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Example Application Area: “Production Automation”:

 Complex combination of hardware and software (“cyber-physical systems”)
 Hardware expensive and long-lasting
 Traditionally: little or only low-level software management
 Nowadays: increasingly software-driven (“Industry 4.0”)
 Software components represent (component) functionalities (“services”) & 

application  (production) “workflows” (-> “digital twin”)

Services & Workflows for Production Automation
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Further characteristics of long-living applications such as “Production Automation”:

 Hardware changes occasionally (e.g. due to new/changed requirements)
 Software has to mirror that ASAP (often delayed/ done only partially/ forgotten…) 
 Question: How to keep software – services as well as workflows – “in synch” with 

(changing) hardware components?
 Goal: coordinated development of hard- and software (system supported) 

 Solution(?): “Autonomous” services & workflows which automatically “detect” such 
changes and then (also automatically?) “adapt” to them   “Managed software 
evolution”

Example Application Scenario: Production Automation
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Challenges during the whole lifecycle of software systems
• Legacy software
• New emerging technologies, and integration of new software, hardware and system components
• Adaption of software to new platforms and then continuous evolution of software systems with 

respect to continuously changing requirements
• Technical systems' evolution includes both design and construction phases as well as operation

phases and involves different disciplines with different evolution process cycles

Motivation for “Managed Software Evolution”
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Different evolution of requirements, soft-, and hardware
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(2) evaluate the (quality) influences of changes
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Evolution
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FYPA²C: Keeping Pace with (Undocumented) Changes

(domain specific) 
runtime models

learning of 
system behavior 

and structure

detection and 
evaluation

mechanisms

based onbased on

based on

Questions:
 How to preserve available knowledge during evolution? 

 How can evolutionary changes be detected and evaluated at runtime?

 How to construct a software that gathers knowledge about a system by observation?
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Goal: Methods and processes for knowledge carrying software (KCS) in order to 
counteract aging (i.e. undocumented changes) of evolving production systems

Questions:
 How to gain and preserve knowledge about production processes by externally 

available information (i.e. I/O data) 
 without influencing execution
 by establishing (formal) documentation that is constantly analyzable regarding 

typical non-functional requirements (NFRs)
 What is a reasonable meta-model and software architecture for  KCS in an 

external monitoring context?
 implementable mechanisms for the monitoring and analyzing processes
 necessary components and services of an evolution support platform

Approach: Automatic generation and scenario-based evaluation of knowledge 
models based on low-level signal (event) traces within an Active Com-
ponent architecture.

FYPA²C: Forever Young Production Automation with 
Active Components
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Evolution Support Methods (overview)
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Overall Results – Knowledge Concept
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Overall Results – Knowledge Carrying Software (KCS)
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Problem: No coherent overall view of application problems
 Many single separate problems
 Many single separate solutions

Overall Approach needed!
 Consistent and intuitive concepts
 Adequate Abstraction level for distributed systems
 Close to real-world concepts
 Success factor: small delta to established paradigms

“Software paradigm”:
Fundamental principle for describing and implementing software systems

Question: How to represent theses components???

(In order to answer that…) Short excursus: 
Choices of Software Development Paradigms
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Software paradigms…
• determine concepts for the description and realization of software 

systems
• define the level of abstraction for the description („World Model“)
• support/hinder specific architectures
• lead to increasingly abstract concepts

• Historic examples for the development of program paradigms – from 
imperative to object-oriented programming
 imperative: program as linear sequence of commands
 object-oriented: concealing data and methods to classes/objects

 Conceptional background:
 imperative: von-Neumann computer
 object-oriented: real world of items and objects

The Concept of a Software Paradigm
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Computer 1

Object-oriented Paradigm

O1 O2

O3

Computer 2

O4

O5

• Objects as units for data and behavior
• Based on method-oriented communication and client/server model
• Client/server are objects of any granularity
• Object identities allow for system-wide identification of clients/server
• Migration of objects allows for transparent runtime adaptation of application 

configuration

• Problems: Re-usability of objects low, based on no separation of 
complementary concepts (as, e.g., persistence- or security aspects)

