
Theory of
Programming

Prof. Dr. W. Reisig

SUMMERSOC 2015

Wednesday, July 1st, 2015

Service Orientation
as a

Paradigm of Programming

Wolfgang Reisig
Humboldt-Universität zu Berlin

2

This talk:

1. Prelude: The grand challenge

2. In praise of models

3. Tentative basic notions

4. A notion of composition

5. Marvin Triebel will expand on tools

3

This talk:

1. Prelude: The grand challenge

2. In praise of models

3. Tentative basic notions

4. A notion of composition

4

The three paradigms of programming
1. Conventional (procedural) programs
 memory cells (“variables”) and assignment statements
 theoretical foundation / expressive power:
 the computable functions

2. Object orientation
 attributes and methods
 theoretical foundation:
 abstract data types / algebraic specifications /
 signatures and structures (as for 1st order logic)

3. Service orientation
 self contained components (reactive systems)
 loosely coupled
 theoretical foundation: missing

Multi-user operating systems and data bases,

computer networks,

embedded systems,

interacting, non-terminating software components,

technical devices or organizational units with local computing power.

portable devices,

control systems,

today’s internet

future internet of things

…

5

… generally: reactive systems

modelling techniques
a heterogeneous world

with loosely related notions, concepts, properties and results:

6

ALLOY,

B,

BPMN,

event structures,

Message Sequence Charts

live Sequence Charts,

Petri Nets,

Process Algebras,

Statecharts,

UML patterns

… and languages

BPEL YAWL WSDL domain specific languages

no common background

no theoretical foundation

7

structure of textbooks on SOA

First part:

in plain English:

 “… SOA is an implementation independent concept, …”

using many notions, poorly related.

Second part:

examples of implementations

confusing essential aspects and language dependent aspects

8

What’s the problem ?
… with a formal foundation
of reactive systems (and, hence, SOC)?

THE taboo of Theoretical Informatics:

THE COMPUTABLE FUNCTIONS

ARE THE BASIS OF COMPUTING !!!

In principle, everything can be reduced to classical computability

reactive systems (SOC):
• infinite computation are standard (“always on”)
• complexity is not in computation but in communication
• computation is not about sequences of symbols

A canonical fundamental level of abstraction is missing

9

A grand challenge:

 … a formal foundation for reactive systems (and, hence, SOC)

… in analogy to the computable functions
for sequential, symbol transforming algorithms.

Informatics is more than symbol crunching automata!

In analogy to physics,
informatics is not only pre-Einstein.
It is pre-Newton.

Towards a formal foundation

aim of a

generic Mod. language

  expressive power (L)

all modeling

languages L

or business

processes

aim of e.g.

BPMN:

 expressive power (L)

all modeling

languages L

for business

processes

results in 204 symbols … results in ????

11

A formal foundation is a base to ...
• describe semantics of implementations

• characterize expressivity of formalisms

• relate representations (equivalence, simulation)

• clarify the elementary notions of the area

• derive properties
 from structural and behavioral descriptions

• teach the area systematically

12

This talk:

1. Prelude: The grand challenge

2. In praise of models

3. Tentative basic notions

4. A notion of composition

13

Why does Science develop Theories?
THE paradigm : physics, astronomy.

Recently: "theoretical biology“

What about informatics?

1970ies: Intended as a general theory for handling information …

Instead: Informatics became business and technology.

Thesis:

Eventually we need a deep, comprehensive theory of Informatics!

We should learn from physics!

14

Models
Theory building means to create models.

Successful models

 - are often intuitively not trival

 and not immediately self-evident

 - but provide structurally simple

 (and quantifiable) “laws of nature”.

Mature models fit amazingly well with mathematics.

Occam’s razor governs the choice of the “right” model.

15

A Theory of informatics …
“the next state function f

[of an algorithm]

might involve operations

that mortal man can not always perform.”

Don Knuth, 1968

16

A Theory of informatics …
“Progress is possible only if

we train ourselves to think about programs

without thinking of them

as pieces of executable code. “

“Computer Science is no more about computers

than astronomy is about telescopes.”

E. W. Dijkstra

17

Models in informatics
„Computer science is a science of abstraction,

creating the right model for a problem

and devising the appropriate mechanizable techniques

to solve it.“

Alfred V. Aho,

Jeffery D. Ullman

1995

18

We must “elevate models

as to a first class citizenship ...

a peer of traditional text languages

(and potentially its master)”.

