
MICROSERVICES TENETS:
AGILE APPROACH TO SERVICE
DEVELOPMENT AND DEPLOYMENT
(A.K.A. SOA VS. MICROSERVICES)

Prof. Dr. Olaf Zimmermann (ZIO)
Distinguished (Chief/Lead) IT Architect, The Open Group
Institute für Software, HSR FHO
Hersonissos, June 29, 2016

10th Symposium and Summer School
On Service-Oriented Computing

ZIO Past and Present

 Research & development and professional services since 1994
 em. IBM Solution Architect & Research Staff Member
 Systems & Network Management, J2EE, Enterprise Application Integration/SOA

 em. ABB Senior Principal Scientist
 Enterprise Architecture Management/Legacy System Modernization/Remoting

 Selected industry projects and coachings
 Product Development and IT Consulting (Middleware, SOA, information

systems, SE tools)
 Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, Web Services/XML

 Focus @ HSR: design of distributed/service-oriented systems
 Cloud Computing, Web Application Development & Integration (runtime)
 Model-driven development, architectural decisions (build time)
 (Co-)Editor, Insights column, IEEE Software
 PC member, e..g ECSA, WICSA, QoSA, SATURN, SummerSoC

© Olaf Zimmermann, 2016.
Page 2

http://design.inf.usi.ch/journals/IEEESoftware

Software Architecture Fundamentals

 What do architects do anyway?
Analyze NFRs/QAs and satisfy them!
 Systematic end-to-end systems

thinking; abstractions and
generalizations; modelling

 Why bother about architecture?
 Manage complexity, initiate and

steer projects, coach developers

 Where can I find more information?

 Page 3
© Olaf Zimmermann, 2016.

(screen caption clickable)

http://www.ifs.hsr.ch/Architectural-Knowledge-Hubs.13193.0.html?&L=4

Partitioning into Components and Services (Example)

Page 4
© Olaf Zimmermann, 2016.

Logic

Data

On which tier
should
existing
 and new

applications be
integrated?

Traditional

Applications

SOA

Services

Basket of Services Discrete Applications
(Two or Three Tiers) Layering based on IBM SOA reference architecture

Example:
An insurance company uses three SAP R/3, MS Visual Basic, and COBOL applications to manage customer
information, check for fraud, and calculate payments. The user interfaces (UIs) are the only access points.

A multi-step, multi-user business process for claim handling, executing in IBM WebSphere, is supposed to
reuse the functions in the existing applications. How to integrate the new business process with the three
legacy applications in a flexible, secure, and reliable way?

Users

UI

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

Page 5
© Olaf Zimmermann, 2016.

No single definition – “SOA is different things to different people”

 A set of services that a business wants to expose to their

customers and partners, or other portions of the organization.

 An architectural style which requires a service provider, a service
requestor (consumer) and a service contract (a.k.a. client/server).

 A set of architectural patterns such as enterprise service bus,
service composition, and service registry, promoting principles
such as modularity, layering, and loose coupling to achieve design
goals such as separation of concerns, reuse, and flexibility.

 A programming and deployment model realized by standards,
tools and technologies such as Web services and Service
Component Architecture (SCA).

Business
Domain
Analyst

IT
Architect

Developer,
Administrator

Adapted from: [IBM SSS]

SOA Patterns: Evolution of Enterprise Application/Integration Patterns

 Service Contract, Enterprise Service Bus (ESB), Service Composition

Page 6
© Olaf Zimmermann, 2014

Reference: O. Zimmermann, An Architectural Decision Modeling Framework for Service-Oriented Architecture
Design, dissertation.de, 2009 (ISBN: 3-540-00914-0).

http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/pdf/SOAD_ArchitecturalDecisionModeling_PhDThesisOlafZimmermann.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/pdf/SOAD_ArchitecturalDecisionModeling_PhDThesisOlafZimmermann.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/pdf/SOAD_ArchitecturalDecisionModeling_PhDThesisOlafZimmermann.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2010/5228/pdf/SOAD_ArchitecturalDecisionModeling_PhDThesisOlafZimmermann.pdf

Example of a Microservices Pattern: API Gateway

Page 7
© Olaf Zimmermann, 2016.

Reference: http://www.infoq.com/articles/microservices-intro and http://microservices.io/patterns/apigateway.html

Which patterns (GoF, PoEAA and EIP) does this design resemble?
What is the connection to Domain-Driven Design (DDD)?

 Intermediary process
(in services LAN)

 Client-specific APIs
wrapping services
 Coarse-grained
 Fine-grained

 Allows services and
clients to evolve
independently

http://www.infoq.com/articles/microservices-intro
http://microservices.io/patterns/apigateway.html

Microservices – An Early and Popular Definition (2014)

 J. Lewis and M. Fowler (L/F): “The microservice architectural style is an
approach to developing a single application as a suite of small services,
each running in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully
automated deployment machinery. There is a bare minimum of
centralized management of these services, which may be written in
different programming languages and use different data storage
technologies.”

