
Effective Identification and Reuse of Model
Patterns in Service Orchestration Modeling

SummerSOC, Crete, Greece, June 26, 2017

by Florian Daniel, florian.daniel@polimi.it

Goal

Assisting developers by
recommending development knowledge

S. Roy Chowdhury, F. Daniel and F. Casati. Recommendation and Weaving of Reusable Mashup Model Patterns
for Assisted Development. ACM Transactions on Internet Technology 14(2-3), Article 21, 2014.

Idea
Development knowledge -> model patterns
Proactively assist development -> recommend patterns
Don’t distract developers -> context + speed
Make knowledge operational -> weave patterns

Research question
Does recommending model patterns really help developers
model faster / better?

choosing the
right component

filling the correct config.
parameter value

connecting
components together

defining the correct
data mappings

A typical mashup model pattern (Yahoo! Pipes)

The pattern tells how to enrich an RSS feed with geo-coordinates and plot its items on a map

Efficient, Interactive Recommendation of Mashup Composition Knowledge 377

– F = {fm|fm ∈ C × C} are the data flow connectors that assign to each
component ci it’s predecessor cp (i ̸= p) in the data flow. Source components
don’t require any data flow connector in input; sink components don’t have
data flow connectors in output.

– M = {mn|mn ∈ IN × OUT, IN = ∪i,jinij , OUT = ∪i,koutik} is the data
mapping that tells each component which of the attributes of the input
stream feed which of the input parameters of the component.

– P = {po|po ∈ (IN∪CONF)×(val∪null), CONF = ∪i,lconfil} is the value
assignment for the input or configuration parameters of each component,
val being a number or string value (a constant), and null representing an
empty assignment.

This definition allows models that may not be executed in practice, e.g., because
the data flow is not fully connected. With the following properties we close this
gap:

Definition 1. A mashup model m is correct if the graph expressed by F is
connected and acyclic.

Definition 2. A mashup model m is executable if it is correct and all required
input and configuration parameters have a respective data mapping or value
assignment.

These two properties must only hold in the moment we want to execute a mashup
m. Of course, during development, e.g., while modeling the mashup logic inside
a visual mashup editor, we may be in the presence of a partial mashup model
pm = ⟨C, F, M, P ⟩ that may be neither correct nor executable. Step by step, the
mashup developer will then complete the model, finally obtaining a correct and
executable one, which can typically be run directly from the editor in a hosted
fashion.

Given the above characterization of mashups, we can now define composition
knowledge that can be recommended as re-usable composition patterns for
mashups of type m, i.e., model fragments that provide insight into how to solve
specific modeling problems. Generically – given the mashup model introduced be-
fore – we express a composition pattern as a tuple cp = ⟨C, F, M, P, usage, date⟩,
where C, F, M, P are as defined for m, usage counts how many times the pat-
tern has been used (e.g., to compute rankings), and date is the creation date of
the pattern. In order to be useful, a pattern must be correct, but not necessar-
ily executable. The size of a pattern may vary from a single component with a
value assignment for at least one input or configuration parameter to an entire,
executable mashup; later on we will see how this is reflected in the structure of
individual patterns.

Finally, to effectively deliver recommendations it is crucial to understand when
to do so. Differently from most works on pattern search in literature (see Section
6), we aim at an interactive recommendation approach, in which patterns are
queried for and delivered in response to individual modeling actions performed
by the user in the modeling canvas. In visual modeling environments, we typically

Composition pattern model:

376 S.R. Chowdhury, F. Daniel, and F. Casati

2 Preliminaries and Problem Statement

Recommending composition knowledge requires, first of all, understanding how
such knowledge looks like. We approach this problem next by introducing the
mashup model that accompanies us throughout the rest of this paper and that
allows us to define the concept of composition patterns as formalization of the
knowledge to be recommended. Then, we characterize the typical browser-based
mashup development environment and provide a precise problem statement.

2.1 Mashup Model and Composition Patterns

As a first step toward more complex mashups, in this paper we focus on data
mashups. Data mashups are simple in terms of modeling constructs and expres-
sive power and, therefore, also the structure and complexity of mashup patterns
is limited. The model we define in the following is inspired by Yahoo! Pipes and
JackBe’s Presto (http://www.jackbe.com) platform; in our future work we will
focus on more complex models.

A data mashup model can be expressed as a tuple m = ⟨name, C, F, M, P ⟩,
where name is the unique name of the mashup, C is the set of components used
in the mashup, F is the set of data flow connectors ruling the propagation of
data among components, M is the set of data mappings of output attributes1 to
input parameters of connected components, and P is the set of parameter value
assignments for component parameters. Specifically:

– C = {ci|ci = ⟨namei, desci, Ini, Outi, Confi⟩} is the non-empty set of com-
ponents, with namei being the unique name of the component ci, desci

being a natural language description of the component (for the modeler),
and Ini = {⟨inij, reqij⟩}, Outi = {outik}, and Confi = {⟨confil, reqil⟩},
respectively, being the sets of input, output, and configuration parame-
ters/attributes, and reqij , reqil ∈ {yes, no} specifying whether the param-
eter is required, i.e., whether it is mandatory, or not. We distinguish three
kinds of components:

• Source components fetch data from the web or the local machine. They
don’t have inputs, i.e., Ini = ∅. There may be multiple source compo-
nents in C.

• Regular components consume data in input and produce processed data
in output. Therefore, Ini, Outi ̸= ∅. There may be multiple regular
components in C.

• Sink components publish the output of the data mashup, e.g., by printing
it onto the screen or providing an API toward it, such as an RSS or
RESTful resource. Sinks don’t have outputs, i.e., Outi = ∅. There must
always be exactly one sink in C.

1 We use the term attribute to denote data attributes in the data flow and the term
parameter to denote input and configuration parameters of components.

Mashup model:

App–2 S. Roy Chowdhury et al.

1..N

DataMapping

ID
SourceOutputAttribute
TargetParameter
Usage
Date

Connectors

ID
SourceComponent
SourceOutputPort
SourceOutput
TargetComponent
TargetInputPort
Usage
Date

0..1

ParameterValues
ID
Component
Parameter
Value
Usage
Date

MultiComponent
ID
C
DF
DF'
Usage
Date

ComponentCooccur
ID
SourceComponent
TargetComponent
TargetOutput
Usage
Date

Embedding
ID
SourceComponent
EmbeddingComponent
EmbeddedComponent
Usage
Date

0..1

1..N

0..1
1..N

1..N

1..N

0..1

0..1 1..N

1..N

0..1

0..1

Fig. 9. Knowledge base structure for storage and retrieval of mashup model patterns

ALGORITHM 4: getPesonalizedRecommendations
Data: q = hobject, action, pmi, KB, OAR, CompSim, T

sim

, T
rank

, k for top-k threshold, user id uid, inferred
user-item rating matrix R0

Result: Recommendations R = [hcp
i

, rank
i

i] with rank
i

� T
rank

1 R = array();
2 Patterns = getPatterns(q,KB,OAR,CompSim, T

sim

) ; // retrieve patterns

3 foreach pat 2 Patterns do
4 personalRank = 0; // initialize personal rating

5 foreach component 2 pat do
6 personalRank += getComponentRating(R0, component, uid); // sum individual, personal ratings

7 personalRank = personalRank/|pat|; // normalize by number of components in pattern

8 if personalRank � T
rank

then
9 append(R, hpat.cp, personalRanki); // rank, threshold, remember

10 OrderGroupTruncate(R, k);
11 return R;

ALGORITHM 5: getExpertRecommendations
Data: q = hobject, action, pmi, KB, OAR, CompSim, T

sim

, T
rank

, k for top-k threshold, expert-item rating matrix E
Result: Recommendations R = [hcp

i

, rank
i

i] with rank
i

� T
rank

1 R = array();
2 Patterns = getPatterns(q,KB,OAR,CompSim, T

sim

) ; // retrieve patterns

3 foreach pat 2 Patterns do
4 expertRank = 0; // initialize expert rating

5 foreach component 2 pat do
6 expertRank += getComponentRating(E, component); // sum individual expert ratings

7 expertRank = expertRank/|pat|; // normalize by number of components in pattern

8 if expertRank � T
rank

then
9 append(R, hpat.cp, expertRanki); // rank, threshold, remember

10 OrderGroupTruncate(R, k);
11 return R;

C.2. Basic weaving strategy
Table II illustrates the basic weaving strategies for the five identified mashup pattern
types, along with the assumptions regarding the object of the query that triggered the
recommendation of the pattern. We recall that the basic weaving strategy tells which
modeling actions to apply so as to expand object into the chosen pattern cp.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Pattern knowledge base

Patterns mined from a dataset of 970 “most popular” pipes
models of Yahoo! Pipes (association rule mining, frequent
itemset mining + predefined topologies)

C. Rodriguez, S. Roy Chowdhury, F. Daniel, H.R. Motahari Nezhad and F. Casati. Assisted Mashup
Development: On the Discovery and Recommendation of Mashup Composition Knowledge. In Web
Services Foundations, Springer, 2014, Pages 683-708.

Algorithm 1: mineConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

) and data mappings

(minsupp
dm

)

Result: set of connectors with their corresponding data

mappings {hdf
xy,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of connector patterns

4 foreach df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create database for frequent itemset mining

6 DBDM
y

= array():

7 foreach dfi
xy

2 DB[df
xy

] do

8 c
y

= target component of dfi
xy

;

9 append(DBDM
y

, c
y

.DM);

10 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
dm

);

// construct the connector patterns

11 foreach DM
y

2 FI
dy

do

12 Patterns = Patterns [{hdf
xy

, DM
y

i}

13 return Patterns;

Algorithm 2: getRecurrentConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

)

Result: set of recurrent connectors F
df

1 DB
df

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
df

,m
i

.DF); ; // fill with instances

4 F
df

= set(); // set of recurrent data flow connectors

5 foreach df
xy

2 DB
df

do

6 if computeSupport(df
xy

, DB
df

) � minsupp
df

then

7 F
df

= F
df

[{df
xy

};

8 return F
df

;

4.2 Implementation and Evaluation
We implemented a model adapter (see Figure 2) in Java

(1.6), which is able to convert Yahoo! Pipes’s JSON rep-
resentation into our canonical mashup model. All the min-
ing algorithms are also implemented in Java. For the fre-
quent itemset mining we used ARMiner (http://www.cs.
umb.edu/~laur/ARMiner/), which implements a set of tools
for association rule mining. The output of the algorithms is
expressed as XML documents, with a schema that is aligned
with the patterns introduced in Section 3.1 and and the pat-
tern KB.

For our experiments we used a dataset of 303 pipes defi-
nitions from the repository of Pipes. We selected pipes from
the list of “most popular” pipes, in that popular pipes are
more likely to be functional and useful. The average number
of components, connectors and input parameters are 12.7,
13.2 and 3.1, respectively, which is an indication that we are
dealing with fairly complex mashup compositions.

The results obtained from running our algorithms on the
selected dataset show that we are able to discover recurrent
practices for building mashups. Table 1 shows a summary of
the patterns discovered by the two algorithms introduced be-
fore. We used a minimum support threshold between 0.050
and 0.075 for finding patterns, but, clearly, this is a configu-
ration parameter subject to tuning. In the table, we report
the average support of the discovered patterns. For example,
given that Yahoo! Pipes is particularly strong for processing
Atom and RSS feeds, it is common for our algorithms to find

Algorithm 3: getConnectorInstances
Data: repository of mashup models M , reference connector df

xy

Result: array of connector instances DB
xy

1 DB
xy

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
xy

],m
i

.DF \ {df
xy

}); ; // fill with instances

of the reference connector type

4 return DB
xy

;

Algorithm 4: mineComponentCooccurrences
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

), data mappings

(minsupp
dm

) and parameter value assignments

(minsupp
va

).

