
Cloudiator: A Cross-Cloud, Multi-tenant 
Deployment and Runtime Engine (for IaaS)

Jörg Domaschka, Daniel Baur, Daniel Seybold, Frank Griesinger

OMI, University of Ulm, Germany



Page 2

Disclaimer

Acknowledgements

The research leading to these results has received funding from the 

European Community’s Seventh Framework Programme (FP7/2007-

2013) under grant agreement number 317715 (PaaSage).



Page 3

Motivation

• Cloud hype is at its peak (or has even passed it)
• Still several huge probles around

• Vendor lock-in
• Uncomparable offerings (vCPU != vCPU)
• Incompatible APIs, unadopted standards
• Cloud providers do not fit

• Need to adopt application and deployment to changing conditions
• Adaptation and re-deployment
• Awareness of application state and failures



Page 4

Motivation (ii)

What is needed is a platform

• to provide multi- and cross-cloud capabilities

• to enable re-use of software components

• to provide an abstraction layer over different cloud APIs

• to support multi-tenancy

• to enact powerful adaptation rules

Cloudiator is such a tool



Page 5

Scopes

Deployment
Runtime

Handling



Page 6

Deployment

Understanding

of „application“
Understanding

of „cloud“
Understanding

of „lifecycle“



Page 7

Understanding Applications

Component

• Self-contained chunk of software
• Unit of failure
• Unit of scale

• May interact with other
components through channels

Examples

• Database

• Load balancer

• Web server/application server

(in comb. with business logic)

load

balancer
in port out port



Page 8

Understanding Applications (ii)

Application

• Set of interdependent components

• Wired through channels

load

balancer

application

server

database

nginx nodejs &

ghost blog

postgres



Page 9

Understanding Applications (iii)

Application Instance

• Enactment of an application in the „cloud“
• At least one component instance per component

• Definition of ports (if needed)
• Definition of locations (clouds and virtual machines)

nginx nodejs +

ghost blog

postgres8080
random default



Page 10

Deployment

Understanding

of „application“
Understanding

of „cloud“
Understanding

of „lifecycle“



Page 11

Understanding cloud terminology

cloud platform

• software stack

• version for

• management of

(IaaS) resources

 defines API

• OpenStack Juno

cloud provider

• offers access to

resources by

running cloud

platform

 defines endpoint

(URI)

• Redstack,

Uni Ulm cloud, 

bwCloud

cloud

• provider as seen

by user

 user name

 access credentials



Page 12

Dealing with Different Provider APIs

• Need for hiding the differences

• Cloudiator mostly relies on Apache jclouds

• … but has custom implementations as well



Page 13

Technical Locations of bwCloud

bwCloud

regionFRregionMA regionUL

default

cloud provider

OpenStack

regions

availability zones CACTOS PaaSage

lectures domaschka



Page 14

Geographical Locations of bwCloud

bwCloud

regionFRregionMA regionUL

cloud provider

OpenStack

regions

‚real world‘

location
GPS: …

Freiburg

GPS: …

Mannheim

GPS: …

Ulm

Germany EuropeBaden-Würt.



Page 15

Locations of Cloud Providers

But … 

• availabilty zones may reside in different geographical locations

• other cloud platforms may use different schemas

• Not all locations are required for deployment

(e.g. availability zone is optional)



Page 16

Locations of Cloud Providers (ii)

Meta-model OpenStack Juno

technical location

• name

• mandatory

• geographical

parent

„availability zone“

false

optional

„region“

true

required

„OpenStack Juno“

jclouds/OpenStack
Top-level location

• name

• driver

location

hierarchy



Page 17

Other Properties

• locations, driver, and endpoints are cloud provider specific

• images and flavours are cloud-specific

• different users may see different images/flavours

• same holds for virtual networks, security groups and the like



Page 18

Cloudiator Users vs Cloud Users

Cloudiator user

‚John Doe‘

bwCloud provider

Amazon provider

bwCloud access

credentials

Amazon access

credentials



Page 19

Adding a Cloud for a Cloudiator User

Triggers harvesting

• Available locations (regions and availability zones)

• Available images

• Available hardware configurations (flavours)

• Periodically updated



Page 20

Images and Hardware Flavours

bwCloud access

credentials (doe)
regionUL

hardware 1

hardware 200

bwCloud access

credentials (joerg)

1 core, 2GB

8 cores, 32GB

Image 43468ff6-

Image 72728324-

regionUL

14.10

15.04



Page 21

Operating System Hierarchy

Windows

Windows 7

Windows 8

Windows 

Server 2012

Linux

Ubuntu

RedHat

12.10

14.04

15.04

RHEL 6

RHEL 7

BSD



Page 22

Hardware Flavours



Page 23

Cloudiator components

cloud providers
deployment

drivers (jclouds)

flavours/images

users & 

accounts

UI
REST

& Web
components & 

applications



Page 24

Creation of Application Instances

• Creation of virtual machines

• ‚Put‘ components on these virtual machines

• no magic

nginx nodejs +

ghost blog

postgres8080
random default



Page 25

Creation of Application Instances (ii)

nginx nodejs +

ghost blog

postgres8080

vm1 vm2 vm3 vm4

bwCloud cloudAmazon cloud

deploy deploy deploy



Page 26

Deployment

Understanding

of „application“
Understanding

of „cloud“
Understanding

of „lifecycle“



Page 27

Lifecycle Handling

Lifecycle: defines actions to steer application component
• Fixed set of common handlers

