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This talk: 

1. Prelude: The grand challenge 
 

2. In praise of models 
 

3. Tentative basic notions 
 

4. A notion of composition 
 
 

5. Marvin Triebel will expand on tools  
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The three paradigms of programming 
1.  Conventional (procedural) programs 
        memory cells (“variables”) and assignment statements 
        theoretical foundation / expressive power:  
        the computable functions 
 
2.  Object orientation 
        attributes and methods 
        theoretical foundation:  
        abstract data types / algebraic specifications /  
        signatures and structures (as for 1st order logic) 
 
3. Service orientation 
         self contained components (reactive systems) 
         loosely coupled 
         theoretical foundation: missing 



Multi-user operating systems and data bases,  

computer networks,  

embedded systems,  

interacting, non-terminating software components,  

technical devices or organizational units with local computing power. 

portable devices,  

control systems,  

today’s internet 

future internet of things 

…                                                           
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… generally:   reactive systems 



modelling techniques 
a heterogeneous world  

with  loosely related notions, concepts, properties and results:                    
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ALLOY,  

B,  

BPMN, 

event structures,  

Message Sequence Charts  

live Sequence Charts,  

Petri Nets,  

Process Algebras,  

Statecharts, 

UML patterns 

… and languages 

BPEL     YAWL    WSDL          domain specific languages 

 

no common background 

no theoretical foundation 

 



7 

structure of textbooks on SOA 

First part: 

in plain English: 

 “… SOA is an implementation independent concept, …” 

using many notions, poorly related. 

 

Second part: 

examples of implementations 

confusing essential aspects and language dependent aspects 
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What’s the problem ? 
…  with a formal foundation  
of reactive systems (and, hence, SOC)? 
 
THE taboo of Theoretical Informatics: 
 
THE COMPUTABLE FUNCTIONS  

ARE  THE  BASIS OF COMPUTING  !!! 

 
In principle, everything can be reduced to classical computability 
 
reactive systems (SOC):  
• infinite computation are standard (“always on”)  
• complexity is not in computation but in communication 
• computation is not about sequences of symbols 
 
A  canonical fundamental level of abstraction  is missing 



9 

A grand challenge:  
 
 … a formal foundation for reactive systems (and, hence, SOC) 

 
… in analogy to the computable functions  
for sequential, symbol transforming algorithms. 
 
 
Informatics is more than symbol crunching automata! 
 
In analogy to physics, 
informatics is not only pre-Einstein. 
It is pre-Newton. 
 



Towards a formal foundation  

aim of a 

generic  Mod. language 

   expressive power (L) 

all modeling  

languages L 

or business 

processes 

aim of e.g. 

BPMN: 

 expressive power (L) 

all modeling  

languages L 

for business 

processes 

results in 204 symbols … results in ???? 
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A formal foundation is a base to ... 
• describe semantics of implementations  

 
• characterize expressivity of formalisms 

 
•  relate representations (equivalence, simulation) 

 
• clarify the elementary notions of the area 

 
• derive properties  
       from structural and behavioral descriptions 
 
• teach the area systematically  
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Why does Science develop Theories? 
THE paradigm :  physics, astronomy. 

Recently:  "theoretical biology“ 

 

What about informatics?                          

1970ies: Intended as a general theory for handling information … 

Instead: Informatics became business and technology.  

 

Thesis:  

Eventually we need a deep, comprehensive theory of Informatics!  

We should learn from physics! 
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Models 
Theory building means to create models. 

 

Successful models  

      -   are often intuitively not trival  

           and not immediately self-evident 

      -   but provide structurally simple                               

          (and quantifiable) “laws of nature”. 

 

Mature models fit amazingly well with mathematics.    

 

Occam’s razor  governs the choice of the “right” model. 
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A Theory of informatics … 
“the next state function  f   

[of an algorithm]    

might involve operations  

that mortal man can not always perform.” 