Result: set of component co-occurrence patterns with their

corresponding dataflow connectors, data mappings and

parameter values {hdf
xy,i

, V A
x,i

, V A
y,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of component co-occurrence patterns

4 foreach $df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create databases for frequent itemset mining

6 DBV A
x

= array();

7 DBV A
y

= array():

8 DBDM
y

= array():

9 foreach dfi
xy

in DB[df
xy

] do

10 c
x

= source component of dfi
xy

;

11 c
y

= target component of dfi
xy

;

12 append(DBV A
x

, c
x

.V A);

13 append(DBV A
y

, c
y

.V A);

14 append(DBDM
y

, c
y

.DM);

15 FI
vx

= mineFrequentItemsets(DBV A
x

, minsupp
par

);

16 FI
vy

= mineFrequentItemsets(DBV A
y

, minsupp
par

);

17 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
par

);

// keep only those combinations of value assignments and

data mappings that frequently occur together

18 Coo = set();

19 foreach hV A
x

, V A
y

, DM
y

i 2 FI
vx

⇥ FI
vy

⇥ FI
dy

do

20 if computeSupport(hV A
x

, V A
y

, DM
y

i, DB[df
xy

])

� minsupp
df

then

21 Coo = Coo [{hV A
x

, V A
y

, DM
y

i};

// construct the component co-occurrence patterns

22 foreach hV A
x

, V A
y

, DM
y

i 2 Coo do

23 Patterns = Patterns [{hdf
xy

, V A
x

, V A
y

, DM
y

i}

24 return Patterns;

patterns of the type“use textinput, urlbuilder, fetchfeed, sort
components together, connecting them in sequence.” These
patterns are valid and make sense, yet they lack seman-
tics, mainly because the components in Yahoo! Pipes are
generic. This lack of semantics is alleviated to some extent
by discovering fragments that are as complete as possible:
instead of just telling which component types co-occur to-
gether, we also need to tell how they are connected, how
data is mapped inside components and how the parameter
values of components are filled. Among these, and in the
context of this experiment, parameter values are the most
powerful way to give semantics to mashup constructions.

5. RECOMMENDING PATTERNS
Recommending patterns is non-trivial, in that the size of

the knowledge base may be large, and the search for com-
position patterns may be complex; yet, recommendations
are to be delivered at high speed, without slowing down
the modeler’s composition pace. Recommending patterns is

Algorithm 1: mineConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

) and data mappings

(minsupp
dm

)

Result: set of connectors with their corresponding data

mappings {hdf
xy,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of connector patterns

4 foreach df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create database for frequent itemset mining

6 DBDM
y

= array():

7 foreach dfi
xy

2 DB[df
xy

] do

8 c
y

= target component of dfi
xy

;

9 append(DBDM
y

, c
y

.DM);

10 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
dm

);

// construct the connector patterns

11 foreach DM
y

2 FI
dy

do

12 Patterns = Patterns [{hdf
xy

, DM
y

i}

13 return Patterns;

Algorithm 2: getRecurrentConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

)

Result: set of recurrent connectors F
df

1 DB
df

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
df

,m
i

.DF); ; // fill with instances

4 F
df

= set(); // set of recurrent data flow connectors

5 foreach df
xy

2 DB
df

do

6 if computeSupport(df
xy

, DB
df

) � minsupp
df

then

7 F
df

= F
df

[{df
xy

};

8 return F
df

;

4.2 Implementation and Evaluation
We implemented a model adapter (see Figure 2) in Java

(1.6), which is able to convert Yahoo! Pipes’s JSON rep-
resentation into our canonical mashup model. All the min-
ing algorithms are also implemented in Java. For the fre-
quent itemset mining we used ARMiner (http://www.cs.
umb.edu/~laur/ARMiner/), which implements a set of tools
for association rule mining. The output of the algorithms is
expressed as XML documents, with a schema that is aligned
with the patterns introduced in Section 3.1 and and the pat-
tern KB.

For our experiments we used a dataset of 303 pipes defi-
nitions from the repository of Pipes. We selected pipes from
the list of “most popular” pipes, in that popular pipes are
more likely to be functional and useful. The average number
of components, connectors and input parameters are 12.7,
13.2 and 3.1, respectively, which is an indication that we are
dealing with fairly complex mashup compositions.

The results obtained from running our algorithms on the
selected dataset show that we are able to discover recurrent
practices for building mashups. Table 1 shows a summary of
the patterns discovered by the two algorithms introduced be-
fore. We used a minimum support threshold between 0.050
and 0.075 for finding patterns, but, clearly, this is a configu-
ration parameter subject to tuning. In the table, we report
the average support of the discovered patterns. For example,
given that Yahoo! Pipes is particularly strong for processing
Atom and RSS feeds, it is common for our algorithms to find

Algorithm 3: getConnectorInstances
Data: repository of mashup models M , reference connector df

xy

Result: array of connector instances DB
xy

1 DB
xy

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
xy

],m
i

.DF \ {df
xy

}); ; // fill with instances

of the reference connector type

4 return DB
xy

;

Algorithm 4: mineComponentCooccurrences
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

), data mappings

(minsupp
dm

) and parameter value assignments

(minsupp
va

).

Result: set of component co-occurrence patterns with their

corresponding dataflow connectors, data mappings and

parameter values {hdf
xy,i

, V A
x,i

, V A
y,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of component co-occurrence patterns

4 foreach $df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create databases for frequent itemset mining

6 DBV A
x

= array();

7 DBV A
y

= array():

8 DBDM
y

= array():

9 foreach dfi
xy

in DB[df
xy

] do

10 c
x

= source component of dfi
xy

;

11 c
y

= target component of dfi
xy

;

12 append(DBV A
x

, c
x

.V A);

13 append(DBV A
y

, c
y

.V A);

14 append(DBDM
y

, c
y

.DM);

15 FI
vx

= mineFrequentItemsets(DBV A
x

, minsupp
par

);

16 FI
vy

= mineFrequentItemsets(DBV A
y

, minsupp
par

);

17 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
par

);

// keep only those combinations of value assignments and

data mappings that frequently occur together

18 Coo = set();

19 foreach hV A
x

, V A
y

, DM
y

i 2 FI
vx

⇥ FI
vy

⇥ FI
dy

do

20 if computeSupport(hV A
x

, V A
y

, DM
y

i, DB[df
xy

])

� minsupp
df

then

21 Coo = Coo [{hV A
x

, V A
y

, DM
y

i};

// construct the component co-occurrence patterns

22 foreach hV A
x

, V A
y

, DM
y

i 2 Coo do

23 Patterns = Patterns [{hdf
xy

, V A
x

, V A
y

, DM
y

i}

24 return Patterns;

patterns of the type“use textinput, urlbuilder, fetchfeed, sort
components together, connecting them in sequence.” These
patterns are valid and make sense, yet they lack seman-
tics, mainly because the components in Yahoo! Pipes are
generic. This lack of semantics is alleviated to some extent
by discovering fragments that are as complete as possible:
instead of just telling which component types co-occur to-
gether, we also need to tell how they are connected, how
data is mapped inside components and how the parameter
values of components are filled. Among these, and in the
context of this experiment, parameter values are the most
powerful way to give semantics to mashup constructions.

5. RECOMMENDING PATTERNS
Recommending patterns is non-trivial, in that the size of

the knowledge base may be large, and the search for com-
position patterns may be complex; yet, recommendations
are to be delivered at high speed, without slowing down
the modeler’s composition pace. Recommending patterns is

Algorithm 1: mineConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

) and data mappings

(minsupp
dm

)

Result: set of connectors with their corresponding data

mappings {hdf
xy,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of connector patterns

4 foreach df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create database for frequent itemset mining

6 DBDM
y

= array():

7 foreach dfi
xy

2 DB[df
xy

] do

8 c
y

= target component of dfi
xy

;

9 append(DBDM
y

, c
y

.DM);

10 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
dm

);

// construct the connector patterns

11 foreach DM
y

2 FI
dy

do

12 Patterns = Patterns [{hdf
xy

, DM
y

i}

13 return Patterns;

Algorithm 2: getRecurrentConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

)

Result: set of recurrent connectors F
df

1 DB
df

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
df

,m
i

.DF); ; // fill with instances

4 F
df

= set(); // set of recurrent data flow connectors

5 foreach df
xy

2 DB
df

do

6 if computeSupport(df
xy

, DB
df

) � minsupp
df

then

7 F
df

= F
df

[{df
xy

};

8 return F
df

;

4.2 Implementation and Evaluation
We implemented a model adapter (see Figure 2) in Java

(1.6), which is able to convert Yahoo! Pipes’s JSON rep-
resentation into our canonical mashup model. All the min-
ing algorithms are also implemented in Java. For the fre-
quent itemset mining we used ARMiner (http://www.cs.
umb.edu/~laur/ARMiner/), which implements a set of tools
for association rule mining. The output of the algorithms is
expressed as XML documents, with a schema that is aligned
with the patterns introduced in Section 3.1 and and the pat-
tern KB.
For our experiments we used a dataset of 303 pipes defi-

nitions from the repository of Pipes. We selected pipes from
the list of “most popular” pipes, in that popular pipes are
more likely to be functional and useful. The average number
of components, connectors and input parameters are 12.7,
13.2 and 3.1, respectively, which is an indication that we are
dealing with fairly complex mashup compositions.
The results obtained from running our algorithms on the

selected dataset show that we are able to discover recurrent
practices for building mashups. Table 1 shows a summary of
the patterns discovered by the two algorithms introduced be-
fore. We used a minimum support threshold between 0.050
and 0.075 for finding patterns, but, clearly, this is a configu-
ration parameter subject to tuning. In the table, we report
the average support of the discovered patterns. For example,
given that Yahoo! Pipes is particularly strong for processing
Atom and RSS feeds, it is common for our algorithms to find

Algorithm 3: getConnectorInstances
Data: repository of mashup models M , reference connector df

xy

Result: array of connector instances DB
xy

1 DB
xy

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
xy

],m
i

.DF \ {df
xy

}); ; // fill with instances

of the reference connector type

4 return DB
xy

;

Algorithm 4: mineComponentCooccurrences
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

), data mappings

(minsupp
dm

) and parameter value assignments

(minsupp
va

).

Result: set of component co-occurrence patterns with their

corresponding dataflow connectors, data mappings and

parameter values {hdf
xy,i

, V A
x,i

, V A
y,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of component co-occurrence patterns

4 foreach $df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create databases for frequent itemset mining

6 DBV A
x

= array();

7 DBV A
y

= array():

8 DBDM
y

= array():

9 foreach dfi
xy

in DB[df
xy

] do

10 c
x

= source component of dfi
xy

;

11 c
y

= target component of dfi
xy

;

12 append(DBV A
x

, c
x

.V A);

13 append(DBV A
y

, c
y

.V A);

14 append(DBDM
y

, c
y

.DM);

15 FI
vx

= mineFrequentItemsets(DBV A
x

, minsupp
par

);

16 FI
vy

= mineFrequentItemsets(DBV A
y

, minsupp
par

);

17 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
par

);

// keep only those combinations of value assignments and

data mappings that frequently occur together

18 Coo = set();

19 foreach hV A
x

, V A
y

, DM
y

i 2 FI
vx

⇥ FI
vy

⇥ FI
dy

do

20 if computeSupport(hV A
x

, V A
y

, DM
y

i, DB[df
xy

])

� minsupp
df

then

21 Coo = Coo [{hV A
x

, V A
y

, DM
y

i};

// construct the component co-occurrence patterns

22 foreach hV A
x

, V A
y

, DM
y

i 2 Coo do

23 Patterns = Patterns [{hdf
xy

, V A
x

, V A
y

, DM
y

i}

24 return Patterns;

patterns of the type“use textinput, urlbuilder, fetchfeed, sort
components together, connecting them in sequence.” These
patterns are valid and make sense, yet they lack seman-
tics, mainly because the components in Yahoo! Pipes are
generic. This lack of semantics is alleviated to some extent
by discovering fragments that are as complete as possible:
instead of just telling which component types co-occur to-
gether, we also need to tell how they are connected, how
data is mapped inside components and how the parameter
values of components are filled. Among these, and in the
context of this experiment, parameter values are the most
powerful way to give semantics to mashup constructions.

