
1

Autonomous Services and Workflows for
Production Automation: Managed Software

Evolution

Winfried.Lamersdorf@informatik.uni-hamburg.de
http://vsis-www.informatik.uni-hamburg.de/vsys

Prof. Dr. Winfried Lamersdorf

Distributed Systems (VSYS)
Hamburg University, MIN-Faculty, Informatics Dept.

Vogt-Kölln-Straße 30, D-22527 HAMBURG, Germany

2

(Linked) Forever Young Production Automation
with Active Components

Examples from ongoing research as part of German Research
Fund, Priority Programme (Schwerpunktprogramm) 1593:

„Design for Future: Managed Software Evolution“

Alexander Fay, Jan Ladiges et al.
Automation Technology Institute

Helmut Schmidt University, Hamburg, Germany

Winfried Lamersdorf, Christopher Haubeck, Alexander Pokahr et al.
Distributed Systems and Information Systems

University of Hamburg, Germany

3

Example Application Area: “Production Automation”:

 Complex combination of hardware and software (“cyber-physical systems”)
 Hardware expensive and long-lasting
 Traditionally: little or only low-level software management
 Nowadays: increasingly software-driven (“Industry 4.0”)
 Software components represent (component) functionalities (“services”) &

application (production) “workflows” (-> “digital twin”)

Services & Workflows for Production Automation

4

Further characteristics of long-living applications such as “Production Automation”:

 Hardware changes occasionally (e.g. due to new/changed requirements)
 Software has to mirror that ASAP (often delayed/ done only partially/ forgotten…)
 Question: How to keep software – services as well as workflows – “in synch” with

(changing) hardware components?
 Goal: coordinated development of hard- and software (system supported)

 Solution(?): “Autonomous” services & workflows which automatically “detect” such
changes and then (also automatically?) “adapt” to them  “Managed software
evolution”

Example Application Scenario: Production Automation

5

Challenges during the whole lifecycle of software systems
• Legacy software
• New emerging technologies, and integration of new software, hardware and system components
• Adaption of software to new platforms and then continuous evolution of software systems with

respect to continuously changing requirements
• Technical systems' evolution includes both design and construction phases as well as operation

phases and involves different disciplines with different evolution process cycles

Motivation for “Managed Software Evolution”

6

Different evolution of requirements, soft-, and hardware

7

Evolution in
code and/or

physics

functional
requirements

influences
fulfilment

influences
fulfilment

change
results in

change
results in

non-functional
requirements

What to
do?

How to do
it?

production
plant

unforeseen
incidents

plant functions:
code and physics

Interrelations of Changes and Requirements

Tasks:
(1) detect changes within a plant and
(2) evaluate the (quality) influences of changes

8

Evolution

SC0

IRk – Informal Requirements
SRk – Specified Requirements
CRk – Covered Requirements
SCk – Software Code
PPk – Physical Plant
Mk – Model representation

PP0

specify

adapt

Software engineer’s world

Plant Manager’s world

define

SR0

IR1

SR1

PP1

SC1

adapt

adaptadapt

knowledge gap

CR0IR0 CR1

Technicians’ world

SR0

SC0

PP0

IR0

checkobserve

Evolution

adapt

learn

IR1

SC1

PP1

CR1
represented in

M1

(un)desired?

M0
representing

SR0

M1
representing

SR1

reduced
knowledge gap

at tim
e k

„Forever Young Production Automation“
(FYPA²C – UHH 2013-2019)

9

FYPA²C: Keeping Pace with (Undocumented) Changes

(domain specific)
runtime models

learning of
system behavior

and structure

detection and
evaluation

mechanisms

based onbased on

based on

Questions:
 How to preserve available knowledge during evolution?

 How can evolutionary changes be detected and evaluated at runtime?

 How to construct a software that gathers knowledge about a system by observation?

10

Goal: Methods and processes for knowledge carrying software (KCS) in order to
counteract aging (i.e. undocumented changes) of evolving production systems

Questions:
 How to gain and preserve knowledge about production processes by externally

available information (i.e. I/O data)
 without influencing execution
 by establishing (formal) documentation that is constantly analyzable regarding

typical non-functional requirements (NFRs)
 What is a reasonable meta-model and software architecture for KCS in an

external monitoring context?
 implementable mechanisms for the monitoring and analyzing processes
 necessary components and services of an evolution support platform

Approach: Automatic generation and scenario-based evaluation of knowledge
models based on low-level signal (event) traces within an Active Com-
ponent architecture.