• Examples: DCE, CORBA 
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Container 1

Container 1
Computer 1

Component-oriented Paradigm

Computer 2

C1
C2

C3

• Generalization of object-oriented paradigms
• Components are coarse-grained units on application level with clear interfaces
• Components are self-contained, resp. have well-defined dependencies
• Idea: Component repositories for clear composition of software from predefined 

components
• In general restricted to application logic, separate from application context, i.e. full 

configuration not before deployment (security, transactions, persistence, …)
• Unified deployment model
• Execution in specific “containers” 
• Examples: Enterprise JavaBeans, .NET Components



18

• SOA – Service Oriented Architecture
• Based on process-oriented view of application services
• Services are coarse-grained units of software systems, loosely coupled with 

business processes/workflows – can be integrated by means of
 Orchestration
 Choreography

• Have well-defined interfaces
• Could be used either synchronously or asynchronously
• Interoperability by use of standards (technology independent)
• Examples: Web Services (WSDL, SOAP, UDDI)

Service-oriented Paradigm

Computer 1

Computer 2

S2
I2

S1
I1

S3
I1
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Platform 2

Platform 1

Agent-based Paradigm

Computer 1

Computer 2

A2
A1

A3

• A System is viewed as a composition of independent actors (agents - i.e. 
multi-agent system)

• Communication is always asynchronous (message-based)
• Basic concept „agent“ as unit – in well-defined context – which uses sensors 

as well as effectors
• Agents make decisions autonomously, based on context as well as interpre-

ting messages
• Behavioral specification of agents via internal architecture
• Behavioral specification of a multi-agent system via coordination of single 

agents („social architecture“)
• Examples: agent platforms as, e.g., JACK, JADE, Jadex
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Categorization of Software Paradigms
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MAS Application Areas
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• Increase efficiency of production process
 Flexibility when changing initial parameters (resources, characteristics of end product)
 Application areas:
 Whole production processes
 Support for employees for single production steps
 Production robots
 Workflow simulation

• Examples: 
• CAARS – Project
 Used for car production (BMW, GM)
 HMDs (Head Mounted Displays) support employees
 Mobile Augmented Reality System (MARS)  additional information to real world
 Used for training
 Agents support flow of information
 Joint project of Juxtopia (HMDs) and Georgetown University, USA

 Jadex application for Daimler production plant
 agent-based simulation of (new) production processes
 control of production steps and interrelationships
 DFG transfer project with UHH

Industry / Production
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• Planning and executing logistic processes
• Optimal use of transport facilities
• Time management (e.g. for delivery)
• Many sub-systems are coordinated (e.g., storage, transporter, etc.)

Examples: 
 Open ID Center

 Fraunhofer Institut for Material and Logistics (IML)
 System for delivery of products in real-time without manual intervention
 Product identification via RFID (Radio Frequence Identification) labels
 Shuttles controlled by agents fetch tasks for delivery (e.g. using an agent with minimal distance to 

store)

 Project AgentFly
 Agent technology center (Czech University), http://exile.felk.cvut.cz/
 Based on agent platform A-Globe
 Simulation of autonomous control of airplanes
 Real experiments with UAVs

 Jadex (agent)-based simulation and optimization of hospital logistics
 Developed by UHH as part of DG SPP on agent use in logistics
 Including evaluation against centralized approaches 

Industry / Transport Logistics
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Application Lab IML Dortmund

Industry / Transport Logistics
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 Support for humans for
 Data management
 Support for software problems
 Mediation between information producers and consumers
 Information search in the Internet
 Home tasks

 Example: Kärcher RC 3000 Robo Cleaner
 Robot
 Autonomous cleaning
 Uses sensors

Commercial Applications / Electronic Assistents
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• Important for games: most realistic virtual world  fun!
• Reality view achieved by mirroring physical laws
• intelligent Non Player Characters (NPCs)
• Use of different AI approaches

 Action: tactic capabilities of NPCs
 Role play: Interaction with NPCs ...