5. RECOMMENDING PATTERNS
Recommending patterns is non-trivial, in that the size of

the knowledge base may be large, and the search for com-
position patterns may be complex; yet, recommendations
are to be delivered at high speed, without slowing down
the modeler’s composition pace. Recommending patterns is

Algorithm 1: mineConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

) and data mappings

(minsupp
dm

)

Result: set of connectors with their corresponding data

mappings {hdf
xy,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of connector patterns

4 foreach df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create database for frequent itemset mining

6 DBDM
y

= array():

7 foreach dfi
xy

2 DB[df
xy

] do

8 c
y

= target component of dfi
xy

;

9 append(DBDM
y

, c
y

.DM);

10 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
dm

);

// construct the connector patterns

11 foreach DM
y

2 FI
dy

do

12 Patterns = Patterns [{hdf
xy

, DM
y

i}

13 return Patterns;

Algorithm 2: getRecurrentConnectors
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

)

Result: set of recurrent connectors F
df

1 DB
df

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
df

,m
i

.DF); ; // fill with instances

4 F
df

= set(); // set of recurrent data flow connectors

5 foreach df
xy

2 DB
df

do

6 if computeSupport(df
xy

, DB
df

) � minsupp
df

then

7 F
df

= F
df

[{df
xy

};

8 return F
df

;

4.2 Implementation and Evaluation
We implemented a model adapter (see Figure 2) in Java

(1.6), which is able to convert Yahoo! Pipes’s JSON rep-
resentation into our canonical mashup model. All the min-
ing algorithms are also implemented in Java. For the fre-
quent itemset mining we used ARMiner (http://www.cs.
umb.edu/~laur/ARMiner/), which implements a set of tools
for association rule mining. The output of the algorithms is
expressed as XML documents, with a schema that is aligned
with the patterns introduced in Section 3.1 and and the pat-
tern KB.

For our experiments we used a dataset of 303 pipes defi-
nitions from the repository of Pipes. We selected pipes from
the list of “most popular” pipes, in that popular pipes are
more likely to be functional and useful. The average number
of components, connectors and input parameters are 12.7,
13.2 and 3.1, respectively, which is an indication that we are
dealing with fairly complex mashup compositions.

The results obtained from running our algorithms on the
selected dataset show that we are able to discover recurrent
practices for building mashups. Table 1 shows a summary of
the patterns discovered by the two algorithms introduced be-
fore. We used a minimum support threshold between 0.050
and 0.075 for finding patterns, but, clearly, this is a configu-
ration parameter subject to tuning. In the table, we report
the average support of the discovered patterns. For example,
given that Yahoo! Pipes is particularly strong for processing
Atom and RSS feeds, it is common for our algorithms to find

Algorithm 3: getConnectorInstances
Data: repository of mashup models M , reference connector df

xy

Result: array of connector instances DB
xy

1 DB
xy

= array(); // database of data flow connector instances

2 foreach m
i

2 M do

3 append(DB
xy

],m
i

.DF \ {df
xy

}); ; // fill with instances

of the reference connector type

4 return DB
xy

;

Algorithm 4: mineComponentCooccurrences
Data: repository of mashup models M , minimum support of

data flow connectors (minsupp
df

), data mappings

(minsupp
dm

) and parameter value assignments

(minsupp
va

).

Result: set of component co-occurrence patterns with their

corresponding dataflow connectors, data mappings and

parameter values {hdf
xy,i

, V A
x,i

, V A
y,i

, DM
y,i

i}
1 F

df

= getRecurrentConnectors(M,minsupp
df

);

2 DB = array(); // database of recurrent connector instances

3 Patterns = set(); // set of component co-occurrence patterns

4 foreach $df
xy

2 F
df

do

5 DB[df
xy

] = getConnectorInstances(M,df
xy

);

// create databases for frequent itemset mining

6 DBV A
x

= array();

7 DBV A
y

= array():

8 DBDM
y

= array():

9 foreach dfi
xy

in DB[df
xy

] do

10 c
x

= source component of dfi
xy

;

11 c
y

= target component of dfi
xy

;

12 append(DBV A
x

, c
x

.V A);

13 append(DBV A
y

, c
y

.V A);

14 append(DBDM
y

, c
y

.DM);

15 FI
vx

= mineFrequentItemsets(DBV A
x

, minsupp
par

);

16 FI
vy

= mineFrequentItemsets(DBV A
y

, minsupp
par

);

17 FI
dy

= mineFrequentItemsets(DBDM
y

, minsupp
par

);

// keep only those combinations of value assignments and

data mappings that frequently occur together

18 Coo = set();

19 foreach hV A
x

, V A
y

, DM
y

i 2 FI
vx

⇥ FI
vy

⇥ FI
dy

do

20 if computeSupport(hV A
x

, V A
y

, DM
y

i, DB[df
xy

])

� minsupp
df

then

21 Coo = Coo [{hV A
x

, V A
y

, DM
y

i};

// construct the component co-occurrence patterns

22 foreach hV A
x

, V A
y

, DM
y

i 2 Coo do

23 Patterns = Patterns [{hdf
xy

, V A
x

, V A
y

, DM
y

i}

24 return Patterns;

patterns of the type“use textinput, urlbuilder, fetchfeed, sort
components together, connecting them in sequence.” These
patterns are valid and make sense, yet they lack seman-
tics, mainly because the components in Yahoo! Pipes are
generic. This lack of semantics is alleviated to some extent
by discovering fragments that are as complete as possible:
instead of just telling which component types co-occur to-
gether, we also need to tell how they are connected, how
data is mapped inside components and how the parameter
values of components are filled. Among these, and in the
context of this experiment, parameter values are the most
powerful way to give semantics to mashup constructions.

5. RECOMMENDING PATTERNS
Recommending patterns is non-trivial, in that the size of

the knowledge base may be large, and the search for com-
position patterns may be complex; yet, recommendations
are to be delivered at high speed, without slowing down
the modeler’s composition pace. Recommending patterns is

Algorithms for Mining Composition Patterns

Parameter value pattern

In the case of the parameter-value pattern, we are interested in finding suitable values for the
input fields in a given component. Most of the components in mashup compositions contain more
than one parameter and more often than not the values of these parameters are related to one
another. For example, let us assume that there is a component named Map that takes as input
a geographic coordinate and plots it on a map. Depending on the coordinate system selected
for the input data (e.g., UTM or UPS system), di↵erent input parameters must be configured
to provide the actual geographic coordinates to the component. This example illustrates how
parameters (and their values) are related to one another. The parameter value pattern aims at
capturing the pattern for these parameter configurations.

In order to discover the patttern described above, we map this problem to the well-known
problem of itemset mining 1. Here, each component instance in our repository of compositions
represents a transaction and each parameter value assignment of a component represent an item.
By using this mapping to the itemset mining problem, we aim at discovering how the parameter
values of a component co-occur together for given type of component. Algorithm 1 outlines the
approach for finding parameter value patterns.

Algorithm 1: mineParameterValues
Data: repository of mashup compositions M and minimun support (minsupp) for the frequent itemset mining

Result: set of parameter value patterns grouped by type of component.

C = set of component instances in M ;1

P = array(); //list of parameter value patterns.2

foreach type of component t in C do3

C

t

= set of c

i

.V A with c

i

2 C such that c

i

.type = t; //we4

//get all the parameter value assignments of component5

//instances of type is t.6

FI

t

= mineFrequentItemsets(C

t

, minsupp);7

P [t] = FI

t

;8

return P ;9

Connector patern

A connector pattern is composed of two components, the source component c
x

and the target
component c

y

, their data flow connector df
xy

, and the data mapping DM
y

of the target compo-
nent. Given a repository of mashup models M = {m

i

} and the minimum support levels for the
data flow connectors and data mappings, the pseudo-code in Algorithm 2 explains how we mine
connector patterns.

We start the mining task by getting the list of all recurrent connectors in M (line 1). The
respective function getRecurrentConnectors is explained in Algorithm 3; in essence, it computes
a recurrence distribution for all connectors and returns only those that exceed the threshold
minsupp

df

. The function returns a set of connector types without repetitions and without
information about the instances that generated them. Given this set, we construct a database of
concrete instances of each connector type (using the getConnectorInstances function in line 5 and
described in Algorithm 4) and, for each connector type, derive a database of the data mappings
for the connectors’ target component c

y

(lines 7-9). We feed the so constructed database into
a standard mineFrequentItemsets function, in order to obtain a set of recurrent data mappings

1
P. Tan, S. M, and K. V. Introduction to Data Mining. Addison-Wesley, 2005.

1

Algorithm 7: mineComponentEmbeddings
Data: repository of mashup compositions M , minimum supports for component embeddings (minsupp

em

), data

mappings (minsupp

dm

) and parameter value (minsupp

par

).

Result: list of component embedding patterns with their corresponding dataflow connectors, data mappings and

parameter value assignments htuple
em

, DM

em

, V A

em

i
// get dataflow connectors for component embeddings

DB

em

= array();1

foreach m

i

2 M do2

foreach hdf
xy

, df

xz

, df

yz

i 2 m

i

.DF ⇥ m

i

.DF ⇥ m

i

.DF do3

if (c

x

precedes c

y

) and (c

y

embeds c

z

) then4

tuple

em

= hdf
xy

, df

xz

, df

yz

i;5

DB

em

= append(DB

em

, tuple

em

);6

// find the frequent dataflow connectors for component embeddings

foreach tuple

em

2 DB

em

do7

if computeSupport(tuple

em

, DB

em

) � minsupp

em

then8

F

em

= append(F

em

, tuple

em

);9

// get data mapping instances and find frequent data mappings

DB

dmi

= array();10

foreach m

i

2 M do11

foreach tuple

em

2 DB

em

do12

foreach tuple

dfi

2 m

i

.DF ⇥ m

i

.DF ⇥ m

i

.DF do13

if match(tuple

em

, tuple

dfi

) then14

DM

x

= tuple

dfi

.c

x

.DM ;15

DM

y

= tuple

dfi

.c

y

.DM ;16

DM

z

= tuple

dfi

.c

z

.DM ;17

DB

dmi

= append(DB

dmi

, DM

x

[DM

y

[DM

z

);18

F

dm

= mineFrequentItems(DB

dmi

,minsupp

dm

);19

// get parameter value instances and find frequent parameter value asignments

DB

vai

= array();20

foreach m

i

2 M do21

foreach tuple

em

2 DB

em

do22

foreach tuple

dfi

2 m

i

.DF ⇥ m

i

.DF ⇥ m

i

.DF do23

if match(tuple

em

, tuple

dfi

) then24

V A

x

= tuple

dfi

.c

x

.V A;25

V A

y

= tuple

dfi

.c

y

.V A;26

V A

z

= tuple

dfi

.c

z

.V A;27

DB

vai

= append(DB

vai

, V A

x

[V A

y

[V A

z

);28

F

va

= mineFrequentItems(DB

vai

,minsupp

par

);29

// keep only the combinations that frequently occur together

Cem = set();30

foreach htuple
em

, DM

em

, V A

em

i 2 F

em

⇥ F

dm

⇥ F

va

do31

if computeSupport(htuple
em

, DM

em

, V A

em

i, DB

em

) � minsupp

em

then32

Cem = Cem [{htuple
em

, DM

em

, V A

em

i};33

// construct the component embedding pattern

Patterns = set();34

foreach htuple
em

, DM

em

, V A

em

i 2 Cem do35

Patterns = Patterns [{htuple
em

, DM

em

, V A

em

i}36

return Patterns;37

5

Recommendation algorithms

Contextual: candidate patterns contain the object of the last
modeling action; exact and approximate matching  

Personalized: ranks contextual recommendations according
to users’ past component preferences  

Expert: ranks contextual recommendations according to
experts’ past component preferences; cloning h-index

Modeling test cases

100 pipes models, different from the ones used to mine patterns

Recommendation and Weaving of Reusable Mashup Model Patterns 21:9

Fig. 3. Partitioning of a pipes model into a partially developed model and “future” modeling actions (action
object size 1).