“models as products”.

Grady Booch, (2004)

Models in informatics

19

“. . . we should have achieved

a mathematical model of computation,

perhaps highly abstract …

but such that programming languages

are merely executable fragments

of the theory . . .”

Robin Milner, 2005

Models in informatics

20

… describe structures and algorithms

 with components that may never be implemented

 user of a cash terminal

 software controlled elevator

The modeler freely chooses the level of abstraction

Adequate modeling techniques
for computer embedded systems

What is a model?

21

Model Jaguar E

22

model of the
model Jaguar E

model2

… too complicated for us

Models in science

… used to describe the laws of nature.

Typical example:

The term “energy”

+ all laws about energy.

There is nothing like energy in nature.

The notion of “energy” is an abstract model

used to describe an invariant.

23

24

first hidden in gasoline,

then in acceleration,

then in speed,

then in deformed metal sheet.

energy

What physicists really did:

Searched a notion, general enough

to describe what remains invariant

… and called it energy.

Scientific models
Physicist do accept intuitively hard models (“theories”)

if they offer convincing explanations,

in particular invariants.

Invariant in Chemistry

CH4 + 2 O2  CO2 + 2 H2O

Search for good theories

= Search for comprehensive invariants.

Informatics should learn from this!

Even Theoretical Biology is behind (biological) models
with nontrivial invariants (“bio mass”)!

25

e = mc2

Models in informatics
data models

models of computation

software models

system models

26

Symbol processing models

27

“the computable functions”

Turing machines

unifying, expressive, no invariants

Programs as models of algorithms

28

invariants:
Hoare Logic

Behavioral models

29

invariant:
cash box + storage = signal + 5

Petri nets have expressive invariants,
because transitions are reversible.

Software models

30

UML

not formal,
hence no invariants

… the blunt reality

… Software engineers ignore modeling

why is it?

The software industry doesn’t benefit substantially.

… because models are complicated?

no! because a software developer don’t get much out of a model 31

Needed: more fitting models !

32

- for entire systems, not (only) computing components;

- allowing free choice of level of abstraction;

- representing “the implementable”

 (not “the computable”);

- including a comprehensive notion of “algorithm”;

- providing much more insight than today’s models!

What notions may be subject to such models?

information / data / documents /
items / messages / contracts

33

copy / compose:

What aspects change?

What are the properties of a copy / a compositum?

access rights, ownership of 

dispatch, store , disseminate 

communicate 

computer-mediated

Activities / tasks

34

what means

to cancel 

to authorize 

to delegate 

to synchronize 

to re-organize 

More general invariants

35

account
+ in hand

- a garbage collector
- a communication protocol
- an elevator control?
- a telephone switching system

- a cash machine

What remains invariant when using

Prospective theorems
on software models

Theorem 1: In each computerized system holds:

 While computing

 – without communicating –

 the amount of information (?)

 remains constant

Theorem 2: To decide an alternative =

 to consume a piece of information

36

37

This talk:

1. Prelude: The grand challenge

2. In praise of models

3. Tentative basic notions

4. A notion of composition

38

What is a service?
… an algorithmic component, frequently software.

a person
• booking a journey,
• buying a ticket,
• withdrawing cash
 from an ATM.

software to
• book a journey,
• sell a ticket,
• offer cash at

an ATM.

a technical system,

• elevator

• self driving vehicle

• mobile phone

an organization, providing
• insurances
• medical surgery

39

Three distinguishing aspects
a) A service is always on.

In general NOT:

Input as last time

yields output as last time

b) services interact loosely coupled.

In general: message passing; not handshaking.

c) A service may spawn many instances.

Two instances may

• temporally overlap,

• interact.

40

Interaction is the fundamental idea of services

… represented as composition

For services P and S,

the composition P  S

is a service again.

Frequently, P  S does not interact any more

ticketing =def
sell_ticket  buy_ticket

Interaction of services

41

interacting services (instances) jointly pursue a goal.

They may reach their goal

 or miss it

Services interact goal oriented

Frequent goal of a set of services:

to reach a final state together

Often:

services play the role of a provider or a requester,

together with a broker.