FYPA²C: Forever Young Production Automation with
Active Components

11

Evolution Support Methods (overview)

Acquisition

acquisition of
semantically

enriched events

consistent
system
facade

event
traces

learning of
domain
models

analysis of
properties
and NFR

properties
and NFR

determine
usage

scenarios

simulation
of models

usage
scenarios

evolution
detection

simulated
traces

simulation
of (test)

execution

ArtifactsMethods
optional

add
manual

scenarios

detected
change

Representation & Processing Appraisal

model-based specification
non-functional requirements

system properties

SPP links

evolution cycle by
comparing models and

traces

models
@runtime

12

Overall Results – Knowledge Concept

acquisition of
enriched events

consistent
facade

event
traces

learning of
domain models

analysis
regarding NFRs

properties
and NFRs

evolution
detection

detected
change

models
@runtime

automation communication system (OPC UA)

online knowledge

information
model

machine state
model routing model …

offline knowledge
CAEX
(AML)

online signal values

extracted knowledge

semantic knowledge

requirement fulfilment

semantics (affiliation, types)

learn & adapt

signal declarations online signal values

system
state

signal
declarations

sensor & actuator signals

declaration declaration

online data offline data

Data

Information

Knowledgereasoning, abstraction,
relationships, application

meaning,
structure

(text, fact, code, image, sound)

(organized, structured, interpreted,
summarized data)

(case, rule, process, model)

13

Overall Results – Knowledge Carrying Software (KCS)

……

vertical plant hierarchy

…… …… …… ……

Re
lia
bi
lit
y

Re
lia
bi
lit
y

horizontal partition of plant

Information abstraction

… … … … …
Re

lia
bi
lit
y

…… ……
Fa
ilu

re
Fa
ilu

re
Comp
onent
Part 1

system properties

requirements fulfillment

knowledge models

representation components

system part
Part 1Part 1Part 2Part 2Part 3Part 3

SystemSystem

acquisition of
enriched events

consistent
facade

event
traces

learning of
domain models

analysis
regarding NFRs

properties
and NFRs

evolution
detection

detected
change

models
@runtime

Machine State Petri Net
architecture

machine state
model instance

learning
detection

consistent system state

representation component

knowledge modelstate service

configuration requirements

goal based
execution module

BDI architecture

model expressions

analysis

processing extension

evolution manager

requirement access

plant
adapter

plant
adapter

lower level
RC

event provider lower level
RC

simulation

Material Flow Petri Net
architecture

material flow
model instance

knowledge model

PLC
code

PLC
code

hardware system

Knowledge Carrying Software

PLC
code

PLC
code

hardware system

 Knowledge information levels
 External KCS that uses monito-

ring to support evolution
 Implemented in active compo-

nent runtime artefacts

14

Problem: No coherent overall view of application problems
 Many single separate problems
 Many single separate solutions

Overall Approach needed!
 Consistent and intuitive concepts
 Adequate Abstraction level for distributed systems
 Close to real-world concepts
 Success factor: small delta to established paradigms

“Software paradigm”:
Fundamental principle for describing and implementing software systems

Question: How to represent theses components???

(In order to answer that…) Short excursus:
Choices of Software Development Paradigms

15

Software paradigms…
• determine concepts for the description and realization of software

systems
• define the level of abstraction for the description („World Model“)
• support/hinder specific architectures
• lead to increasingly abstract concepts

• Historic examples for the development of program paradigms – from
imperative to object-oriented programming
 imperative: program as linear sequence of commands
 object-oriented: concealing data and methods to classes/objects

 Conceptional background:
 imperative: von-Neumann computer
 object-oriented: real world of items and objects

The Concept of a Software Paradigm

16

Computer 1

Object-oriented Paradigm

O1 O2

O3

Computer 2

O4

O5

• Objects as units for data and behavior
• Based on method-oriented communication and client/server model
• Client/server are objects of any granularity
• Object identities allow for system-wide identification of clients/server
• Migration of objects allows for transparent runtime adaptation of application

configuration

• Problems: Re-usability of objects low, based on no separation of
complementary concepts (as, e.g., persistence- or security aspects)

• Examples: DCE, CORBA

17

Container 1

Container 1
Computer 1

Component-oriented Paradigm

Computer 2

C1
C2

C3

• Generalization of object-oriented paradigms
• Components are coarse-grained units on application level with clear interfaces
• Components are self-contained, resp. have well-defined dependencies
• Idea: Component repositories for clear composition of software from predefined

components
• In general restricted to application logic, separate from application context, i.e. full

configuration not before deployment (security, transactions, persistence, …)
• Unified deployment model
• Execution in specific “containers”
• Examples: Enterprise JavaBeans, .NET Components