ALGORITHM 1: getPatterns
Data: Query q = ⟨object, action, pm⟩, knowledge base KB, object-action-recommendation

mapping OAR, component similarity matrix CompSim, similarity threshold Tsim
Result: Patterns with similarity with object greater than Tsim

1 Patterns = set();
2 recT ypes = getSuitableRecTypes(object, action, OAR); // get types of recommendations
to be given

3 foreach recT ype ∈ recT ypes do
4 if recT ype ∈ {ParV alue, Connector, DataMapping, CompCooccur} then
5 Patterns = Patterns∪ queryPatterns(object, KB, recT ype) ; // exact
6 else
7 Patterns = Patterns∪ getSimilarPatterns(object, KB.MultiComponent, CompSim,

Tsim) ; // similar

8 return Patterns;

To create the necessary test data, we again selected 100 pipes, making sure they were
not already considered when mining mashup model patterns to fill the KB. The strategy
to derive modeling actions (to trigger the recommendation process) as well as to derive
reactions to the recommendations is to partition a pipe model into a partial mashup
model pm and “future modeling actions” (everything after the partition). We then as-
sume the developer selected a part of pm as the last modeling action, for instance, a
component. We are therefore in the presence of a true positive if any of the top-k recom-
mendations retrieved matches the future modeling action directly following the object.
The partitioning procedure is illustrated in Figure 3. We applied it to generate 856 test
cases with different object sizes (in parentheses): 356 (1) + 227 (2) + 212 (3) + 61 (4).

4.2. Contextual Recommendations
The contextual recommendation algorithm is the basic one we introduced in Roy
Chowdhury et al. [2011b] and that we extend next with personalized and expert recom-
mendations. We split the algorithm into two parts: getPatterns (Algorithm 1) retrieves
candidate patterns from the KB, while getContextualRecommendations (Algorithm 2)
ranks retrieved patterns and returns them for rendering.

With the help of an Object-Action-Recommendation (OAR) rule, getPatterns first
determines which pattern types are to be retrieved (line 2). A given type of modeling
action on a given type of object always triggers a specific type of recommendation, such
as when the selection of an input field triggers parameter value patterns, or when
adding a new component may trigger all types of patterns. Given the recommendation

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Generated 856 test cases with different object sizes:

• 356 with object size 1
• 227 with object size 2
• 212 with object size 3
• 61 with object size 4

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"

#!" #!!" #!!!"

!"
#$
%"
&'
()*

+
")
,+

-.
)

/0+1"$)23)42+5("6)5'7"$8-)%8)9:)

;'<)=%+%('$%#>)-"'$4?)*+"-)32$)&'$>%8@)9:)'8A)
21B"4#)-%C"-)

*+,-./*0#"

*+,-./*0$"

*+,-./*0%"

*+,-./*0&"

*+,-./*0'"

*+,-./*0("

*+,-./*0)"

1234563"

'!!"
'$!"
'&!"
'(!"
'7!"
(!!"
($!"
(&!"
((!"

!" #" $" %" &" '" (")" 7"

!"
#$
%"
&'
()*

+
")
,+

-.
)

/0+1"$)23)42+528"8#-)%8)!"#$%&'

;1<)!"#$%"&'()*+"-)23)42+5("6)5'7"$8-)32$)&'$>%8@)
21B"4#)-%C"-)32$)DEEE)42+5("6)5'7"$8-)%8)9:)

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"

#!" #!!" #!!!"

!"
#$
%"
&'
()*

+
")
,+

-.
)

/0+1"$)23)42+5("6)5'7"$8-)%8)9:)

;4<)F2#'()$"42++"8A'*28)*+"-)%8)4'-")#?")
+2A"("$)'AA-)')8"G)42+528"8#)#2)#?")+'-?05)

/+8839:+4"

;54"25<=3"

/+>+99=443893"

/+?@<3A"

B+:5<"

Figure 4. Performance evaluation of the client-side knowledge recommender.

input and configuration parameters (ranging from 1�5) and a random number of
output attributes (between 1�5). To obtain an upper bound for the performance
of the exact queries for parameter value, connector, data mapping, and compo-
nent co-occurrence patterns, we generated, respectively, 26 ⇤ 5 = 130 parameter
values for the 26 components, 26 ⇤ 25 = 650 directed connectors, 650 ⇤ 5 = 3250
data mappings, and 650 component co-occurrences. To measure the performance
of the similarity search algorithms, we generated 5 di↵erent KBs with 10, 30,
100, 300, 1000 complex patterns, where the complexity of patterns ranges from
3 � 9 components. The patterns make random use of all available components
and are equally distributed in the generated KBs. Finally, we generated a set of
query objects with |obj.C| 2 {1..7}.

In Figure 4, we illustrate the tests we performed and the respective results.
The first test in Figure 4(a) studies the performance in terms of pattern retrieval
times of Algorithm 2 for di↵erent KB sizes; the figure plots the retrieval times
for di↵erent object sizes. Considering the logarithmic scale of the x-axis, we note
that the retrieval time for complex patterns grows almost linearly. This somehow
unexpected behavior is due to the fact that, compared to the number of patterns,
the complexity of patterns is similar among each other and limited and, hence,
the similarity calculation can almost be considered a constant. We also observe
that there are no significant performance di↵erences for varying object sizes. In
Figure 4(b) we investigate the e↵ect of the object size on the performance of
Algorithm 2 only for the KB with 1000 complex patterns (the only one with
notable di↵erences). Apparently, also the size of the query object does not a↵ect
much retrieval time. Figure 4(c), finally, studies the performance of Algorithm
1, i.e., the performance perceived by the user, in a typical modeling situation: in
response to the user placing a new component into the canvas, the recommenda-

In-browser performance of recommendations

Recommendation and Weaving of Reusable Mashup Model Patterns 21:13

Fig. 5. Precision and recall for the three recommendation algorithms under different parameters settings.

Figure 5(a) studies the behavior of the algorithms by varying the size of object from
1 to 4 components while keeping the number k of recommended patterns constant (k =
10). For object size 1, we note that all algorithms have a recall of 1, indicating that if the
query considers only one component, (e.g., the latest one, which is the most important
modeling situation), all algorithms are able to recommend some patterns. The precision
is slightly lower. As soon as the object size increases, both precision and recall drop
as expected, since the query becomes more complex. Object sizes 2 and 3 still produce
good results; with object size 4 the algorithms are no longer able to retrieve a set of
meaningful patterns. This result is less an issue of the recommendation algorithms and
more a problem of the patterns in the knowledge base: out of the 109 multi-component
patterns, very few are composed of more than 4 components. Except for the case of
object size 1 where the expert recommendations excel (the result of precision 1 needs
further investigation), the personalized recommendations consistently outperform the
other two. While this result is partly expected, is it interesting to see that the expert
recommendations also perform well. This can be read as an indication that, given the
relatively low complexity of data mashups and the limited modeling expertise required
for mashup tools like Yahoo! Pipes, average modelers do not develop mashups that are
very different from the ones made by expert modelers.

Figures 5(b) and (c) study more specifically the effect of k for object sizes 2 and 3,
respectively; for object size 1, we have seen that precision and recall stay consistently
high. The best results are, of course, obtained with k = 10. Also k = 9 produces very
similar precision and recall values, which, however, significantly drop in both charts
for k ≤ 8. This confirms that, in order to effectively assist a modeler in his task, the
recommendation panel should be able to render at least 9 patterns at a time.

5. WEAVING PATTERNS
Weaving a given pattern cp into a partial mashup model pm is not straightforward and
requires a thorough analysis of both pm and cp, in order to understand how to apply
cp to the constructs already present in pm without resulting in modeling conflicts. The
problem is not as simple as just copying and pasting the pattern, in that new identifiers
of all constructs of cp need to be generated, connectors must be rewritten based on the
new identifiers, and connections with existing constructs must be defined by satisfying
the modeling constraints. The implementation of the respective weaving functionality
relies on two different strategies, namely a basic and a contextual strategy.

5.1. Basic Weaving Strategy
Given an object and the pattern cp of a recommendation, the basic weaving strategy BS
provides the sequence of mashup operations necessary to weave cp into the object. In

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Precision and recall:

High performance in response to stepwise modeling actions
Retrieve at least 8-9 recommendations

21:8 S. Roy Chowdhury et al.

—Contextual recommendations. This algorithm retrieves patterns that are contextual
to the latest modeling action made by the developer, that is, candidate patterns must
contain the object of the latest modeling action. The algorithm performs both an
exact and an approximate search for patterns. The ranking of patterns is based on
structure only. This is the most basic algorithm we consider.

—Personalized recommendations. Shani and Gunawardana [2011] suggest to recom-
mend items the users are already familiar with in order to gain their trust. A close
investigation we did on users’ development histories in Yahoo! Pipes in fact revealed
that users tend to reuse the same set of components and data sources. With this
algorithm, we extend the contextual algorithm to take into account personal compo-
nent usage preferences when ranking retrieved patterns.

—Expert recommendations. Our investigation of the development histories also re-
vealed that, in open, online mashup platforms like Yahoo! Pipes, users tend to learn
from other users, such as by replicating or cloning existing mashup models. We as-
sume that the more mashups of a given user are cloned, the more expert and valuable
this user. In order to capture this value, with this algorithm we extend the contextual
algorithm to take user expertise into account when ranking retrieved patterns.

The three algorithms make use of a common Knowledge Base (KB) for pattern re-
trieval. KB stores patterns, decomposed into their constituent parts, so as to enable a
fast, incremental recommendation approach: to recommend patterns, we only retrieve
components and connectors; only to weave a pattern, we also fetch parameter values
and data mappings. The observation underlying this practice is that conveying a rec-
ommendation does not require details; it is enough to communicate the essence of a
pattern. Only the parameter value pattern immediately requires detailed values. We
refer the reader to Appendix A for the details of the KB.

To enable the evaluation of the recommendation algorithms, we filled the KB with
660 distinct mashup model patterns (259 component co-occurrence, 292 parame-
ter value, and 109 multi-component patterns) automatically mined from a dataset
of 970 Yahoo! Pipes models (so-called pipes) retrieved through the YQL Console
(http://developer.yahoo.com/yql/console/). Pattern clones (patterns identified mul-
tiple times) are taken into account by the mining algorithm to compute support values,
but eliminated from the KB. We selected pipes from the list of “most popular” pipes,
as popular pipes are more likely to be functioning and useful. The average numbers of
components, connectors, and input parameters of the retrieved pipes were 11.1, 11.0,
and 4.1, respectively, indicating the selection of reasonably complex and realistic pipes.
The used mining algorithms are described in detail in Rodrı́guez et al. [2014b].

4.1. Evaluation Metrics: Precision and Recall
For the evaluation of the three recommendation algorithms, we adopt the widely ac-
cepted precision and recall metrics of recommendation systems evaluation. The two
metrics are based on the concepts of true positives, false positives, and false negatives.

—True Positive (TP). We are in the presence of a true positive if one of the top-k
recommendations retrieved is accepted by the user as the next modeling action.

—False Positive (FP). We have a false positive if none of the retrieved top-k recommen-
dations is accepted.

—False Negative (FN). We are in the presence of a false negative if no recommendations
can be retrieved at all.

Given a body of recommendations and the respective user reactions, the precision
and recall metrics can be calculated as P = |T P|

|T P|+|FP| and R = |T P|
|T P|+|FN| .

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

21:8 S. Roy Chowdhury et al.

—Contextual recommendations. This algorithm retrieves patterns that are contextual
to the latest modeling action made by the developer, that is, candidate patterns must
contain the object of the latest modeling action. The algorithm performs both an
exact and an approximate search for patterns. The ranking of patterns is based on
structure only. This is the most basic algorithm we consider.

—Personalized recommendations. Shani and Gunawardana [2011] suggest to recom-
mend items the users are already familiar with in order to gain their trust. A close
investigation we did on users’ development histories in Yahoo! Pipes in fact revealed
that users tend to reuse the same set of components and data sources. With this
algorithm, we extend the contextual algorithm to take into account personal compo-
nent usage preferences when ranking retrieved patterns.

—Expert recommendations. Our investigation of the development histories also re-
vealed that, in open, online mashup platforms like Yahoo! Pipes, users tend to learn
from other users, such as by replicating or cloning existing mashup models. We as-
sume that the more mashups of a given user are cloned, the more expert and valuable
this user. In order to capture this value, with this algorithm we extend the contextual
algorithm to take user expertise into account when ranking retrieved patterns.