 Examples: 
 QUAKE

 Action play
 Behavior of NPCs realized with BDI Agents
 Quake Engine Basis for many Action Shooter

 AgentKeeper (http://code.google.com/p/jadex-agentkeeper/)
 Clone and extension of Dungeon Keeper
 First development in teaching course at VSIS/UHH
 Based on Jadex platform
 Further developed as OpenSource project (P. Willuweit)

Computer Games
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 Complex battle field simulations
 Simulation of errors of dedicated (enemy) intervention

 What determines a successful crossing of a (e.g. urban) area (e.g. number of forces, 

arms, etc.)

 Training simulation for soldiers
 Intelligent agents play roles of other (ground or air) forces/units

Military / Simulation

 E.g. TacAirSoar (http://www.soartech.com/)
 Training software for pilots of air forces
 Computer-generated forces (CGFs)
 Realized in Soar

 Environment realized in if-the-else-rules
 Airplanes realized with some 5000 rules
 15 alternative air plane types

 First Simulation 1997 on 25 Pentium PCs
 722 Missions in 48 hours
 Average time of missions: 3 hours
 30 – 80 flights per Mission
 only 5% software problems
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… based on autonomous, adaptive, knowledge-carrying software 
components using both software-engineering and agent technology

New Combined Approach to Software Development: 
“Active Components“ (AC):
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Definition: “An active component (AC) is an autonomous, managed and poten-
tially hierarchical software entity that is capable of interacting with other active 
components in different modes including message passing and method calls.”

• management infrastructure and composability of components
• invocation styles like agents and services/active objects
• rich behavior styles like agent architectures or workflows

Active Component

Internal
Architecture

Provided
Service

Interfaces

Properties

Business
Logic

Required
Service

Interfaces

based on

Agent

Internal
Architecture

SCA Component Sensors Effectors

Subcomponents

Active Components (AC):
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A platform is the management infrastructure for components, which is responsible for their 
execution as well as for providing administration capabilities like a messaging system or a 
component service registry.

Design Goals:
 Platform can execute different kinds of (“active”) components 
 Component kernels should be enabled to run on different platforms
 Applications should be platform independent
 Applications should be composable from arbitrary component types (heterogeneous applications)

Concrete ApplicationJadex AC

n m n1
Platform Kernel Active

Component n

m

Standalone

Java EE

…

BDI

BPMN

…

Sales Assistant

Order Process

…

AC Implementation Platform: „Jadex v2”
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Expected characteristics of a knowledge carrying software (KCS) for produc-
tion systems
 Direct mapping between KCS and the physical plant hierarchy 
 Reaction to plant events along its original responsibility chain
 Encapsulation of local knowledge in a separated processing context
 Enrichment of (non-) functional requirements at each granularity level
 Autonomous management of requirement verification

Back to the application example: Knowledge Carrying 
Software for Production Automation Systems

internal
architecture

configuration (non)functional requirement 

PPU system

magazine crane stamp conveyor

contains

Representation components of KCS

one-to-one mapping

separated context 
and responsibility

Physical plant hierarchy according to IEC 61512

unit

process
cell

events

unit:
magazine

process cell:
PPU system

unit:
conveyer

unit:
stamp

unit:
crane
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Generic Management of Knowledge within a KCS 
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Execution of knowledge containing models
 Synchronization and consistency of the observed 

(partial) system via a component state
 Management of local and domain-specific know-

ledge in model-based test case components
 Knowledge modification methods incorporated in 

services allow calculations of NFRs
 Runtime dependence due to simple values or com-

plex expressions according to stated or timed 
condition

 Executable on current values (by live measure-
ment), history values (by data storage) and future 
values (by subscriptions)
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 Rule based selection of signals for 
model learning and analysis