18

• SOA – Service Oriented Architecture
• Based on process-oriented view of application services
• Services are coarse-grained units of software systems, loosely coupled with

business processes/workflows – can be integrated by means of
 Orchestration
 Choreography

• Have well-defined interfaces
• Could be used either synchronously or asynchronously
• Interoperability by use of standards (technology independent)
• Examples: Web Services (WSDL, SOAP, UDDI)

Service-oriented Paradigm

Computer 1

Computer 2

S2
I2

S1
I1

S3
I1

19

Platform 2

Platform 1

Agent-based Paradigm

Computer 1

Computer 2

A2
A1

A3

• A System is viewed as a composition of independent actors (agents - i.e.
multi-agent system)

• Communication is always asynchronous (message-based)
• Basic concept „agent“ as unit – in well-defined context – which uses sensors

as well as effectors
• Agents make decisions autonomously, based on context as well as interpre-

ting messages
• Behavioral specification of agents via internal architecture
• Behavioral specification of a multi-agent system via coordination of single

agents („social architecture“)
• Examples: agent platforms as, e.g., JACK, JADE, Jadex

20

Categorization of Software Paradigms

Synchronous
Static Calls

Peer Negotiations /
Semantic Interactions

Asynchronous
Calls

Abstraction of
Interactions

Primary
Modeling UnitsProcedure Object Service Actor Organization

Norms
/ Rules

Agent Orientation

Service Orientation

Object Orientation

Structured
Programming

Dynamic
Binding

21

MAS Application Areas

Industrial
Applications

Commercial
Applications

Entertainment
Applications

Medical
Applications

Military
Applications

Multi-Agent
Simulation

Human Computer
Interface Mgmnt.

Robot
Control

Information
Management

Problem
Solving

Sector

Class

Factory simulations
Market / trading
simulations

Movie scene
Productions /
Games

Goods transport

Production robots

Tracking and
Tracing

Augmented
reality tools

E-Business

Household
robots

Web search
Email filtering

Shop bots /
Help assistants

Strategy games

“Intelligent” toys

Artificial game
reporters

Avatars in games

Hospital
simulations

Hospital logistics

Medical device
control

Disaster management /
Medical information
management

Telemedicine /
Home care
management

Battlefield
Simulations /
Pilot training

War logistics

Unmanned
aerial vehicles

Decision support /
Smart dust

Augmented reality
tools for soldiers

… … … … … …

…

…

…

…

…

…

…

(A) (B) (C) (D) (E)

(1)

(2)

(3)

(4)

(5)

22

• Increase efficiency of production process
 Flexibility when changing initial parameters (resources, characteristics of end product)
 Application areas:
 Whole production processes
 Support for employees for single production steps
 Production robots
 Workflow simulation

• Examples:
• CAARS – Project
 Used for car production (BMW, GM)
 HMDs (Head Mounted Displays) support employees
 Mobile Augmented Reality System (MARS)  additional information to real world
 Used for training
 Agents support flow of information
 Joint project of Juxtopia (HMDs) and Georgetown University, USA

 Jadex application for Daimler production plant
 agent-based simulation of (new) production processes
 control of production steps and interrelationships
 DFG transfer project with UHH

Industry / Production

23

• Planning and executing logistic processes
• Optimal use of transport facilities
• Time management (e.g. for delivery)
• Many sub-systems are coordinated (e.g., storage, transporter, etc.)

Examples:
 Open ID Center

 Fraunhofer Institut for Material and Logistics (IML)
 System for delivery of products in real-time without manual intervention
 Product identification via RFID (Radio Frequence Identification) labels
 Shuttles controlled by agents fetch tasks for delivery (e.g. using an agent with minimal distance to

store)

 Project AgentFly
 Agent technology center (Czech University), http://exile.felk.cvut.cz/
 Based on agent platform A-Globe
 Simulation of autonomous control of airplanes
 Real experiments with UAVs

 Jadex (agent)-based simulation and optimization of hospital logistics
 Developed by UHH as part of DG SPP on agent use in logistics
 Including evaluation against centralized approaches

Industry / Transport Logistics

24

Application Lab IML Dortmund

Industry / Transport Logistics

25

 Support for humans for
 Data management
 Support for software problems
 Mediation between information producers and consumers
 Information search in the Internet
 Home tasks

 Example: Kärcher RC 3000 Robo Cleaner
 Robot
 Autonomous cleaning
 Uses sensors

Commercial Applications / Electronic Assistents

26

• Important for games: most realistic virtual world  fun!
• Reality view achieved by mirroring physical laws
• intelligent Non Player Characters (NPCs)
• Use of different AI approaches

 Action: tactic capabilities of NPCs
 Role play: Interaction with NPCs ...