The three algorithms make use of a common Knowledge Base (KB) for pattern re-
trieval. KB stores patterns, decomposed into their constituent parts, so as to enable a
fast, incremental recommendation approach: to recommend patterns, we only retrieve
components and connectors; only to weave a pattern, we also fetch parameter values
and data mappings. The observation underlying this practice is that conveying a rec-
ommendation does not require details; it is enough to communicate the essence of a
pattern. Only the parameter value pattern immediately requires detailed values. We
refer the reader to Appendix A for the details of the KB.

To enable the evaluation of the recommendation algorithms, we filled the KB with
660 distinct mashup model patterns (259 component co-occurrence, 292 parame-
ter value, and 109 multi-component patterns) automatically mined from a dataset
of 970 Yahoo! Pipes models (so-called pipes) retrieved through the YQL Console
(http://developer.yahoo.com/yql/console/). Pattern clones (patterns identified mul-
tiple times) are taken into account by the mining algorithm to compute support values,
but eliminated from the KB. We selected pipes from the list of “most popular” pipes,
as popular pipes are more likely to be functioning and useful. The average numbers of
components, connectors, and input parameters of the retrieved pipes were 11.1, 11.0,
and 4.1, respectively, indicating the selection of reasonably complex and realistic pipes.
The used mining algorithms are described in detail in Rodrı́guez et al. [2014b].

4.1. Evaluation Metrics: Precision and Recall
For the evaluation of the three recommendation algorithms, we adopt the widely ac-
cepted precision and recall metrics of recommendation systems evaluation. The two
metrics are based on the concepts of true positives, false positives, and false negatives.

—True Positive (TP). We are in the presence of a true positive if one of the top-k
recommendations retrieved is accepted by the user as the next modeling action.

—False Positive (FP). We have a false positive if none of the retrieved top-k recommen-
dations is accepted.

—False Negative (FN). We are in the presence of a false negative if no recommendations
can be retrieved at all.

Given a body of recommendations and the respective user reactions, the precision
and recall metrics can be calculated as P = |T P|

|T P|+|FP| and R = |T P|
|T P|+|FN| .

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Yahoo! Pipes
modeling canvas

Newly added component

Baya recommendation panel

Recommended patterns

Details about selected pattern

Component
toolbar

= assisted development in Yahoo! Pipes

for developers

ICT OMELETTE

Report D7.3 Final Demonstrators

Page 9 of 32

WP7: Use Cases and Evaluation

T7.3: Demonstration and Evaluation

Status: Final – Distribution: Public

Figure 1 Emergency Cockpit Workspace

2.2. First Line Support System

The First Line Support (FLS) system is built to facilitate the FLS team of TIE with a new portal

based solution based on the features of OMELETTE. The context is given by the First Line

Support scenario of D7.1 document.

The First Line Support team of TIE provides the clients with maintenance service and support

for TIE products. The FLS team helps clients with license renewal and also with

troubleshooting of TIE products. This requires regular communication and frequent

information exchange. So this portal solution with facilities like integrated telco services and

real time communication helps support people to effectively communicate and exchange

= extension of Apache Rave for UI mashups

Theme ICT-2009.1.2
Service and Software Architecture, Infrastructure and Engineering

ICT OMELETTE
D4.6 - Crowd-Based Pattern Mining:
On the Crowdsourcing of Reusable
Knowledge Identification from Mashup Models

Title D4.6 - Crowd-Based Pattern Mining:

On the Crowdsourcing of Reusable Knowledge Identification from Mashup Models

Editor UNITN

Contributors UNITN

Reviewers TIE

Work Package WP4 – Assisted, manual mashup development

Task T4.3 – Algorithms for development recommendations

Date June 30, 2013

Release 1.0

Status Final

Distribution Private

for end-users

ICT OMELETTE
Page 41 of 69

WP2- Telco Mashup Architecture and Theory

T2.2 – Mashup specification T2.3 – Telco mashup architecture
Status: Final – Distribution: Public

Figure 6. Snapshot of workspace Pattern Recommender (PR) assisting workspace

design in Apache Rave

8. Server Side Telco Mashups

8.1. Rationale for server-side mashups

Mashup development depends on the ability to combine loosely related components into a

new, hybrid application, whose requirements determine which artifacts (graphical interfaces,

data sources or functionalities) are to be combined. Thus, from a high level perspective,

hybridization in a mashup can refer to different technological domains, which allows

employing the term 'mashup' with at least three different orientations: presentation, data and

processes. Different languages, programming methodologies and techniques are applied to

each of these areas [Hanson2009]:

• Presentation-oriented mashups add various user interfaces to provide a new

application or product. This type of mashup usually seeks to create an application that

displays all together the various user interface components in a similar way to a

H1: Baya speeds up mashup development
H2: Development with Baya requires fewer user interactions
H3: Development with Baya requires less thinking time

User studies

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Retain H1
(p=0.00045)

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Retain H2
(p=0.00009)

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

21:16 S. Roy Chowdhury et al.

Fig. 6. User study of Baya in Yahoo! Pipes with 30 participants split into a control and a test group.

control group, the recommendation panel was disabled. After the development task,
participants were asked to fill out an online questionnaire evaluating their satisfac-
tion with their development experience (we used a 5-point Likert scale ranging from
strongly agree to strongly disagree to collect feedback). In three days (from May 16 to
May 18, 2012) and with a reward of $1 for developing the pipe and filling the question-
naire and $0.10 for additional free feedback, we could attract 32 participants, out of
which 30 provided useful data (15 in each group). Participants were required to pass a
qualification test with questions about Yahoo! Pipes in order to prevent junk answers.

The data collected are illustrated in Figure 6. In order to accept or reject our hy-
potheses, we used Welch’s t-test for equal sample sizes and unequal variance.

—H1. Figure 6(a) shows the collected development times, with µdev,ctrl = 1027.1s and
µdev,test = 384.9s. The null hypothesis is µdev,test − µdev,ctrl = 0, that is, there is no
significant difference between the two development times. The p-value for this null
hypothesis is 0.00045, which is very small. Hence, we reject the null hypothesis,
proving that Baya speeds up mashup development in Yahoo! Pipes.

—H2. Figure 6(b) shows the number of interactions; µint,ctrl = 258.9 and µint,test = 74.3.
The null hypothesis is µint,text−µint,ctrl = 0. The p-value for this hypothesis is 0.00009,
again very small, thus we have to reject the null hypothesis. Hence, Baya requires
fewer user interactions in Yahoo! Pipes.

—H3. Figure 6(c) shows the thinking times; µth,ctrl = 4.0s and µth,test = 5.5s, that is,
the control group has lower thinking time (as opposed to H3). The null hypothesis is
µth,test − µth,ctrl = 0. The p-value for this hypothesis was 0.00209, once again a very
small probability. Hence, Baya increases thinking time in Yahoo! Pipes.

The feedback collected via the questionnaire further reinforced these conclusions: 73%
of the control group agreed that understanding which module to use in their pipe
took most of their time, whereas 100% agreed (27% strongly) that assigning the right
parameter values to a module took most of their design time. Moreover, 73% of the
control group agreed that some form of automated assistance would have helped them
in their task. Out of the test group subjects, 80% strongly agreed that the interactive
recommendations saved time, whereas 73% agreed that the automatic weaving feature
did so (27% expressed neutral feedback). As for the scenario, 80% of the control group
and 73% of the test group strongly agreed that the scenario was nontrivial, a property
we considered necessary for the collection of meaningful data.

6.2. Baya for Apache Rave
Apache Rave (http://rave.apache.org/) is an open-source mashup environment for
OpenSocial and W3C UI widgets. It follows a relatively simple and live development

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Reject H3
(p=0.00209)

Crowdsourced user study (Amazon Mechanical Turk):
30 participants equally split into control and test group (developers)

2-sample t-test (Welch): normally distributed samples, unequal variances

Independent user studies by partners in the EU FP7
project : Baya for Apache Rave, 44 participants (admins)

Recommendation and Weaving of Reusable Mashup Model Patterns 21:17

Fig. 7. Results of the user study of Baya for Apache Rave and MyCocktail.

paradigm: graphical widgets can be placed into a so-called workspace and are imme-
diately rendered. In order to enable communication among widgets, the OMELETTE
consortium has implemented an eventing extension of the W3C widget model [Wilson
et al. 2011] and a suitable event bus for Rave. Baya for Rave comes as: (i) an extension
of Rave to intercept events and to enact weaving operations; and (ii) a UI widget for the
recommendation panel. Its internal architecture is very similar to the one presented in
Figure 2 and supports widget co-occurence and multiwidget patterns. Parameter set-
tings inside widgets are out of the control of Rave; events are broadcast and interpreted
by all widgets (hence no need for connector patterns) and it is not possible to embed
widgets inside each other. In absence of workspaces to mine from, we manually filled
the pattern knowledge base with expert-provided patterns for the chosen domain (com-
munication and collaboration). All algorithms are again implemented in JavaScript.
The pattern KB runs in SQLite and stores patterns in JSON. JavaScript event listeners
capture the triggering events for pattern retrieval, namely DOM modifications (e.g.,
adding a widget, deleting a widget) of the workspace model.

User study. This study was conducted independently by our partners Huawei and T-
Systems MMS in the OMELETTE project [OMELETTE Consortium 2013]. The study
was conducted in China and Germany and involved a total of 44 participants (again
equally distributed into test and control groups). Due to the embedding of this study
inside the broader one of the OMELETTE products, this study asked the two groups to
extend an existing mashup (workspace) according to a given set of requirements, again
both with and without the help of recommendations. Only the development time for
both groups could be collected in this setting. We reused Welch’s t-test for equal sample
sizes and unequal variance to verify Hypothesis 1.

—H1 (China). Figure 7(a) shows the collected development times, with µdev,ctrl = 139.8s
and µdev,test = 54.6s. The null hypothesis is µdev,test − µdev,ctrl = 0, namely there is no
significant difference between the two development times. The p-value for the null
hypotheses is 0.0001, very small. Hence, we reject the null hypothesis, confirming
that Baya speeds up development in Apache Rave.

—H1 (Germany). Figure 7(b) shows the collected development times, with µdev,ctrl =
132.1s and µdev,test = 58.9s with a p-value of 0.0007 for the null hypothesis. We thus
reject the null hypotheses, reconfirming that Baya speeds up development in Apache
Rave also in the German test setting.

Qualitatively, 67% of all users considered the recommendation widget important or
even essential for a mashup environment. Some users stated that Baya’s assistance
helped them learn the usage of new widgets of which they were previously unaware.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Recommendation and Weaving of Reusable Mashup Model Patterns 21:17

Fig. 7. Results of the user study of Baya for Apache Rave and MyCocktail.

paradigm: graphical widgets can be placed into a so-called workspace and are imme-
diately rendered. In order to enable communication among widgets, the OMELETTE
consortium has implemented an eventing extension of the W3C widget model [Wilson
et al. 2011] and a suitable event bus for Rave. Baya for Rave comes as: (i) an extension
of Rave to intercept events and to enact weaving operations; and (ii) a UI widget for the
recommendation panel. Its internal architecture is very similar to the one presented in
Figure 2 and supports widget co-occurence and multiwidget patterns. Parameter set-
tings inside widgets are out of the control of Rave; events are broadcast and interpreted
by all widgets (hence no need for connector patterns) and it is not possible to embed
widgets inside each other. In absence of workspaces to mine from, we manually filled
the pattern knowledge base with expert-provided patterns for the chosen domain (com-
munication and collaboration). All algorithms are again implemented in JavaScript.
The pattern KB runs in SQLite and stores patterns in JSON. JavaScript event listeners
capture the triggering events for pattern retrieval, namely DOM modifications (e.g.,
adding a widget, deleting a widget) of the workspace model.

User study. This study was conducted independently by our partners Huawei and T-
Systems MMS in the OMELETTE project [OMELETTE Consortium 2013]. The study
was conducted in China and Germany and involved a total of 44 participants (again
equally distributed into test and control groups). Due to the embedding of this study
inside the broader one of the OMELETTE products, this study asked the two groups to
extend an existing mashup (workspace) according to a given set of requirements, again
both with and without the help of recommendations. Only the development time for
both groups could be collected in this setting. We reused Welch’s t-test for equal sample
sizes and unequal variance to verify Hypothesis 1.