Page 8
© Olaf Zimmermann, 2016.

Reference: http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

Characteristics from L/F Definition Analyzed and Compared

Page 9
© Olaf Zimmermann, 2016.

Characteristic Viewpoint/Qualities/Benefit SOA Pendant

Componentization via
services

Logical Viewpoint (VP): separation of
concerns improves modifiability

Service provider, consumer,
contract (same concept)

Organized around business
capabilities

Scenario VP: OOAD domain model and
DDD ubiquitous language make code
understandable and easy to maintain

Part of SOA definition in books
and articles since 200x (e.g.
Lublinsky/Rosen)

Products not projects n/a (not technical but process-related) (enterprise SOA programs)

Smart endpoints and dumb
pipes

Process Viewpoint (VP): information
hiding improves scalability and
modifiability

Same best practice design rule
exists for SOA/ESB (see e.g.
here)

Decentralized governance n/a (not technical but process-related) SOA governance (might be
more centralized, but does not
have to; “it depends”)

Infrastructure automation Development/Physical VP: speed No direct pendant (not style-
specific, recent advances)

Design for failure

All VPs: robustness Key concern for distributed
systems, SOA or other

Evolutionary design

n/a (not technical but process-related):
improves replaceability, upgradeability

Service design methods,
Backward compatible contracts

http://www-935.ibm.com/services/us/cio/pdf/wp_five-best-practices-for-deploying-successful-soa.pdf

Principles of Microservices by S. Newman (N)
 Model around Business Concepts
 Bounded contexts from DDD

 Adopt a Culture of Automation
 Testing, deployment; continuous delivery

 Hide Internal Implementation Details
 E.g. hide databases; define technology-agnostic APIs

 Decentralize All the Things
 E.g. shared governance, choreography over orchestration, dumb

middleware with smart endpoints

 Independently Deployable
 Let versioned endpoints co-exist; one service per host

 Isolate Failure
 E.g. introduce circuit breakers

 Highly Observable (Semantic Monitoring with Aggregation)

Page 10
© Olaf Zimmermann, 2016.

Newman Definition Analyzed and Compared with SOA

 Classification of the seven Newman (N) principles of microservices by
viewpoint/quality and SOA pendant:

Page 11
© Olaf Zimmermann, 2016

Principle Viewpoint/Qualities/Benefit SOA Pendant (Yes/No/Not Applicable)
Model around business
concepts

Scenario Viewpoint (VP), intent Key part of most SOA definitions since 2003

Adopt a culture of
automation

Process VP, Physical VP, intent No direct SOA pendant

Hide internal
implementation details

Development VP: flexibility,
portability, maintainability

Important architectural principle and development
idiom (common sense) irrespective of style (but
promoted by most styles)

Decentralize all the
things

n/a (not technical but process-
related)

SOA governance, might be more centralized, but
does not have to

Independently
deployable

Deployment/ Physical VP:
speed, scalability

No direct pendant in style, but precursor attempts
such as Service Component Architecture (SCA) ,
an OASIS specification with vendor and open
source implementations

Isolate failure All VPs, intent: robustness Done in any distributed computing approach
(hopefully)

Highly observable Process VP/Physical VP:
manageability, maintainability

Done in any distributed computing approach
(hopefully)

Tenets/Principles/Characteristics by Viewpoint (4+1)

Page 12
© Olaf Zimmermann, 2016.

Logical VP (Functional)

Process VP (Runtime Qualities) Physical VP (Operational Qualities)

Development VP
(Build Time Maintenance Qualities)

Scenario VP
(Business, Test)

Reference: Kruchten, Philippe (1995, November).
Architectural Blueprints — The “4+1” View Model of Software Architecture. IEEE Software 12 (6), pp. 42-50.

http://www.cs.ubc.ca/%7Egregor/teaching/papers/4+1view-architecture.pdf

NP-5: Independently
Deployable

Tenets/Principles/Characteristics by Viewpoint (4+1)

Page 13
© Olaf Zimmermann, 2016.

Cross-Cutting Concerns (Method, Organization)

Logical VP

Process VP Physical VP

Development VP

Scenario VP

LFC-1:
Componentization via

Services

LFC-2: Biz. Cap.

LFC-3: Prod.
not Proj.

LFC-4: Smart Endpoints,
Dumb Pipes

LFC-5: Dec. Gov.