 Examples:
 QUAKE

 Action play
 Behavior of NPCs realized with BDI Agents
 Quake Engine Basis for many Action Shooter

 AgentKeeper (http://code.google.com/p/jadex-agentkeeper/)
 Clone and extension of Dungeon Keeper
 First development in teaching course at VSIS/UHH
 Based on Jadex platform
 Further developed as OpenSource project (P. Willuweit)

Computer Games

27

 Complex battle field simulations
 Simulation of errors of dedicated (enemy) intervention

 What determines a successful crossing of a (e.g. urban) area (e.g. number of forces,

arms, etc.)

 Training simulation for soldiers
 Intelligent agents play roles of other (ground or air) forces/units

Military / Simulation

 E.g. TacAirSoar (http://www.soartech.com/)
 Training software for pilots of air forces
 Computer-generated forces (CGFs)
 Realized in Soar

 Environment realized in if-the-else-rules
 Airplanes realized with some 5000 rules
 15 alternative air plane types

 First Simulation 1997 on 25 Pentium PCs
 722 Missions in 48 hours
 Average time of missions: 3 hours
 30 – 80 flights per Mission
 only 5% software problems

28

… based on autonomous, adaptive, knowledge-carrying software
components using both software-engineering and agent technology

New Combined Approach to Software Development:
“Active Components“ (AC):

29

Definition: “An active component (AC) is an autonomous, managed and poten-
tially hierarchical software entity that is capable of interacting with other active
components in different modes including message passing and method calls.”

• management infrastructure and composability of components
• invocation styles like agents and services/active objects
• rich behavior styles like agent architectures or workflows

Active Component

Internal
Architecture

Provided
Service

Interfaces

Properties

Business
Logic

Required
Service

Interfaces

based on

Agent

Internal
Architecture

SCA Component Sensors Effectors

Subcomponents

Active Components (AC):

30

A platform is the management infrastructure for components, which is responsible for their
execution as well as for providing administration capabilities like a messaging system or a
component service registry.

Design Goals:
 Platform can execute different kinds of (“active”) components
 Component kernels should be enabled to run on different platforms
 Applications should be platform independent
 Applications should be composable from arbitrary component types (heterogeneous applications)

Concrete ApplicationJadex AC

n m n1
Platform Kernel Active

Component n

m

Standalone

Java EE

…

BDI

BPMN

…

Sales Assistant

Order Process

…

AC Implementation Platform: „Jadex v2”

31

Expected characteristics of a knowledge carrying software (KCS) for produc-
tion systems
 Direct mapping between KCS and the physical plant hierarchy
 Reaction to plant events along its original responsibility chain
 Encapsulation of local knowledge in a separated processing context
 Enrichment of (non-) functional requirements at each granularity level
 Autonomous management of requirement verification

Back to the application example: Knowledge Carrying
Software for Production Automation Systems

internal
architecture

configuration (non)functional requirement

PPU system

magazine crane stamp conveyor

contains

Representation components of KCS

one-to-one mapping

separated context
and responsibility

Physical plant hierarchy according to IEC 61512

unit

process
cell

events

unit:
magazine

process cell:
PPU system

unit:
conveyer

unit:
stamp

unit:
crane

32

Generic Management of Knowledge within a KCS

internal
architecture

configuration

knowledge
model

based onlearning
service

observation
service

observed system

previous
state

actual
state

future
state

time

time

state service

stated
condition

timed
condition

history request
measurement
subscription

simple value
value expression

evaluated according to conditions

us
es

synchronized system state

representation component

subscriptionslive measurementsdata storage

triggered on state changes triggered to time intervals

test case components

ba
se

d
on

state
service

local representation

configuration NFRs

Execution of knowledge containing models
 Synchronization and consistency of the observed

(partial) system via a component state
 Management of local and domain-specific know-

ledge in model-based test case components
 Knowledge modification methods incorporated in

services allow calculations of NFRs
 Runtime dependence due to simple values or com-

plex expressions according to stated or timed
condition

 Executable on current values (by live measure-
ment), history values (by data storage) and future
values (by subscriptions)