—H1 (China). Figure 7(a) shows the collected development times, with µdev,ctrl = 139.8s
and µdev,test = 54.6s. The null hypothesis is µdev,test − µdev,ctrl = 0, namely there is no
significant difference between the two development times. The p-value for the null
hypotheses is 0.0001, very small. Hence, we reject the null hypothesis, confirming
that Baya speeds up development in Apache Rave.

—H1 (Germany). Figure 7(b) shows the collected development times, with µdev,ctrl =
132.1s and µdev,test = 58.9s with a p-value of 0.0007 for the null hypothesis. We thus
reject the null hypotheses, reconfirming that Baya speeds up development in Apache
Rave also in the German test setting.

Qualitatively, 67% of all users considered the recommendation widget important or
even essential for a mashup environment. Some users stated that Baya’s assistance
helped them learn the usage of new widgets of which they were previously unaware.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Recommendation and Weaving of Reusable Mashup Model Patterns 21:17

Fig. 7. Results of the user study of Baya for Apache Rave and MyCocktail.

paradigm: graphical widgets can be placed into a so-called workspace and are imme-
diately rendered. In order to enable communication among widgets, the OMELETTE
consortium has implemented an eventing extension of the W3C widget model [Wilson
et al. 2011] and a suitable event bus for Rave. Baya for Rave comes as: (i) an extension
of Rave to intercept events and to enact weaving operations; and (ii) a UI widget for the
recommendation panel. Its internal architecture is very similar to the one presented in
Figure 2 and supports widget co-occurence and multiwidget patterns. Parameter set-
tings inside widgets are out of the control of Rave; events are broadcast and interpreted
by all widgets (hence no need for connector patterns) and it is not possible to embed
widgets inside each other. In absence of workspaces to mine from, we manually filled
the pattern knowledge base with expert-provided patterns for the chosen domain (com-
munication and collaboration). All algorithms are again implemented in JavaScript.
The pattern KB runs in SQLite and stores patterns in JSON. JavaScript event listeners
capture the triggering events for pattern retrieval, namely DOM modifications (e.g.,
adding a widget, deleting a widget) of the workspace model.

User study. This study was conducted independently by our partners Huawei and T-
Systems MMS in the OMELETTE project [OMELETTE Consortium 2013]. The study
was conducted in China and Germany and involved a total of 44 participants (again
equally distributed into test and control groups). Due to the embedding of this study
inside the broader one of the OMELETTE products, this study asked the two groups to
extend an existing mashup (workspace) according to a given set of requirements, again
both with and without the help of recommendations. Only the development time for
both groups could be collected in this setting. We reused Welch’s t-test for equal sample
sizes and unequal variance to verify Hypothesis 1.

—H1 (China). Figure 7(a) shows the collected development times, with µdev,ctrl = 139.8s
and µdev,test = 54.6s. The null hypothesis is µdev,test − µdev,ctrl = 0, namely there is no
significant difference between the two development times. The p-value for the null
hypotheses is 0.0001, very small. Hence, we reject the null hypothesis, confirming
that Baya speeds up development in Apache Rave.

—H1 (Germany). Figure 7(b) shows the collected development times, with µdev,ctrl =
132.1s and µdev,test = 58.9s with a p-value of 0.0007 for the null hypothesis. We thus
reject the null hypotheses, reconfirming that Baya speeds up development in Apache
Rave also in the German test setting.

Qualitatively, 67% of all users considered the recommendation widget important or
even essential for a mashup environment. Some users stated that Baya’s assistance
helped them learn the usage of new widgets of which they were previously unaware.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Retain H1
(p=0.0001)

Recommendation and Weaving of Reusable Mashup Model Patterns 21:17

Fig. 7. Results of the user study of Baya for Apache Rave and MyCocktail.

paradigm: graphical widgets can be placed into a so-called workspace and are imme-
diately rendered. In order to enable communication among widgets, the OMELETTE
consortium has implemented an eventing extension of the W3C widget model [Wilson
et al. 2011] and a suitable event bus for Rave. Baya for Rave comes as: (i) an extension
of Rave to intercept events and to enact weaving operations; and (ii) a UI widget for the
recommendation panel. Its internal architecture is very similar to the one presented in
Figure 2 and supports widget co-occurence and multiwidget patterns. Parameter set-
tings inside widgets are out of the control of Rave; events are broadcast and interpreted
by all widgets (hence no need for connector patterns) and it is not possible to embed
widgets inside each other. In absence of workspaces to mine from, we manually filled
the pattern knowledge base with expert-provided patterns for the chosen domain (com-
munication and collaboration). All algorithms are again implemented in JavaScript.
The pattern KB runs in SQLite and stores patterns in JSON. JavaScript event listeners
capture the triggering events for pattern retrieval, namely DOM modifications (e.g.,
adding a widget, deleting a widget) of the workspace model.

User study. This study was conducted independently by our partners Huawei and T-
Systems MMS in the OMELETTE project [OMELETTE Consortium 2013]. The study
was conducted in China and Germany and involved a total of 44 participants (again
equally distributed into test and control groups). Due to the embedding of this study
inside the broader one of the OMELETTE products, this study asked the two groups to
extend an existing mashup (workspace) according to a given set of requirements, again
both with and without the help of recommendations. Only the development time for
both groups could be collected in this setting. We reused Welch’s t-test for equal sample
sizes and unequal variance to verify Hypothesis 1.

—H1 (China). Figure 7(a) shows the collected development times, with µdev,ctrl = 139.8s
and µdev,test = 54.6s. The null hypothesis is µdev,test − µdev,ctrl = 0, namely there is no
significant difference between the two development times. The p-value for the null
hypotheses is 0.0001, very small. Hence, we reject the null hypothesis, confirming
that Baya speeds up development in Apache Rave.

—H1 (Germany). Figure 7(b) shows the collected development times, with µdev,ctrl =
132.1s and µdev,test = 58.9s with a p-value of 0.0007 for the null hypothesis. We thus
reject the null hypotheses, reconfirming that Baya speeds up development in Apache
Rave also in the German test setting.

Qualitatively, 67% of all users considered the recommendation widget important or
even essential for a mashup environment. Some users stated that Baya’s assistance
helped them learn the usage of new widgets of which they were previously unaware.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Recommendation and Weaving of Reusable Mashup Model Patterns 21:17

Fig. 7. Results of the user study of Baya for Apache Rave and MyCocktail.

paradigm: graphical widgets can be placed into a so-called workspace and are imme-
diately rendered. In order to enable communication among widgets, the OMELETTE
consortium has implemented an eventing extension of the W3C widget model [Wilson
et al. 2011] and a suitable event bus for Rave. Baya for Rave comes as: (i) an extension
of Rave to intercept events and to enact weaving operations; and (ii) a UI widget for the
recommendation panel. Its internal architecture is very similar to the one presented in
Figure 2 and supports widget co-occurence and multiwidget patterns. Parameter set-
tings inside widgets are out of the control of Rave; events are broadcast and interpreted
by all widgets (hence no need for connector patterns) and it is not possible to embed
widgets inside each other. In absence of workspaces to mine from, we manually filled
the pattern knowledge base with expert-provided patterns for the chosen domain (com-
munication and collaboration). All algorithms are again implemented in JavaScript.
The pattern KB runs in SQLite and stores patterns in JSON. JavaScript event listeners
capture the triggering events for pattern retrieval, namely DOM modifications (e.g.,
adding a widget, deleting a widget) of the workspace model.

User study. This study was conducted independently by our partners Huawei and T-
Systems MMS in the OMELETTE project [OMELETTE Consortium 2013]. The study
was conducted in China and Germany and involved a total of 44 participants (again
equally distributed into test and control groups). Due to the embedding of this study
inside the broader one of the OMELETTE products, this study asked the two groups to
extend an existing mashup (workspace) according to a given set of requirements, again
both with and without the help of recommendations. Only the development time for
both groups could be collected in this setting. We reused Welch’s t-test for equal sample
sizes and unequal variance to verify Hypothesis 1.

—H1 (China). Figure 7(a) shows the collected development times, with µdev,ctrl = 139.8s
and µdev,test = 54.6s. The null hypothesis is µdev,test − µdev,ctrl = 0, namely there is no
significant difference between the two development times. The p-value for the null
hypotheses is 0.0001, very small. Hence, we reject the null hypothesis, confirming
that Baya speeds up development in Apache Rave.

—H1 (Germany). Figure 7(b) shows the collected development times, with µdev,ctrl =
132.1s and µdev,test = 58.9s with a p-value of 0.0007 for the null hypothesis. We thus
reject the null hypotheses, reconfirming that Baya speeds up development in Apache
Rave also in the German test setting.

Qualitatively, 67% of all users considered the recommendation widget important or
even essential for a mashup environment. Some users stated that Baya’s assistance
helped them learn the usage of new widgets of which they were previously unaware.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Recommendation and Weaving of Reusable Mashup Model Patterns 21:17

Fig. 7. Results of the user study of Baya for Apache Rave and MyCocktail.

paradigm: graphical widgets can be placed into a so-called workspace and are imme-
diately rendered. In order to enable communication among widgets, the OMELETTE
consortium has implemented an eventing extension of the W3C widget model [Wilson
et al. 2011] and a suitable event bus for Rave. Baya for Rave comes as: (i) an extension
of Rave to intercept events and to enact weaving operations; and (ii) a UI widget for the
recommendation panel. Its internal architecture is very similar to the one presented in
Figure 2 and supports widget co-occurence and multiwidget patterns. Parameter set-
tings inside widgets are out of the control of Rave; events are broadcast and interpreted
by all widgets (hence no need for connector patterns) and it is not possible to embed
widgets inside each other. In absence of workspaces to mine from, we manually filled
the pattern knowledge base with expert-provided patterns for the chosen domain (com-
munication and collaboration). All algorithms are again implemented in JavaScript.
The pattern KB runs in SQLite and stores patterns in JSON. JavaScript event listeners
capture the triggering events for pattern retrieval, namely DOM modifications (e.g.,
adding a widget, deleting a widget) of the workspace model.

User study. This study was conducted independently by our partners Huawei and T-
Systems MMS in the OMELETTE project [OMELETTE Consortium 2013]. The study
was conducted in China and Germany and involved a total of 44 participants (again
equally distributed into test and control groups). Due to the embedding of this study
inside the broader one of the OMELETTE products, this study asked the two groups to
extend an existing mashup (workspace) according to a given set of requirements, again
both with and without the help of recommendations. Only the development time for
both groups could be collected in this setting. We reused Welch’s t-test for equal sample
sizes and unequal variance to verify Hypothesis 1.

—H1 (China). Figure 7(a) shows the collected development times, with µdev,ctrl = 139.8s
and µdev,test = 54.6s. The null hypothesis is µdev,test − µdev,ctrl = 0, namely there is no
significant difference between the two development times. The p-value for the null
hypotheses is 0.0001, very small. Hence, we reject the null hypothesis, confirming
that Baya speeds up development in Apache Rave.

—H1 (Germany). Figure 7(b) shows the collected development times, with µdev,ctrl =
132.1s and µdev,test = 58.9s with a p-value of 0.0007 for the null hypothesis. We thus
reject the null hypotheses, reconfirming that Baya speeds up development in Apache
Rave also in the German test setting.

Qualitatively, 67% of all users considered the recommendation widget important or
even essential for a mashup environment. Some users stated that Baya’s assistance
helped them learn the usage of new widgets of which they were previously unaware.

ACM Transactions on Internet Technology, Vol. 14, No. 2-3, Article 21, Publication date: October 2014.

Retain H1
(p=0.0007)

Theme ICT-2009.1.2
Service and Software Architecture, Infrastructure and Engineering

ICT OMELETTE
D4.6 - Crowd-Based Pattern Mining:
On the Crowdsourcing of Reusable
Knowledge Identification from Mashup Models

Title D4.6 - Crowd-Based Pattern Mining:

On the Crowdsourcing of Reusable Knowledge Identification from Mashup Models

Editor UNITN

Contributors UNITN

Reviewers TIE

Work Package WP4 – Assisted, manual mashup development

Task T4.3 – Algorithms for development recommendations

Date June 30, 2013

Release 1.0

Status Final

Distribution Private

2-sample t-test (Welch): normally distributed samples, unequal variances

• Recommending and weaving model patterns
can really make modelers more efficient!

