deployed?

© Olaf Zimmermann, 2015.
Page 36

PaaS Platform Selection/Evaluation Criteria (2/2)

 Deployment process and tools; standardization
 Web console
 Management APIs
 Local SDK (command line tools, Eclipse plugins)
 Topology and Orchestration Specification for Cloud Applications (TOSCA)

 User/programmer documentation incl. getting started information

 Cloud services lifecycle, e.g. hibernation due to inactivity/restart time?

 Operational model (runtime topologies)
 Inbound traffic, outbound traffic, cloud-internal communication

 Domain and port management capabilities for user
 E.g. own URIs/domain names possible (DNS management)?
 Can virtual hosts (custom DNS entries) be defined?

 API security and VPN support
 Credentials, storage locations

© Olaf Zimmermann, 2015.
Page 37

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

Architectural Principles for Cloud-Native Applications

 Design application startup and restart procedures as lean as possible
 How long does it take your application server to display an “open for e-

business” message after a restart (process and/or hardware)?

 Let all components implement the Service Layer pattern
 Define with Remote Facades and expose them with JAX-WS or JAX-RS
 Use messaging for cloud-internal communication and integration

 Define all Data Transfer Objects (DTOs) to be serializable
 See experiment with DDD Sample in PaaS Provider 1 (Spring MVC)

 Use Internet security technologies to satisfy application security needs
 E.g. often no connectivity to company-internal LDAP or Active Directory

 Model all communication dependencies explicitly and consult IT
infrastructure architects both on provider and on consumer side
 E.g. one PaaS Provider requires inbound port 5000 connectivity to support

remote terminals (required for platform/instance management)

© Olaf Zimmermann, 2015.
Page 38

http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/remoteFacade.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html

Good Cloud Design Practices

 Avoid calls to proprietary platform libraries (e.g., via JNI)

 Limit usage of expensive operations, e.g. SecureRandom in Java SE

 Do not define resource identifiers such as IP addresses statically

 Prefer HTTP over raw socket communication even for cloud-internal
integration (or use messaging capabilities offered by cloud provider)

 Do not expect cloud messaging to have the same semantics and QoS as
traditional messaging systems (at-least-once vs. exactly-once delivery)

 Do not expect NoSQL storage to provide the same level of programming
and database management convenience as mature SQL database
systems

 Do not expect cloud provider to handle backup and recovery of
application data for you

 Be prepared to log resource consumption on same level of detail as
provider (in case bill from provider contains suspicious items)

© Olaf Zimmermann, 2015.
Page 39

Cloud Affinity of PoEAA Patterns (1/3)

PoEAA Pattern Suitability for Cloud Comment

Client Session State Yes and no As good or bas as in traditional
deployment (security?)

Server Session State No (I in IDEAL violated) Also hinders scale out

Database Session State Yes Can use DB (e.g. NoSQL)

Model-View-Controller Yes (with persistent model) Web frontends are cloud-affine

Front Controller Yes (Web frontends) See above

Page Controller Yes (Web frontends) See above

Application Controller Yes (Web frontends) See above

other Presentation Layer Patterns Yes (Web frontends) See above

© Olaf Zimmermann, 2015.
Page 40

Patterns of Enterprise Application Architecture Patterns (PoEAA):
http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/modelViewController.html
http://martinfowler.com/eaaCatalog/frontController.html
http://martinfowler.com/eaaCatalog/pageController.html
http://martinfowler.com/eaaCatalog/applicationController.html
http://martinfowler.com/eaaCatalog/

Cloud Affinity of PoEAA Patterns (2/3)

PoEAA Pattern Suitability for Cloud Comment

Transaction Script Yes Procedures should be self contained
(stateless interactions)

Domain Model Depends on complexity of
domain model

Object tree in main memory might limit
scale out (and database partitioning)

Table Module No or implementation
dependent

Big data sets problematic unless
partitioned (e.g. map-reduce)

Service Layer Yes SOA and REST design principles should
be adhered to, e.g. no object references in
domain model, but only instances of Data
Transfer Object in interface (larger
discussion required)