• install (download)
• configure
• start, stop

• Surveillance
• start detector
• stop detector

• Ports
• downstreamUpdates



Page 28

Clouditor Lifecycle Handlers (Example)

nginx

install

Handler

downstreamU

pdateHanlder

Windows Linux

script (bash)

JavaClass

script (bat)



Page 29

Technically Speaking … 

virtual machine

Lifecycle

Agent

Cloudiator (home domain)

installs

deploy

component

Docker container

nginx

creates



Page 30

Scopes

Deployment
Runtime

Handling



Page 31

Knowing what is going on … 

• Judging your current deployment requires insight into the behaviour of

• virtual machines

• component instances

• groups of component instances

• …

• Monitoring is the key to this



Page 32

Monitoring architecture (pt i)

virtual machine

Lifecycle

Agent

Cloudiator (home domain)

install/

configure

add sensors

Docker container

nginx

Monitoring

Agent

Monitoring Agent

• monitors VM

• monitors container

• monitors application

• default probes

• custom probes

• pull/push based

• variable intervals



Page 33

Dealing with Raw Data

• raw data is often useless

• at least aggregation is needed

 collect data such that aggregation is possible



Page 34

Monitoring architecture (pt ii)

virtual machine

Lifecycle

Agent

Cloudiator (home domain)

Docker container

nginx

Monitoring

Agent

Data Collector

• make data available

to aggregators

• relay data if needed

• currently two

implementations

• only has limited 

resources available

Data

Collector

aggregators



Page 35

Where to aggregate?

Cloudiator‘s rule of thumb: transmit as little data as possible

scope input from aggreator at output to example

host single vm this vm this vm

collector

10 minutes CPU 

average of single

container

cloud vms in one cloud any vm in

cloud*

any collector

in cloud

average of above

across all instances of

the same component

global vms from at least 

two clouds

home domain collector at 

home domain

average of above of all 

containers of cross

cloud application



Page 36

Cloudiator components

cloud providers
deployment

drivers (jclouds)

flavours/images

users & 

accounts

UI
REST

& Web
components & 

applications
data

collector
aggregators



Page 37

What to monitor and what to aggregate?

(where do probes and aggregator configuration come from?)

• user defined

• investigate curves at GUI

• user-requested data is also stored at home domain

• part of the scalability rules definition …



Page 38

Monitoring and Probing Example

{
”sensors” :[

{”name” :”CPU”, ”type” :”system.cpu”, ”interval” :”1s”}
],

”metrics”: [
{”name” :”raw cpu”, ”scope” :”blog.ghost.EACH”, ”type” :”raw”, ”sensor” :”CPU”},

{”name” :”avg cpu”, ”scope” :”raw cpu.EACH”, ”type” :”compute”,
”params” :[”AVG”, ”10min”, ”raw cpu”]},

{”name” :”avg global”, ”scope” :”SINGLE”, ”type” :”compute”, 
”params” :[”AVG”, ”avg cpu.ALL”]}

]
}



Page 39

PaaSage Scalability Rules Language (SRL)

• fine grained approach to specifying when to add new instances to a 

component

• Clouditor ships with an engine supporting SRL

• Basically same concept as for monitoring:

conditions are treated as metrics



Page 40

Scaling Rules Example

{
”rule” :{

”condition” :[”AND”,
[”avg cpu.ANY”, ”GT”, ”80%”]
[”avg global”, ”GT”, ”60%”]

], 
”action” :[”SCALE OUT”,

{”scope” :”component”,
”target” :”ghost”}
]

}
}



Page 41

Cloudiator components (final view)

cloud providers
deployment

drivers (jclouds)

flavours/images

users & 

accounts

UI
REST

& Web

components & 

applications
data

collector
aggregators

SRL engine
data

store



Page 42

Summary: What Cloudiator offers …

simple application

specification

application instantiation

(deployment)

application operation

(monitoring and adaptation)

• down to earth software suite

• with barely any magic

IaaS

provider management

user management

open source, hosted@github

https://github.com/cloudiator



Page 43

Our Roadmap

• Release of version 0.1 at beginning of August

• Will have been tested by 4 PaaSage use cases by then

• For version 0.2 (end of September)

• Finalise initial Windows support

• Add more robustness (failure detection)

• For version 0.3 (end of 2015)

• Add stateful migration of instances

• Introduce higher layers of abstraction

• Support further deployment mechanisms such as

• Puppet, Chef, Dockerfiles