LFC-6: Dec. DM
LFC-8: Des.
for Failure LFC-9: Evol. Design

NP-3: Hide
Implementation

Details

NP-4: Decentr.
Everything

NP-6: Isolate
Failure

NP-7: Highly
Observable

NP-1: Biz. Concepts

T-1: Fine-Grained Service
Interfaces (REST, Messaging)

T-2: Domain-
Driven Design

T-5: Lightweight
Containers

T-4: Polyglot
Persistence

T-6: Automated
Cont. Delivery

T-7: Lean Holistic
Management (DevOps)

T-3: IDEAL
LFC-7:

Infrastructure
Automation

NP-2:
Automation

The Seven Tenets for Microservices Implementations of SOA

1. Fine-grained interfaces to single-responsibility units that encapsulate data
and processing logic are exposed remotely, typically via RESTful HTTP
resources or asynchronous message queues.

2. Business-driven development practices and pattern languages such as
Domain-Driven Design (DDD) are employed to identify and conceptualize
services.

3. Cloud-native application design principles are followed, e.g., as summarized
in Isolated State, Distribution, Elasticity, Automated Management and Loose
Coupling (IDEAL).

4. Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot
persistence strategy.

5. Lightweight containers are used to deploy services.

6. Decentralized continuous delivery is practiced during service development.

7. Lean, but holistic and largely automated approaches to configuration and
fault management are employed (a.k.a. DevOps).

© Olaf Zimmermann, 2016.
Page 14

Practitioner Questions (Subset of those in SummerSoC Paper)

 How did you find an adequate/a suited service cut (e.g., how small/fine
is small/fine enough)?
 How can Domain-Driven Design (DDD) and/or other approaches to

application scoping and functional partitioning) be applied to decompose
monoliths into services?
 Guidance required that is more concrete than “define a bounded context for each

domain concept to be exposed as service”.

 How did you overcome “distribution classics” design challenges?
 Service lifecycle management, data representation/schema mismatches,

error handling, service versioning and evolution
 e.g., change of interface in terms of syntax and/or semantics), and How to

compose microservices into end user client applications?
 How about application-level intermediaries, i.e., can microservices also be

clients of other microservices?
 If so, how to avoid microservice deployment dependency and dynamic

invocation “spaghetti” (e.g., cycles, overly deep invocation chains)?

© Olaf Zimmermann, 2016.
Page 15

Summary of Positions

 (Parts of) microservices community claims that microservices are a new
architectural style that overcomes deficiencies of SOA
 RESTful HTTP, Polyglot Persistence, Continuous Delivery, Lightweight

Containers, DevOps Approach to Configuration and Fault Management

 SOA proponents argue that microservices are a state-of-the-art
implementation approach to SOA (“SOA done right”)

 A closer look unveils that most of the key tenets (characteristics) of
microservices mostly pertain to development process and deployment
viewpoint (and not the logical architectural patterns used)
 Many SOA patterns and nest practices can be found in the microservices

literature too (under different names)
 “Independently deployable” as key element (but also not new)

 SOA design challenges still present – but new ones arise

 Not suited for each and every project (at early evolution stages)

© Olaf Zimmermann, 2016.
Page 16

Microservices – Literature and Resources

 “Building Microservices”, S. Newman (O’Reilly 2016)
 Sample chapters available online (free of charge)

 “Microservices” (auf deutsch), E. Wolf, dpunkt 2016
 http://dpunkt.de/a2016_downl/Microservices.pdf

 InfoQ Microservices zone
 http://www.infoq.com/microservices

 Microservices pattern languages (emerging):
 http://microservices.io/patterns/microservices.html
 http://blog.arungupta.me/microservice-design-patterns/
 http://samnewman.io/patterns/

 SEI SATURN 2015 workshop
 https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

© Olaf Zimmermann, 2016.

Page 17

http://dpunkt.de/a2015_downl/Microservices.pdf
http://www.infoq.com/microservices
http://microservices.io/patterns/microservices.html
http://blog.arungupta.me/microservice-design-patterns/
http://samnewman.io/patterns/
https://github.com/michaelkeeling/SATURN2015-Microservices-Workshop

	Microservices Tenets: �Agile Approach to Service Development and Deployment�(a.k.a. SOA vs. Microservices)
	ZIO Past and Present
	Software Architecture Fundamentals
	Partitioning into Components and Services (Example)
	What is SOA? (Source: OOPSLA Tutorials 2004-2008)
	SOA Patterns: Evolution of Enterprise Application/Integration Patterns
	Example of a Microservices Pattern: API Gateway
	Microservices – An Early and Popular Definition (2014)
	Characteristics from L/F Definition Analyzed and Compared
	Principles of Microservices by S. Newman (N)
	Newman Definition Analyzed and Compared with SOA
	Tenets/Principles/Characteristics by Viewpoint (4+1)
	Tenets/Principles/Characteristics by Viewpoint (4+1)
	The Seven Tenets for Microservices Implementations of SOA
	Practitioner Questions (Subset of those in SummerSoC Paper)
	Summary of Positions
	Microservices – Literature and Resources

