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Goal

Assisting developers by
recommending development knowledge



Recommendation and Weaving of Reusable Mashup Model Patterns
for Assisted Development

SOUDIP ROY CHOWDHURY, INRIA Saclay
FLORIAN DANIEL and FABIO CASATI, University of Trento

With this article, we give an answer to one of the open problems of mashup development that users may
face when operating a model-driven mashup tool, namely the lack of modeling expertise. Although commonly
considered simple applications, mashups can also be complex software artifacts depending on the number
and types of Web resources (the components) they integrate. Mashup tools have undoubtedly simplified
mashup development, yet the problem is still generally nontrivial and requires intimate knowledge of the
components provided by the mashup tool, its underlying mashup paradigm, and of how to apply such to
the integration of the components. This knowledge is generally neither intuitive nor standardized across
different mashup tools and the consequent lack of modeling expertise affects both skilled programmers and
end-user programmers alike.

In this article, we show how to effectively assist the users of mashup tools with contextual, interactive
recommendations of composition knowledge in the form of reusable mashup model patterns. We design and
study three different recommendation algorithms and describe a pattern weaving approach for the one-click
reuse of composition knowledge. We report on the implementation of three pattern recommender plugins
for different mashup tools and demonstrate via user studies that recommending and weaving contextual
mashup model patterns significantly reduces development times in all three cases.

S. Roy Chowdhury, F. Daniel and F. Casati. Recommendation and Weaving of Reusable Mashup Model Patterns
for Assisted Development. ACM Transactions on Internet Technology 14(2-3), Article 21, 2014.



Idea

Development knowledge -> model patterns
Proactively assist development -> recommend patterns
Don’t distract developers -> context + speed

Make knowledge operational -> weave patterns

Research question

Does recommending model patterns really help developers
model faster / better?



A typical mashup model pattern (Yahoo! Pipes)

Mashup model: m = (name,C, F, M, P)
Composition pattern model: ¢p = (C, F, M, P, usage, date)
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The pattern tells how to enrich an RSS feed with geo-coordinates and plot its items on a map
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Patterns mined from a dataset of 970 “most popular” pipes
models of Yahoo! Pipes (association rule mining, frequent

itemset mining + predefined topologies)

C. Rodriguez, S. Roy Chowdhury, F. Daniel, H.R. Motahari Nezhad and F. Casati. Assisted Mashup
Development: On the Discovery and Recommendation of Mashup Composition Knowledge. In Web
Services Foundations, Springer, 2014, Pages 683-708.



Recommendation algorithms

Contextual: candidate patterns contain the object of the last
modeling action; exact and approximate matching

Personalized: ranks contextual recommendations according
to users’ past component preferences

Expert: ranks contextual recommendations according to
experts’ past component preferences; cloning h-index



Modeling test cases

100 pipes models, different from the ones used to mine patterns

Generated 856 test cases with different object sizes:
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In-browser performance of recommendations
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Precision and recall:
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(b) P/R for varying k (object size is 2)
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High performance in response to stepwise modeling actions

Retrieve at least 8-9 recommendations



baya

assisted mashup = assisted development in Yahoo! Pipes

development as a service
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Omelette = extension of Apache Rave for Ul mashups

for end-users
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User studies

H1: Baya speeds up mashup development
H2: Development with Baya requires fewer user interactions
H3: Development with Baya requires less thinking time



Crowdsourced user study (Amazon Mechanical Turk):
30 participants equally split into control and test group (developers)
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Independent user studies by partners in the EU FP7
project Omelette: Baya for Apache Rave, 44 participants (admins)
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In conclusion

« Recommending and weaving model patterns
can really make modelers more efficient!

e Baya is a concrete proof of concept and a
flexible starting point for others



Mining and Quality Assessment of Mashup Model Patterns with the
Crowd: A Feasibility Study

CARLOS RODRIGUEZ, University of Trento
FLORIAN DANIEL, Politecnico di Milano
FABIO CASATI, University of Trento