33

 Rule based selection of signals for
model learning and analysis

Knowledge Management for Production Automation:
Acquisition and Representation of Enriched Plant Data

acquisition of
enriched events

consistent
facade

event
traces

learning of
domain models

analysis
regarding NFRs

properties
and NFRs

evolution
detection

detected
change

models
@runtime

CH

Folie 33

CH1 Hier noch gleiche Farbe wie oben bei AC
Christopher Haubeck; 23.02.2015

34

Evolution Support for Executable Specifications in
Service Components

34

CraneSucked
CraneUp
CraneOnMagazin

CraneSucked
CraneUp
CraneOnConveyor

CraneSucked
CraneUp
CranePositionStamp

CraneSucked
CraneDown
CraneOnConveyor

0,
0

| 0
,1

 |
1,

1

0,
1

| 1
,1

0,0

0,0 signal model
architecture

knowledge
model

afunc

lfunc

Knowledge
Components

goal based
execution module

belief-desire-intention
architecture

mfunc

Management
component

Models
about

knowledge

Adapting
mechanism
(mfunc)

Property
value

Learning
algorithm
(lfunc)

Timed event

Adapted
Models

Analyzing
algorithm
(afunc)

Observation
process

35

 Evolution detection
 First learning of

knowledge models
 First calculation of
 Routing Flexibility
 Availability

Model-based Specification at Runtime

acquisition of
enriched events

consistent
facade

event
traces

learning of
domain models

analysis
regarding NFRs

properties
and NFRs

evolution
detection

detected
change

models
@runtime

36

 Minimal setup costs
for automated evo-
lution support
 Generalizable con-

cept of knowledge
artefacts and evo-
lution-handling KCS
by exchanging mo-
del types

Summary: FYPA²C in a Nutshell – General Approach

externally
connect KCS to
monitor system

learn and adapt
(domain‐specific)
behavior models

detect
(observable)

behavior changes

calculate
properties and
NFR fulfillment

System

KCS

observed signals

semantics

dynamic models … structure models

requirement fulfillmentlearn & adapt

state declaration

Architektur!

executable
specifications

representation components (hierarchy)

knowledge models

entry points

evolution manager

Fu
nc

tio
na

lit
y

Pr
oc

es
s

M
on

ito
rin

g
Sy

st
em

Fa
ca

de
Pr

od
uc

tio
n

Sy
st

em
(o

bs
er

ve
d)

goal-based
control

state representation

se
m

an
tic

s

37

Running
System

System
Knowledge

Engineering
Models

Code &
physics

Learned
Behavior Models

Test
Cases

Extracted System
properties and
requirements

Evolution in a
networked
community

System
Model

System
Component

focus of

 Connecting systems in an evolution-aware network platform
 Co-evolution of system and model (also by integrating further SPP results)

Future Work: Supporting Evolution in a Networked
Community

38

Motivation and Idea – LinkedFYPA²C

?

Request!

C = C+A C = C+A‘ C = C+A‘‘
evaluate in
context

FYPA²C allows collecting “experiences” with evolution steps
 Experiences could be used to actively support evolution of similar systems
 LinkedFYPA²C connects systems to a knowledge carrying evolution community

39

Connecting systems in an evolution-aware network platform
 As part of co-evolution of systems and models (also by integrating further SPP results)
 Sharing evolution solutions by means of models and their differences
 Detecting suitability of evolution solution for a single connected system
 Considering functionality and system context

plant picture courtesy of
© AIS TU München

Knowledge Carrying Software Knowledge Carrying Software Knowledge Carrying Software

75 %
evolve evolve evolve

sharingsharing

evaluate in system context

75 %

Future Work − Supporting Evolution in a Networked
Community

40

 Machine interpretable base of evolution-relevant knowledge
 How can evolution relevant “experiences” be captured in artefacts?
 How to capture the system context?
 How can evolution steps and their influence be related to the system context?

 Evolution assessment methods
 Under which conditions is an evolution step applicable on another system?
 How can similarity between systems be measured and expressed?
 Can evolution steps of several systems be aggregated and tailored for a specific

system?

 Proactive evolution support method
 Can “evolution trends” be recognized in a cooperative evolution network?
 Which methods are needed for a proactive evolution recommendation?

 Networked evolution support platform for knowledge exchange
 What is a suitable middleware to realize such an evolution support network?

Future Project Goals and Research Questions

41

Conclusion and Summary
Services and Workflows are needed for a variety of applications –
preferably in an appropriate Software Engineering Context

Example application area here: Production Automation

Application Characteristic:
• Cyber-physical systems (hard- and software combined)
• (Often undocumented) changes – independently w.r.t requirements, hard-

and software
• Automation support needed for continuous hard- & software evolution

Implementation: Agent-/component-oriented software development platform
(“Jadex” => “Active Components”)

• Implementation platform for autonomous services (with both functional and
non-functional characteristics) as well as (embedded or separate) work-
flows

• Potential for building and managing knowledge models (for application
system services as well as workflows)

• Appropriate adaptation platform for change management (software evo-
lution): Active Components (AC)