42

P  S is beautiful,

in case P and S both reach their goal in P  S

(may be, by he help of a third service).

beauty predicates

43

Given:

• a set S of services,

• a composition operator S  S 

S,

• a predicate b  S.

This yields the algebraic structure

 (S;  , b).

For R, S  S,

R is a partner of S,

iff R  S  b. b (R  S)

Let sem(S) =def the set of

 all partners of S.

The algebraic structure of services
derived notions:

S may be substituted by S‘ :
sem(S)  sem(S‘)

R and S are equivalent:
sem(R) = sem(S)

T adapts R and S:
R  T  S  b

44

 The fundamental notions and problems
Notions Problems Tools

Services are
modeled.

Services are
composed (RS).

A (composed)
service may be
correct (w.r.t. b).

Each service has a
set of partners.

U adapts R and S iff
RUS is correct.

Formalization

Formalization

Verification

partner synthesis

adapter synthesis

45

This talk:

1. Prelude: The grand challenge

2. In praise of models

3. Tentative basic notions

4. A notion of composition

46

A component has an inner structure and an interface.

Typical example:

An abstraction of services: components

with nodes A, B, C, D

as its interface

and node a

as its inner structure.

a
C

B

A

D
technically:
a component is
a node labeled graph.

Some nodes
constitute ist interface

47

Components are intended to be composed along their interface.

 What we want:

 a relevant class C of components such that

 composition of components „ $ “ is

- total i.e. $: C  C  C

 A $ A or A $ B $ A etc. are well
defined,

- parameter free, i.e. no $i for any kind of parameter, i

- associative, i.e. (A $ B) $ C = A $ (B $ C)

- flexible enough to cover many realistic applications.

Composition

a
C

B

A

D

R1
L1

Components with left-right interface
C1

a
C

B

A

D

The component’s interface:

the left and the right port.

Each port: a set of (labelled) nodes.

Two ports are often adequate:

input and output

customer and supplier

provider and requester

producer and consumer

buy side and sell side

48

R1 and L2 fit perfectly
C1

a
C

B

A

D

C2

R2 L2

b
E

D

C

F

49

R1
L1

R1
L1

Composition C1 $ C2
C1

a
C

B

A

D

50

C2

b
E

D

C

F

L12

C12

R2 R12

R1 L1

… it is not always that simple
C1

a
C

B

A

D

G

51

R2 L2

C2

b
E

D

C

F

L1

Composition C1 $ C2
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

C12

L12 R12

52

G

R1 L1

This works nicely:
C1

a
C

B

A

G

R2 L2

C2

b
E

D

C

F

53

C

R1 L1

… unfortunately
C1

a
C

B

A

D

E

54

R2 L2

C2

b
E

D

C

F

L1

Port with multiple label
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

C12

L12 R12

55

E

Two nodes of R12
are labelled alike!

You can not avoid this!

L2 R1 L1

… what to do here ???
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

Idea:
n equally labelled
nodes in one port
are indexed 1, … n .

C

graphical convention:
lower < upper.

56

Glue
equally labelled and
equally indexed nodes.

1

2

L2 R1 L1

… what to do here ???
C1

a
C

B

A

D

R2

C2

b
E

D

C

F

Idea:
Equally labelled nodes
in one port
are ordered.

C

graphical convention:
lower < upper.

57

Glue
equally labelled nodes
both n-th in their order.

1

2

R1 L1

An extreme case
C1

a
A

A

A

A

A

58

all labels alike.

1

2

1

2 R2 L2

C2

b
A

A

A

A

1

2

1

2

3

R1 L1

An extreme case
C1

a
A

A

A

A

A

59

all labels alike.

1

2

1

2 R2 L2

C2

b
A

A

A

A

1

2

1

2

3

L1

An extreme case
C1

a
C

A

A

D

R2

C2

b
A

A

A

A

C12

L12 R12

60

A

all labels alike.

1

2

1

2

3

… another extreme case

a
C

B

A

D

b
G

F

E

H D

61

a
C

B

A

D

b
G

F

E

H

D

all labels different.

results in

62

A component has an inner structure and an interface.

Components are intended to be composed along their interface.