Knowledge Management for Production Automation: 
Acquisition and Representation of Enriched Plant Data
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CH
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CH1 Hier noch gleiche Farbe wie oben bei AC
Christopher Haubeck; 23.02.2015
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Evolution Support for Executable Specifications in 
Service Components

34

CraneSucked
CraneUp
CraneOnMagazin

CraneSucked
CraneUp
CraneOnConveyor

CraneSucked
CraneUp
CranePositionStamp

CraneSucked
CraneDown
CraneOnConveyor

0,
0 

| 0
,1

 | 
1,

1

0,
1 

| 1
,1

0,0

0,0 signal model
architecture

knowledge 
model

afunc

lfunc

Knowledge 
Components

goal based
execution module

belief-desire-intention 
architecture

mfunc

Management 
component

Models 
about 

knowledge

Adapting 
mechanism
(mfunc)

Property 
value

Learning 
algorithm
(lfunc)

Timed event

Adapted 
Models

Analyzing 
algorithm
(afunc)

Observation 
process



35

 Evolution detection
 First learning of 

knowledge models
 First calculation of 
 Routing Flexibility
 Availability

Model-based Specification at Runtime
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 Minimal setup costs 
for automated evo-
lution support 
 Generalizable con-

cept of knowledge
artefacts and evo-
lution-handling KCS 
by exchanging mo-
del types

Summary: FYPA²C in a Nutshell – General Approach
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Running
System
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Code & 
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Learned 
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System
Model
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focus of

 Connecting systems in an evolution-aware network platform
 Co-evolution of system and model (also by integrating further SPP results) 

Future Work: Supporting Evolution in a Networked 
Community
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Motivation and Idea – LinkedFYPA²C

?

Request!

C = C+A C = C+A‘ C = C+A‘‘
evaluate in
context

FYPA²C allows collecting “experiences” with evolution steps
 Experiences could be used to actively support evolution of similar systems
 LinkedFYPA²C connects systems to a knowledge carrying evolution community
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Connecting systems in an evolution-aware network platform
 As part of co-evolution of systems and models (also by integrating further SPP results) 
 Sharing evolution solutions by means of models and their differences
 Detecting suitability of evolution solution for a single connected system 
 Considering functionality and system context

plant picture courtesy of
© AIS TU München

Knowledge Carrying Software Knowledge Carrying Software Knowledge Carrying Software

75 %
evolve evolve evolve

sharingsharing

evaluate in system context

75 %

Future Work − Supporting Evolution in a Networked
Community
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 Machine interpretable base of evolution-relevant knowledge
 How can evolution relevant “experiences” be captured in artefacts?
 How to capture the system context?
 How can evolution steps and their influence be related to the system context?

 Evolution assessment methods
 Under which conditions is an evolution step applicable on another system? 
 How can similarity between systems be measured and expressed?
 Can evolution steps of several systems be aggregated and tailored for a specific 

system? 

 Proactive evolution support method
 Can “evolution trends” be recognized in a cooperative evolution network?
 Which methods are needed for a proactive evolution recommendation?

 Networked evolution support platform for knowledge exchange
 What is a suitable middleware to realize such an evolution support network?

Future Project Goals and Research Questions
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Conclusion and Summary
Services and Workflows are needed for a variety of applications –
preferably in an appropriate Software Engineering Context

Example application area here: Production Automation

Application Characteristic:
• Cyber-physical systems (hard- and software combined)
• (Often undocumented) changes – independently w.r.t requirements, hard-

and software
• Automation support needed for continuous hard- & software evolution

Implementation: Agent-/component-oriented software development platform 
(“Jadex”  =>  “Active Components”)

• Implementation platform for autonomous services (with both functional and 
non-functional characteristics) as well as (embedded or separate) work-
flows

• Potential for building and managing knowledge models (for application 
system services as well as workflows)

• Appropriate adaptation platform for change management (software evo-
lution): Active Components (AC)