 

Don Knuth, 1968 
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A Theory of informatics … 
“Progress is possible only if 

we train ourselves to think about programs  

without thinking of them  

as pieces of executable code. “ 
 

“Computer Science is no more about computers  

than astronomy is about telescopes.”   

 

E. W. Dijkstra 
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Models in informatics 
„Computer science is a science of abstraction,  

creating the right model for a problem  

and devising the appropriate mechanizable techniques  

to solve it.“ 

 

Alfred V. Aho,  

Jeffery D. Ullman 

1995 
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We must “elevate models  

as to a first class citizenship ...  

a peer of traditional text languages  

(and potentially its master)”.  

 

“models as products”. 

 

Grady Booch, (2004) 

Models in informatics 



19 

“. . . we should have achieved  

a mathematical model of computation, 

perhaps highly abstract … 

but such that programming languages 

are merely executable fragments  

of the theory . . .” 

 

Robin Milner, 2005 

 

Models in informatics 
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… describe structures and algorithms 

     with components that may never be implemented  

        

       user of a cash terminal   

       software controlled elevator 

 

The modeler freely chooses the level of abstraction 

 

Adequate modeling techniques            
for computer embedded systems 



What is a model? 

21 



Model Jaguar E 
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model of the 
model Jaguar E 
 
model2 

 

… too complicated  for us 



Models in science 

… used to describe the laws of nature.  

 

Typical example:  

 

The term “energy”  

+ all laws about energy. 

 

There is nothing like energy in nature. 

The notion of “energy” is an abstract model  

 

used to describe an invariant.  
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first hidden in gasoline,  

then in acceleration,  

then in speed, 

then in deformed metal sheet.  

 

energy  

What physicists really did: 

Searched a notion, general enough  

to describe what remains invariant  

… and called it energy. 



Scientific models 
Physicist do accept intuitively hard models  (“theories”)  

if they offer convincing  explanations, 

in particular  invariants. 

 

Invariant in Chemistry 

CH4 + 2 O2     CO2 + 2 H2O 

 

Search for good theories 

=  Search for comprehensive invariants. 

 

Informatics should learn from this! 

Even Theoretical Biology is behind (biological) models 
with nontrivial invariants  (“bio mass”)! 
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e = mc2 



Models in informatics 
data models 

 

models of computation 

 

software models 

 

system models  

26 



Symbol processing models 
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“the computable functions” 
 
Turing machines 

unifying, expressive, no invariants 



Programs as models of algorithms 
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invariants: 
Hoare Logic 



Behavioral models 
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invariant: 
cash box  +  storage  =  signal + 5 
 
Petri nets have expressive invariants, 
because transitions are reversible. 



Software models   
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UML 

not formal,  
hence no invariants 



…  the blunt reality 

… Software engineers ignore modeling 

why is it? 

 

The software industry doesn’t  benefit substantially. 

… because models are complicated? 

no!  because a software developer don’t get much out of a model 31 



Needed: more fitting models  ! 
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- for entire  systems,  not (only) computing components; 

 

- allowing free choice of level of abstraction; 

 

- representing “the implementable”  

      (not “the computable”); 

 

- including a comprehensive notion of  “algorithm”; 

 

- providing much more insight than today’s models! 

 

What notions may be subject  to such models? 

 

 



information / data / documents /  
items / messages / contracts  
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copy / compose:  

What aspects change?  

What are the properties of a copy / a compositum? 

 

access rights, ownership of  

 

dispatch, store , disseminate  

 

communicate  

computer-mediated  

 

 



Activities / tasks 
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what means  

 

to cancel   

to authorize   

to delegate   

to synchronize   

to re-organize   



More general invariants 
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account  
+  in hand  

-  a garbage collector    
-  a communication protocol  
-  an elevator control? 
-  a telephone switching system 

-  a cash machine 

 

What remains invariant when using  

 

 

 



Prospective theorems  
on software models  

Theorem 1:  In each computerized system holds: 

                        While computing  

                        – without communicating –  

                        the amount of  information  (?) 