Pattern mining, that is, the automated discovery of patterns from data, is a mathematically complex and
computationally demanding problem that is generally not manageable by humans. In this article, we focus
on small datasets and study whether it is possible to mine patterns with the help of the crowd by means of
a set of controlled experiments on a common crowdsourcing platform. We specifically concentrate on mining
model patterns from a dataset of real mashup models taken from Yahoo! Pipes and cover the entire pattern
mining process, including pattern identification and quality assessment. The results of our experiments
show that a sensible design of crowdsourcing tasks indeed may enable the crowd to identify patterns from
small datasets (40 models). The results however also show that the design of tasks for the assessment of
the quality of patterns to decide which patterns to retain for further processing and use is much harder (our
experiments fail to elicit assessments from the crowd that are similar to those by an expert). The problem
is relevant in general to model-driven development (e.g., UML, business processes, scientific workflows),
in that reusable model patterns encode valuable modeling and domain knowledge, such as best practices,
organizational conventions, or technical choices, modelers can benefit from when designing own models.

C. Rodriguez, F. Daniel, F. Casati. Mining and Quality Assessment of Mashup Model Patterns with the Crowd:
A Feasibility Study. ACM Transactions on Internet Technology, 2016, in print.



Research questions

1. Is the crowd able to discover meaningful, reusable

mashup model patterns?
2. Is it possible to crowdsource the quality assessment

of identified patterns?
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Experiment 1: pattern identification

Similar dataset as in previous study: 997 pipes models
* 40 randomly picked models for the crowd (Crowd)
« 997 for the automated algorithm (Machine)

Evaluation metrics
 Number of patterns identified
* AvQ pattern size (# components)
« Distribution of pattern sizes
« Cost per pattern



Crowd task designs

Naive: shows one pipe and asks for a pattern
Random3: shows 3 pipes and asks for a pattern

ChooseN: shows 10 pipes and asks to choose N pipes
and to identify a pattern

+ Automated mining algorithm®* for comparison

* C. Rodriguez, S. Roy Chowdhury, F. Daniel, H.R. Motahari Nezhad and F. Casati. Assisted Mashup
Development: On the Discovery and Recommendation of Mashup Composition Knowledge. In Web
Services Foundations, Springer, 2014, Pages 683-708.



Screen shot of the Naive task design

Name and description of pipe The pipe model to be analyzed by the worker. The model is a clickable image map that
sources from Yahoo! Pipes allows the worker to define a pattern by selecting its components.
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Results



Crowd task instances vs. patterns collected
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Retained patterns = valid patterns, manually checked



Number of patterns identified
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—> Yes, it is possible to identity patterns with the crowad



Average pattern sizes
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—> The patterns identified by the crowd are in average bigger



Distribution of pattern sizes
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Cost
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—> The approach is cost-eftective



Experiment 2: quality assessment

Dataset = output of best crowd mining approach of Exp 1

Pattern assessment metrics
* Reusability
* Novelty
e Usefulness
* Understandability



Crowd task designs

Individual: asks for assessment of the for metrics, given
one pattern

Pair-wise: asks for each metric to choose which of two
given patterns is better

+ Expert assessment for comparison



Results



Replaceability of experts
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Reusability p=5.787 x 10~7; U = 8029 -0.0783 0.1581
Novelty p=23.287 x 10713, U = 8741 0.1212 -0.1017
Usefulness p=6.392 x 1071°; U = 8197 0.0257 0.1755
Understandability p = 5.744 x 10~%; U = 6870 0.0732 0.1403

—> Individual does not produce anything like the experts
—> Pair-wise does not produce anything like the experts



Precision and recall
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Fig. 11. Precision and recall of the Individual and PairWise assessment experiments with varying selec-
tivity (top 25, 50, 75 percentiles) for understandability (O), usefulness (<), reusability(A), novelty (o).

—> The approaches could be used to filter out the worst patterns



Conclusion

e Using suitable task designs, the crowd is able to
identify meaningful model patterns.

* More visibility into the dataset (e.g., to spot
repetitions) does not help, to the contrary.

* We were not able to obtain reliable quality
assessments from the crowd.



The real conclusion

 Model patterns can really help if suitably
recommended and used

* The key problem is finding good patterns

 The crowd may be a viable alternative (or
complement?) to computational approaches in
identifying patterns