• Baya is a concrete proof of concept and a
flexible starting point for others

In conclusion

C. Rodríguez, F. Daniel, F. Casati. Mining and Quality Assessment of Mashup Model Patterns with the Crowd:  
A Feasibility Study. ACM Transactions on Internet Technology, 2016, in print.

Research questions

1. Is the crowd able to discover meaningful, reusable
mashup model patterns?

2. Is it possible to crowdsource the quality assessment
of identified patterns?

Web server

Model
repository

Pattern
repositoryPattern selector page

CS platform n

CS platform 1

CS meta-platform

...

Crowdsourcer Crowdsourcer

Crowd
works on

deploys tasks
operates

works on
posts task

posts task

links

links

loads
models

submits
patterns

Quality
assessm.

produces additional metadata
and quality assessments

Architecture

Experiment 1: pattern identification

Similar dataset as in previous study: 997 pipes models
• 40 randomly picked models for the crowd (Crowd)
• 997 for the automated algorithm (Machine)

Evaluation metrics
• Number of patterns identified
• Avg pattern size (# components)
• Distribution of pattern sizes
• Cost per pattern

Crowd task designs

Naive: shows one pipe and asks for a pattern

Random3: shows 3 pipes and asks for a pattern

ChooseN: shows 10 pipes and asks to choose N pipes
 and to identify a pattern

+ Automated mining algorithm* for comparison

* C. Rodriguez, S. Roy Chowdhury, F. Daniel, H.R. Motahari Nezhad and F. Casati. Assisted Mashup
Development: On the Discovery and Recommendation of Mashup Composition Knowledge. In Web
Services Foundations, Springer, 2014, Pages 683-708.

39:8 C. Rodrı́guez, F. Daniel, and F. Casati

Name and description of pipe
sources from Yahoo! Pipes

The pipe model to be analyzed by the worker. The model is a clickable image map that
allows the worker to define a pattern by selecting its components.

Additional input fields for the specification of pattern name, description and meta-data

Unselected
component

Selected
component

Fig. 3. Task design for the identification of mashup model patterns (Naı̈ve setting).

4. MINING MODEL PATTERNS
To answer Research Question 1 (Section 2.3), we implemented three different crowd
task designs and one automated mining algorithm. The three designs are a best effortR2/C24
attempt to compare the performance of the crowd by varying the number of pipes per
task, the key property that distinguishes the crowd approaches from the automated
one; they do not yet represent an in-depth study of how to identify the best design.
The automated algorithm is run with different support levels and dataset sizes and
the results are compared to ones obtained by the crowd-based approach.

4.1. Mining Tasks/Algorithms
A core decision when crowdsourcing a task is how to design the UI used to interact
with workers. In general, all crowdsourcing platforms available today allow the crowd-
sourcer to design form-based user interfaces directly inside the crowdsourcing plat-
form. For the crowdsourcing of simple tasks, such as the annotation of images or the
translation of a piece of text, this is sufficient to collect useful feedback. In more com-
plex crowdsourcing tasks, such as our problem of identifying patterns inside mashup
models, textual, form-based UIs are not enough and a dedicated, purposefully designed
graphical UI (the pattern selector page) is needed.

In order to make workers feel comfortable with the selection of patterns inside pipes
models, we wanted the representation of the pipes to be as close as possible to what
real pipes look like. In other words, we did not want to create an abstract or simpli-
fied representation of pipes models (e.g., a graph or textual description) and, instead,
wanted to keep the full and realistic expressive power of the original representation.
We therefore decided to work with screen shots of real pipes models, on top of which
we allow workers to select components of the pipe and to construct patterns by simply
clicking on the respective components.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Screen shot of the Naive task design

Results

39:12 C. Rodrı́guez, F. Daniel, and F. Casati

of at least two modules and where the modules are connected, the name and descrip-
tion of the pattern are not empty, and the description and the pattern structure match
semantically. The first three criteria we enforce automatically in the pattern identi-
fication UIs of the three crowd tasks. Whether the description and pattern structure
match semantically, i.e., whether the description really tells what the pattern does, is
assessed manually by experts (us). The result of this analysis is a Boolean: either a
pattern is considered valid (and it passes the filter) or it is considered bad (and it fails
the filter). Note that with “valid” we do not yet assert anything about the actual value
of a pattern; this can only be assessed with modelers using the pattern in practice. The
same expert-based filter is usually also applied to the outputs of automated mining al-
gorithms and does not introduce any additional subjective bias compared to automated
mining scenarios. These pre-filtering criteria are intimately related with the context
we are dealing with (i.e., Yahoo! Pipes); other contexts may require different criteria.

In order to compare the performance of the five test settings, we use three metrics to
compare the pattern sets they produce in output: the number of patterns found gives an
indication of the effectiveness of the algorithms in finding patterns; the average pattern
size, computed as the average number of components of the patterns in the respective
output sets, serves as an indicator of how complex and informative identified patterns
are; and the distribution of pattern sizes shows how diverse the identified patterns
are in terms of complexity and information load. The cost per pattern of the different
approaches allows us then to reason on the cost-efficiency.

We use of the size of patterns/pipes (number of components) as a proxy to mea-
sure complexity. This is an approximation of the true complexity of model patterns. In
general, complexity is multi-faceted and may comprise different aspects, such as Mc-
Cabe’s cyclomatic complexity [McCabe 1976] for generic code that counts the number
of possible independent paths through the code (indeed, model patterns can be seen as
fragments of code). Given the context of this work, i.e., recommending model patterns
inside modeling environments, the size of patterns is however a good approximation of
how pattern complexity is perceived by users inside the modeling environment.

4.3. Results

10

320

17
3

334

1442

326

174

Retained
patterns

Started crowd
task instances

Submitted
patterns

Naive Random3 ChooseN

Fig. 5. Crowd task instances started and patterns.

Figure 5 summarizes the task instances
created and the patterns collected by
running the three crowd tasks. The
crowd started a total of 326 task in-
stances of Naive, while it submitted only
174 patterns through our pattern selec-
tor application. This means that a total
of 152 task instances were abandoned
without completion. Out of the 174 pat-
terns submitted, only 42 patterns satis-
fied our criteria for valid mashup pat-
terns; the 42 valid patterns were identified by 8 different workers. Running Random3
and ChooseN produced a similar number of task instances each (320 and 334), while
the number of submitted patterns significantly dropped (17 and 14), as did the number
of valid patterns retained (10 and 3). The difference between submitted and retained
patterns confirms the viability of the valid pattern criteria.

For Naive (which shows the best results), we checked whether there is a correlation
between the complexity of a pipe and the number of patterns submitted. The Pearson’s
correlation coefficient computed for all submitted patterns is r

S

= �0.1422, while for all
retained patterns it is r

R

= 0.0750. These values are quite low and we cannot conclude
that there is a significant association between the complexity of pipes and the number

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Crowd task instances vs. patterns collected

Retained patterns = valid patterns, manually checked

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 39:13

(a) Machine997(gray) compared to the crowd (black) (b) Machine40 (gray) compared to the crowd (black)

N
ai

ve
R

an
do

m
3

C
ho

os
eN

N
ai

ve
R

an
do

m
3

C
ho

os
eN

Fig. 6. Numbers of patterns produced by automated mining under varying minimum support levels. The
charts also report the number of patterns produced by the three crowd-based mining algorithms (in black).

(a) Machine997(gray) compared to the crowd (black) (b) Machine40 (gray) compared to the crowd (black)

N
ai

ve

R
an

do
m

3
C

ho
os

eN

N
ai

ve
R

an
do

m
3

C
ho

os
eN

Fig. 7. Average size of the patterns produced by automated mining under varying minimum support levels.
The average sizes of the patterns produced by the crowd-based mining algorithms are reported in black.

of patterns submitted or retained, nor could we find any threshold for the complexity
of pipes above/below which the performance of the crowd drops.

The charts in Figures 6–8 report on the numbers of patterns, average pattern sizes
and the distribution of pattern sizes obtained by running Machine997 and Machine40

with different minimum relative support levels sup
min

. The bars in gray are the results
of the Machine algorithm; the black bars represent the results of the crowd approaches.
For comparison, we placed these latter at a support level of sup

min

= 0.025, which
corresponds to 1/40 = 0.025, in that we ask workers to identify patterns from a single
pipe without the need for any additional support (even if more than 1 pipe is shown).

4.3.1. Feasibility. Figure 6(a) illustrates the number of patterns found by Machine997.
The number quickly increases for Machine997 as we go from high support values to low
values, reaching almost 500 patterns with sup

min

= 0.01. Figure 6(b) shows the results
obtained with Machine40. The lowest support value for Machine40 is sup

min

= 0.05,
which corresponds to an absolute support of 2 in the dataset. It is important to note
that only very low support values produce a useful number of patterns. In both figures,
the black bar represents the 42, 10 and 3 patterns respectively identified by Naive,
Random3 and ChooseN .

The two figures show the typical problem of automated pattern mining algorithms:
only few patterns for high support levels (which are needed, as support is the only cri-
terion expressing significance), too low support levels required to produce useful out-
put sizes with small datasets (our goal), and an explosion of the output size with large
datasets. Figure 5 shows that Naive is instead able to produce a number of patterns
in output that is similar to the size of the dataset in input; Random3 and ChooseN do

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Number of patterns identified

—> Yes, it is possible to identify patterns with the crowd

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 39:13

(a) Machine997(gray) compared to the crowd (black) (b) Machine40 (gray) compared to the crowd (black)

N
ai

ve
R

an
do

m
3

C
ho

os
eN

N
ai

ve
R

an
do

m
3

C
ho

os
eN

Fig. 6. Numbers of patterns produced by automated mining under varying minimum support levels. The
charts also report the number of patterns produced by the three crowd-based mining algorithms (in black).

(a) Machine997(gray) compared to the crowd (black) (b) Machine40 (gray) compared to the crowd (black)

N
ai

ve

R
an

do
m

3
C

ho
os

eN

N
ai

ve
R

an
do

m
3

C
ho

os
eN

Fig. 7. Average size of the patterns produced by automated mining under varying minimum support levels.
The average sizes of the patterns produced by the crowd-based mining algorithms are reported in black.

of patterns submitted or retained, nor could we find any threshold for the complexity
of pipes above/below which the performance of the crowd drops.

The charts in Figures 6–8 report on the numbers of patterns, average pattern sizes
and the distribution of pattern sizes obtained by running Machine997 and Machine40

with different minimum relative support levels sup
min

. The bars in gray are the results
of the Machine algorithm; the black bars represent the results of the crowd approaches.
For comparison, we placed these latter at a support level of sup

min

= 0.025, which
corresponds to 1/40 = 0.025, in that we ask workers to identify patterns from a single
pipe without the need for any additional support (even if more than 1 pipe is shown).

4.3.1. Feasibility. Figure 6(a) illustrates the number of patterns found by Machine997.
The number quickly increases for Machine997 as we go from high support values to low
values, reaching almost 500 patterns with sup

min

= 0.01. Figure 6(b) shows the results
obtained with Machine40. The lowest support value for Machine40 is sup

min

= 0.05,
which corresponds to an absolute support of 2 in the dataset. It is important to note
that only very low support values produce a useful number of patterns. In both figures,
the black bar represents the 42, 10 and 3 patterns respectively identified by Naive,
Random3 and ChooseN .