                        remains constant 

 

Theorem 2:  To decide an alternative   =     

                        to consume a piece of information 

36 
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What is a service?     
… an algorithmic component,  frequently software. 

a person 
• booking a journey,  
• buying a ticket,  
• withdrawing cash 
     from an ATM. 

software to  
• book a journey,  
• sell a ticket,  
• offer cash at    

an ATM. 

a technical system, 

• elevator  

• self driving vehicle 

• mobile phone 

an organization, providing  
• insurances 
• medical surgery   
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Three distinguishing aspects 
a) A service is  always on. 

In general NOT:  

Input as last time 

yields output as last time 

 

b) services interact loosely coupled. 

In general: message passing; not handshaking. 

 

c) A service may spawn many instances. 

Two instances may 

• temporally overlap,  

• interact. 
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Interaction is the fundamental idea of services 

 

… represented as composition 

 

For services  P  and  S,   

the composition  P  S   

is a service again. 

 

Frequently, P  S does not interact any more 
 
ticketing   =def    
sell_ticket  buy_ticket 
 

 
 

Interaction of services 
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interacting services (instances) jointly pursue a goal. 

They may reach their goal  

                                                 or miss it 

 

 

 

 

 

 

Services interact goal oriented 

Frequent goal of a set of services: 

to reach a final state together 

 

Often:  

services play the role of a provider or a requester,  

together with a broker. 
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P  S  is  beautiful,  

in case  P  and  S  both reach their goal in P  S 

(may be, by he help of a third service). 

beauty predicates 
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Given: 

• a set  S  of services, 

• a composition operator  S  S  

S, 

• a predicate  b  S. 

This yields the algebraic structure   

                         (S;   , b ). 

 

For  R, S  S, 

R  is a partner  of  S, 

iff  R  S  b.             b ( R  S) 

 

Let  sem(S)  =def  the set of  

                               all partners of  S. 

The algebraic structure of services 
derived notions: 

 

S  may be substituted by S‘ :        
sem(S)  sem(S‘ ) 

 

R  and  S  are equivalent:                       
sem(R) = sem(S) 

 

T adapts R  and  S:                             
R  T  S  b 
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   The fundamental notions and problems 
Notions                         Problems                     Tools 

Services are 
modeled. 
 
Services are 
composed (RS). 
 
A (composed) 
service may be 
correct (w.r.t. b). 
 
Each service has a 
set of partners. 
 
U adapts R and S iff 
RUS is correct. 

Formalization 
 
Formalization 
 
 
Verification 
 
 
partner synthesis 
 
 
adapter synthesis 
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A component has an  inner structure  and an  interface.  

Typical example: 

An abstraction of services: components 

with nodes  A, B, C, D  

as its interface 

and node a  

as its inner structure. 

a 
C 

B 

A 

D 
technically: 
a component is  
a node labeled graph. 
 
Some nodes  
constitute ist interface  
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Components are intended to be  composed  along their interface. 

                                         What we want: 

                                         a relevant class C of components such that  

                                         composition  of components  „ $ “  is 

 

-                                     total  i.e.    $  :  C  C  C  

                                          A $ A  or  A $ B $ A    etc. are well 
defined,  

 

- parameter free, i.e. no  $i  for any kind of  parameter,  i 

 

- associative, i.e.  (A $ B) $ C    =   A $ (B $ C) 

 

- flexible enough to cover many realistic applications. 

Composition 

a 
C 

B 

A 

D 



R1 
L1 

Components with left-right interface 
C1 

a 
C 

B 

A 

D 

The component’s interface:  

the left and the right port. 

 

Each port:  a set of (labelled) nodes. 