 What we want:

 a relevant class C of components such that

 composition of components „ $ “ is

- total i.e. $: C  C  C

 A $ A or A $ B $ A etc. are well
defined,

- parameter free, i.e. no $i for any kind of parameter, i

- associative, i.e. (A $ B) $ C = A $ (B $ C)

- flexible enough to cover many realistic applications

1. Components: beautiful composition

a
C

B

A

D

6 Lemmata

13 Cases

took me three weeks …

63

technically:

not necessary L and R be disjoint!

useful?

2. … we got even more:

N2

requester

R1

Exclusive requester

N1

provider

64

N2

requester

R1

Exclusive requester

N1

provider

65

N2

requester

R1

Sharing requester

N1

provider

66

N2

requester

R1

Sharing requester

N1

provider

67

N2‘

requester

N2

requester

Second sharing requester

N1

provider

68

N2‘

requester

N2

requester

Second sharing requester

N1

provider

69

N2‘

requester

N2

requester

Third sharing requester

N2‘‘

requester

skip the primes:

 N1 $ N2 $ N2$

N2

N1

provider

70

Generic sharing requesters

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

R

P $ Q

$ Q

P $ Q

$ Q$

Q

P $ Q

generic

requester Q : Q

requester

D

M

R

L

71

A variant

generic

requester Q :

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

R

Q

requester

D

M

P $ Q

$ Q

P $ Q

$ Q$

Q

P $ Q

A

A

A

A

R

72

L

Prefer this variant?

generic

requester Q :

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

R

Q

requester

D

M

L

P $ Q

$ Q$

Q

P $ Q

A

A

A

A

A

A

R

73

P $ Q

$ Q

Prefer this variant?

generic

requester Q :

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

R

Q

requester

D

M

L

P $ Q

$ Q

P $ Q

$ Q$

Q

P $ Q

A

A

just make

a member of L

R

74

2 1

Cyclic composition: The philosophers

A

3 2 B 4 3 C 5 4 D 1 5 E

This is A$ B $ C$ D$ E

The problem: How glue ?
Construct the closure (A$ B $

C$ D$ E)c

75

2 3 2 B 4 3 C 5 4 D 1 5 E 1

Cyclic composition: The philosophers

A

This is A$ B $ C$ D$ E

The problem: How glue ?
Construct the closure (A$ B $

C$ D$ E)c

76

... with a generic philosopher

r l p

algebraic form: (p$ p $ p$

p$ p)c

77

r p r p r p r p

78

… on your request
Don’t like labels at all?

Prefer one interface instead of two ports?

However:

Order without labeling,

interface without two ports:

both not too expressive!

Do with ordered ports.

Take L = R.

79

The algebra of services
(C, $, ;) is a monoid.

Extend it to (C, $, ; , ()c).

Study its algebraic laws!

Do formal language theory!

Build your systems accordingly!

Squeeze it all into tools!

Apply it!

i.e. like (S*, $, e)

80

This talk:

1. Prelude: The grand challenge

2. In Praise of Models

3. Tentative basic notions

4. A notion of composition

Theory of
Programming

Prof. Dr. W. Reisig

Service Orientation
as a

Paradigm of Programming

SUMMERSOC 2015

Wednesday, July 1st, 2015

82

Notions Problems Tools

Services are
modeled.

Services are
composed. (RS)

A (composed)
service may be
correct.

Each service has a
set of partners.

U adapts R and S iff
RUS is correct.

Formalization

Verification

partner synthesis

adapter synthesis

84

W. Reisig: Service Orientation as a Paradigm of Programming

Abstract
This contribution spans the broad spectrum from fundamental aspects of service

modeling to tool-based analysis techniques of such models. We start with some
fundamental considerations about the nature of service orientation as an architecture
principle for software embedded systems. As a grand challenge of informatics we
identify the missing theoretical foundation of modeling any kind of reactive systems,
in particular service oriented computing.

In the second part we critically investigate the notion of models in general, and of
services in particular. Compared to models in other sciences, we show that models in
informatics frequently lack means to derive properties of a system from its model.

The third part suggests a couple of notions that may serve as a starting point for a
systematic build-up of a theory of services.

In the fourth part we study in detail a particularly useful notion of composition of
services.

Finally, we turn to applied aspects of service models: The tool chain as described in
service-technology.org. A number of integrated tools supports the analysis of models
of (Petri net based) services. Services represented in BPEL or BPMN can be analyzed
via (software based) translation to Petri Nets.

Abstract