Remote Facade Yes Can be introduced for cloud enablement of
existing solutions; can wrap calls to PaaS
provider to support maintainability and
portability

© Olaf Zimmermann, 2015.
Page 41

Patterns of Enterprise Application Architecture Patterns (PoEAA):
http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/transactionScript.html
http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/tableModule.html
http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html
http://martinfowler.com/eaaCatalog/remoteFacade.html
http://martinfowler.com/eaaCatalog/
http://martinfowler.com/eaaCatalog/

Cloud Affinity of PoEAA Patterns (3/3)

PoEAA Pattern Suitability for Cloud Comment

Active Record Limited Good when RDB exists in cloud or when
records have simple structures; complex
structures can be difficult to handle for
NoSQL storage (mapping need)

Row Data Gateway Yes Fits scale out

Table Data Gateway No or implementation
dependent

Big data sets problematic unless
partitioned (e.g. map-reduce)

System Transaction Depends on cloud storage
capabilities (NoSQL?)

Larger discussion required (CAP BASE
vs. ACID etc.)

Business Transaction Yes If cloud design best practices are adhered
to (statelessness etc.)

© Olaf Zimmermann, 2015.
Page 42

Patterns of Enterprise Application Architecture Patterns (PoEAA):
http://martinfowler.com/eaaCatalog/

http://martinfowler.com/eaaCatalog/activeRecord.html
http://martinfowler.com/eaaCatalog/rowDataGateway.html
http://martinfowler.com/eaaCatalog/tableDataGateway.html
http://martinfowler.com/eaaCatalog/

	Architectural Refactoring for the Cloud: �a Decision-Centric View on Cloud Migration��
	Objectives (Research Projects and this Presentation)
	Abstract
	Agenda
	Motivation: Typical Service-Oriented System (Pre-Cloud Age)
	Simple, User-Centered Definition of Cloud Computing
	A Cloud User Story*: Cloud-Native Application Development
	Cloud Computing Patterns (CCP)
	IDEAL Cloud Application Properties (Fehling, Leymann et al.)
	The Twelve-Factor App (Author: Heroku Co-Founder)
	From Traditional Layer-Tier Architectures to Cloud Services
	Another Cloud User Story: Cloud Migration
	Agenda
	Code Refactoring vs. Architectural Refactoring
	Early Work on Architectural Refactoring: Michael Stal (Siemens)
	Quality Story* (Inspired by User Stories) – Example
	Quality Story (Inspired by User Stories) – Template
	Architectural Refactorings – Decision-/Task-Centric Template
	Architectural Refactoring – Example (of Filled Out Template)
	Fundamental Refactorings (Logical/Functional Viewpoint)
	Fundamental Refactorings (Infrastructure/Deployment Viewpoint)
	Architectural Refactoring – Example (in Infrastructure Viewpoint)
	Agenda
	Towards an Architectural Refactoring Catalog for Cloud
	Architectural Refactoring for Cloud – Example: De-SQL
	Candidate Architectural Refactorings for Cloud (Draft Catalog)
	Agenda
	How to Manage this Architectural (Reengineering) Knowledge?
	Architectural Refactoring Tool Support (Thesis Projects)	
	More Information – Architectural Refactoring
	Architectural Refactoring for the Cloud: a Decision-Centric View on Cloud Migration – Background Information��
	What are Architectural Decisions (ADs)? Why Care?
	Y-Template for Architectural Decision Capturing
	ARC Metamodel (at an Initial State of Elaboration) (1/2)
	ARC Metamodel (at an Initial State of Elaboration) (2/2)
	PaaS Platform Selection/Evaluation Criteria (1/2)
	PaaS Platform Selection/Evaluation Criteria (2/2)
	Architectural Principles for Cloud-Native Applications
	Good Cloud Design Practices
	Cloud Affinity of PoEAA Patterns (1/3)
	Cloud Affinity of PoEAA Patterns (2/3)
	Cloud Affinity of PoEAA Patterns (3/3)