 

Two ports are often adequate: 

 

input            and    output 

customer    and    supplier 

provider      and    requester 

producer     and    consumer 

buy side       and    sell side 
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R1  and  L2  fit perfectly 
C1 

a 
C 

B 

A 

D 

C2 

R2 L2 

b 
E 

D 

C 

F 
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R1 
L1 



R1 
L1 

Composition  C1 $ C2 
C1 

a 
C 

B 

A 

D 

50 

C2 

b 
E 

D 

C 

F 

L12 

C12 

R2 R12 



R1 L1 

… it is not always that simple 
C1 

a 
C 

B 

A 

D 

G 
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R2 L2 

C2 

b 
E 

D 

C 

F 



L1 

Composition  C1 $ C2 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

C12 

L12 R12 

52 

G 



R1 L1 

This works nicely: 
C1 

a 
C 

B 

A 

G 

R2 L2 

C2 

b 
E 

D 

C 

F 
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C 



R1 L1 

… unfortunately 
C1 

a 
C 

B 

A 

D 

E 
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R2 L2 

C2 

b 
E 

D 

C 

F 



L1 

Port with multiple label 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

C12 

L12 R12 
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E 

Two nodes of R12  
are labelled alike! 

You can not avoid this! 



L2 R1 L1 

… what to do here ??? 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

Idea: 
n equally labelled 
nodes in one port  
are indexed 1, … n . 

C 

graphical convention: 
lower < upper. 
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Glue  
equally labelled and 
equally indexed nodes. 

1 

2 



L2 R1 L1 

… what to do here ??? 
C1 

a 
C 

B 

A 

D 

R2 

C2 

b 
E 

D 

C 

F 

Idea: 
Equally labelled nodes 
in one port  
are ordered. 

C 

graphical convention: 
lower < upper. 
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Glue  
equally labelled nodes 
both n-th in their order. 

1 

2 



R1 L1 

An extreme case 
C1 

a 
A 

A 

A 

A 

A 

58 

all labels alike. 

1 

2 

1 

2 R2 L2 

C2 

b 
A 

A 

A 

A 

1 

2 

1 

2 

3 



R1 L1 

An extreme case 
C1 

a 
A 

A 

A 

A 

A 
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all labels alike. 

1 

2 

1 

2 R2 L2 

C2 

b 
A 

A 

A 

A 

1 

2 

1 

2 

3 



L1 

An extreme case 
C1 

a 
C 

A 

A 

D 

R2 

C2 

b 
A 

A 

A 

A 

C12 

L12 R12 
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A 

all labels alike. 

1 

2 

1 

2 

3 



… another extreme case 

a 
C 

B 

A 

D 

b 
G 

F 

E 

H D 
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a 
C 

B 

A 

D 

b 
G 

F 

E 

H 

D 

all labels different. 

results in 
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A component has an  inner structure  and an  interface.  

Components are intended to be  composed  along their interface. 

                                         What we want: 

                                         a relevant class C of components such that  

                                         composition  of components  „ $ “  is 

 

-                                     total  i.e.    $  :  C  C  C  

                                          A $ A  or  A $ B $ A    etc. are well 
defined,  

 

- parameter free, i.e. no  $i  for any kind of  parameter,  i 

 

- associative, i.e.  (A $ B) $ C    =   A $ (B $ C) 

 

- flexible enough to cover many realistic applications 

1. Components: beautiful composition 

a 
C 

B 

A 

D 

6 Lemmata 

13 Cases 

took me three weeks … 
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technically:  

not necessary L and R be disjoint! 

 

useful? 

 

2.  … we got even more:  



N2  

requester  

R1 

Exclusive requester 

N1  

provider 
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N2  

requester  

R1 

Exclusive requester 

N1  

provider 

65 



N2  

requester  

R1 

Sharing requester 

N1  

provider 
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N2  

requester  

R1 

Sharing requester 

N1  

provider 

67 



N2‘  

requester  

N2  

requester  

Second sharing requester 

N1  

provider 
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N2‘  

requester  

N2  

requester  

Second sharing requester 

N1  

provider 
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N2‘  

requester  

N2  

requester  

Third sharing requester 

N2‘‘ 

requester  

skip the primes: 

 N1 $ N2 $ N2$ 

N2 

N1  

provider 

70 



Generic sharing requesters  

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  

R 

P $ Q 

$ Q 

P $ Q 

$ Q$ 

Q  

P $ Q 

generic 

requester Q : Q 

requester  

D 

M 

R 

L 
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A variant 

generic 

requester Q : 

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  

R 

Q 

requester  

D 

M 

P $ Q 

$ Q 

P $ Q 

$ Q$ 

Q  

P $ Q 

A 

A 

A 

A 

R 

72 

L 



Prefer this variant? 

generic 

requester Q : 

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  

R 

Q 

requester  

D 

M 

L 

P $ Q 

$ Q$ 

Q  

P $ Q 

A 

A 

A 

A 

A 

A 

R 
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P $ Q 

$ Q 



Prefer this variant? 

generic 

requester Q : 

P  

provider 
Q 

requester  

D 

D 

D 

D 

M 

Q 

requester  

Q 

requester  

R 

Q 

requester  

D 

M 

L 

P $ Q 

$ Q 

P $ Q 

$ Q$ 

Q  

P $ Q 

A 

A 

just make  

a member of  L 

R 

74 



2 1 

Cyclic composition: The philosophers 

A 

3 2 B 4 3 C 5 4 D 1 5 E 

This is  A$ B $ C$ D$ E 

The problem:  How glue      ? 
Construct the  closure  (A$ B $ 

C$ D$ E)c 

75 



2 3 2 B 4 3 C 5 4 D 1 5 E 1 

Cyclic composition: The philosophers 

A 

This is  A$ B $ C$ D$ E 

The problem:  How glue      ? 
Construct the  closure  (A$ B $ 

C$ D$ E)c 

76 



... with a generic philosopher 

r l p 

algebraic form:  (p$ p $ p$ 

p$ p)c 

77 

r p r p r p r p 
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… on your request 
Don’t like labels at all?   

                                                

 

Prefer  one interface  instead of  two ports?   

                                                        

 

However: 

Order without labeling,  

interface without two ports: 

both not too expressive! 

Do with ordered ports. 

Take  L = R. 
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The algebra of services 
(C, $ , ;)  is a monoid. 

 

Extend it to (C, $ , ; , ( )c ). 

 

Study its algebraic laws! 

Do formal language theory! 

Build your systems accordingly! 

Squeeze it all into tools! 

Apply it! 

 

 

i.e. like   (S*, $ , e ) 
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Notions               Problems            Tools 

Services are 
modeled. 
 
Services are 
composed. (RS) 
 
A (composed) 
service may be 
correct. 
 
Each service has a 
set of partners. 
 
U adapts R and S iff 
RUS is correct. 

Formalization 
 
 
 
 
Verification 
 
 
partner synthesis 
 
 
adapter synthesis 
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W. Reisig:  Service Orientation as a Paradigm of Programming 
  
Abstract 
This contribution spans the broad spectrum from fundamental aspects of service 

modeling to tool-based analysis techniques of such models. We start with some 
fundamental considerations about the nature of service orientation as an architecture 
principle for software embedded systems. As a grand challenge of informatics we 
identify the missing theoretical foundation of modeling any kind of reactive systems, 
in particular service oriented computing. 

In the second part we critically investigate the notion of models in general, and of 
services in particular. Compared to models in other sciences, we show that models in 
informatics frequently lack means to derive properties of a system from its model. 

The third part suggests a couple of notions that may serve as a starting point for a 
systematic build-up of a theory of services. 

In the fourth part we study in detail a particularly useful notion of composition of 
services. 

Finally, we turn to applied aspects of service models: The tool chain as described in 
service-technology.org. A number of integrated tools supports the analysis of models 
of (Petri net based) services. Services represented in BPEL or BPMN can be analyzed 
via (software based) translation to Petri Nets. 

Abstract 