The two figures show the typical problem of automated pattern mining algorithms:
only few patterns for high support levels (which are needed, as support is the only cri-
terion expressing significance), too low support levels required to produce useful out-
put sizes with small datasets (our goal), and an explosion of the output size with large
datasets. Figure 5 shows that Naive is instead able to produce a number of patterns
in output that is similar to the size of the dataset in input; Random3 and ChooseN do

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Average pattern sizes

—> The patterns identified by the crowd are in average bigger

39:14 C. Rodrı́guez, F. Daniel, and F. Casati

(a) Machine997:
44 patterns with
support of 0.05

(b) Machine40:
35 patterns with
support of 0.05

(c) Naive
with 42 patterns

(d) Random3
with 10 patterns

(e) ChooseN
with 3 patterns

Fig. 8. Pattern size distribution by the five algorithms. The histograms of Machine997 and Machine40

refer to the run with the minimum support level that produced a number of patterns similar to Naive.

not perform as good. Notice also that, while Figure 6 reports on all the patterns found
by Machine, the data for the crowd algorithms include only valid patterns. This means
that not only is Naive able to find a good number of patterns, but it is also able to find
practically meaningful patterns. Understanding the actual value of the patterns would
require an own study in which the users of the patterns are involved. We discuss next
the value of the resulting patterns from our perspective and that of our experimental
setting.

4.3.2. Value. Figure 7 shows the average pattern sizes of Machine997 and Machine40

compared to that of the crowd approaches. In both settings, the average pattern size ob-
tained with Naive clearly exceeds the one that can be achieved with Machine, even for
very low support values (0.01); Random3 and ChooseN perform similarly to Machine.
With Figure 8, we look more specifically into how these patterns look like by compar-
ing those runs of Machine997 and Machine40 with the crowd approaches that produce
a similar number of patterns in output as Naive. In both settings this happens for
sup

min

= 0.05 and produced 44 and 35 patterns, respectively. Figures 8(a) and (b) show
that automatically mined patterns are generally small (sizes range from 2–4), with a
strong prevalence of the most simple and naı̈ve patterns (size 2). Figure 8(c), instead,
shows that the results obtained with Naive present a much higher diversity in the
pattern sizes, with a more homogeneous distribution and even very complex patterns
of sizes that go up to 11 and 15 components. Random3 and ChooseN (Figures 8(d) and
8(e)) again do not perform better than Machine. Naive is thus able to collect patterns
that contain more complex logics and that are more informative; that is, they provide
richer examples of how to use components and how to combine them together. This can
be attributed to the higher freedom in selecting components when working with Naive
and to the fact that the crowd tends to work on a least-effort basis (it is harder to
come up with elaborated patterns when working with Random3 and ChooseN). These
patterns also come with a characterizing name, description and list of tags. These an-
notations not only enrich the value of a pattern with semantics but also augment the
domain knowledge encoded in the pattern and its reusability. Patterns identified with
Naive thus contain more domain knowledge than the patterns mined automatically
and the ones mined with Random3 and ChooseN ; these latter instead produce pat-
terns of similar size to the automatically mined patterns, with ChooseN performing
worst among all studied approaches.

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Distribution of pattern sizes

—> The domain knowledge captured by Naive is even complex

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 39:15

0.42$

17.56$

Naive Random3 ChooseN

1.76$

17.56$

5.58$

17.56$

Fig. 9. Total cost of crowdsourcing experi-
ments (gray) and cost per pattern (black).

4.3.3. Cost Effectiveness. The above results for
Naive show that crowd-based pattern mining
can outperform machine-based mining for small
datasets in terms of productivity (more specif-
ically, the ratio of number of patterns found
per number of pipes in input are 35/40 = 0.86
and 42/40 = 1.05 for Machine40 and Naive, re-
spectively). The alternative to automated mining
would be asking an expert to identify patterns,
which is expensive. Here, crowd-based mining
also outperforms the expert. With a cost per pattern of USD 0.42 and a running time
of approximately 6 hours, Naive proves to be a very competitive alternative to hiring a
domain expert: we paid only USD 2.83 per hour, a price that is hard to beat compared
to hiring a domain expert. Given the low number of patterns identified by Random3
and ChooseN , their cost per pattern is significantly higher (USD 1.76 and USD 5.58),
which makes them less suitable also from an economical point of view.

4.4. Discussion
The above results manifest a high sensitivity of the crowd mining algorithms to the de-
sign of the crowd tasks. In this respect, we distinguish between intuitiveness (includ-
ing ease of use) and complexity of tasks. Regarding the intuitiveness, we considered
collecting patterns via textual input (e.g., the list of component names in a pattern)
or via abstract data flow graphs (automatically constructed from the JSON represen-
tation of pipes). After a set of informal, pre-experiment tests of the crowd task de-
signs to adopt, we opted for the screen shots. This has proven to be the representation
workers seem to be most familiar with (screen shots do not introduce any additional
abstraction), and this is the approach we implemented in the three crowd tasks. The
identification of the design to adopt was a best effort task not aimed at identifying
the best possible design, which we consider future work. As for the complexity of the
tasks, the Naive, Random3 and ChooseN algorithms provide the worker with access
to 1, 3 and 10 pipes, respectively, that is, with different information loads. The three
algorithms produced a comparable number of task instances, while they strongly differ
in the number of patterns submitted and retained. The three alternative designs al-
lowed us to understand whether more visibility into the available dataset would allow
the crowd to spot repeated patterns, or whether pattern identification by the crowd is
mostly based on semantic/functional considerations. The results we obtained from our
experiments confirm that the side effect of such expanded visibility inevitably leads
to more complexity, which in turn leads to high abandon rates (see Figure 5). We in-
terpret this as evidence that high information loads only scare people away (instead
of helping them) in the context of pattern identification. The lesson learned is thus to
keep tasks as simple as possible, that is, to apply the KISS (Keep It Simple, Stupid)
principle. The result, although in line with similar findings in the area of crowdsourc-
ing [Mason and Watts 2010], is particularly important in the area of pattern mining
that instead typically requires the analysis of large datasets to produce viable outputs.

In order to assure workers had the necessary mashup knowledge, we performed a se-
lection using gold data. Yet, our questions were too tough in our first tests, and we had
to lower our expectations. What happened with the tough questions was that it was
hard to process the whole dataset and at the same time meet our valid pattern criteria.
Lowering the toughness of the questions allowed us to process the whole dataset and
to obtain more patterns, not all of them however of good quality, as reported in previ-
ous sections. We also noticed a natural selection phenomenon: the majority of patterns
was submitted by only few workers. We assume these were workers with good knowl-

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

—> The approach is cost-effective

Cost

Experiment 2: quality assessment

Dataset = output of best crowd mining approach of Exp 1

Pattern assessment metrics
• Reusability
• Novelty
• Usefulness
• Understandability

Crowd task designs

Individual: asks for assessment of the for metrics, given
 one pattern

Pair-wise: asks for each metric to choose which of two
 given patterns is better

+ Expert assessment for comparison

Results

39:18 C. Rodrı́guez, F. Daniel, and F. Casati

0"

1"

2"

3"

4"

5"

22
5"

37
3"

39
5"

26
3"

28
4"

30
0"

33
0"

33
2"

34
3"

35
3"

36
7"

37
7"

22
7"

24
8"

25
3"

26
9"

27
3"

27
4"

27
7"

30
5"

31
1"

31
9"

32
0"

32
2"

33
6"

33
9"

34
6"

34
7"

35
2"

39
1"

23
0"

25
0"

30
9"

33
4"

34
0"

34
5"

37
9"

38
5"

38
9"

39
7"

27
8"

36
2"

Patterns (IDs.)
V

ot
es

 c
ou

nt

(b) Understandability pattern ranking in decreasing order of aggregated votes

1"

2"

3"

4"

5"

Reusability" Novelty" Usefulness" Understandability"

Individual Expert

R
at

in
gs

Reusability Novelty Usefulness Understan-
dability

(a) Individual vs. Expert rating (avg of Likert ratings)

Fig. 10. Quality assessment results: (a) Individual/Expert ratings, (b) PairWise understandability rank-
ing.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

PairWise"vs."Expert"

Individual"vs."Expert"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

(c)"75th"percenBle"(b)"50th"percenBle"(a)"25th"percenBle"

Pr
ec
is
io
n"

Recall"

Fig. 11. Precision and recall of the Individual and PairWise assessment experiments with varying selec-
tivity (top 25, 50, 75 percentiles) for understandability (2), usefulness (3), reusability(4), novelty (�).

Reliability: We use Fiedman’s analysis of variance to test whether the Individual
ratings provided for each criteria are comparable among each other. The use of this
test is again motivated by the use of the Likert scale for ratings and the non-normality
of the distribution of the dataset; in addition, since we test a set of criteria that refer
to the same set of patterns and patterns are assessed by the same set of workers, we
cannot assume independence in this test. Spearman’s correlation coefficient provides
further insight into the strength and direction of the associations for each criteria. For
the PairWise assessment, we compare whether there is a bias in the preferences ex-
pressed by the crowd toward either the first or the second pattern shown in the task.
The samples (rankings of first patterns vs. rankings of second patterns) are depen-
dent, expressed with ordinal data, and follow a non-symmetrical distribution. We thus
use the Wilcoxon signed-rank test for this decision. In all statistical tests we use a
significance level of ↵ = 0.05.

5.3. Results
Figures 10 and 11 present the aggregate assessments by Expert and Individual, one of
the pattern rankings obtained by PairWise, and the respective precision/recall charts.
We use these and Table I to study replaceability. Tables II–III help us study reliability.

5.3.1. Replaceability. Two observations can immediately be made from Figure 10(a):
(i) there seems to be an important difference between the average ratings produced
by Expert and Individual, and (ii) Individual seems to provide similar ratings for all
criteria. Here, we consider only (i); we leave (ii) for the discussion of the reliability sub-
question. We use Mann-Whitney’s U test (non-paired) with the null hypothesis H0 :
⌘
ind

= ⌘
exp

(the medians of the two experiments are equal) to test whether experts and

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

39:18 C. Rodrı́guez, F. Daniel, and F. Casati

0"

1"

2"

3"

4"

5"

22
5"

37
3"

39
5"

26
3"

28
4"

30
0"

33
0"

33
2"

34
3"

35
3"

36
7"

37
7"

22
7"

24
8"

25
3"

26
9"

27
3"

27
4"

27
7"

30
5"

31
1"

31
9"

32
0"

32
2"

33
6"

33
9"

34
6"

34
7"

35
2"

39
1"

23
0"

25
0"

30
9"

33
4"

34
0"

34
5"

37
9"

38
5"

38
9"

39
7"

27
8"

36
2"

Patterns (IDs.)
V

ot
es

 c
ou

nt

(b) Understandability pattern ranking in decreasing order of aggregated votes

1"

2"

3"

4"

5"

Reusability" Novelty" Usefulness" Understandability"

Individual Expert

R
at

in
gs

Reusability Novelty Usefulness Understan-
dability

(a) Individual vs. Expert rating (avg of Likert ratings)

Fig. 10. Quality assessment results: (a) Individual/Expert ratings, (b) PairWise understandability rank-
ing.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

PairWise"vs."Expert"

Individual"vs."Expert"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

(c)"75th"percenBle"(b)"50th"percenBle"(a)"25th"percenBle"

Pr
ec
is
io
n"

Recall"

Fig. 11. Precision and recall of the Individual and PairWise assessment experiments with varying selec-
tivity (top 25, 50, 75 percentiles) for understandability (2), usefulness (3), reusability(4), novelty (�).

Reliability: We use Fiedman’s analysis of variance to test whether the Individual
ratings provided for each criteria are comparable among each other. The use of this
test is again motivated by the use of the Likert scale for ratings and the non-normality
of the distribution of the dataset; in addition, since we test a set of criteria that refer
to the same set of patterns and patterns are assessed by the same set of workers, we
cannot assume independence in this test. Spearman’s correlation coefficient provides
further insight into the strength and direction of the associations for each criteria. For
the PairWise assessment, we compare whether there is a bias in the preferences ex-
pressed by the crowd toward either the first or the second pattern shown in the task.
The samples (rankings of first patterns vs. rankings of second patterns) are depen-
dent, expressed with ordinal data, and follow a non-symmetrical distribution. We thus
use the Wilcoxon signed-rank test for this decision. In all statistical tests we use a
significance level of ↵ = 0.05.

5.3. Results
Figures 10 and 11 present the aggregate assessments by Expert and Individual, one of
the pattern rankings obtained by PairWise, and the respective precision/recall charts.
We use these and Table I to study replaceability. Tables II–III help us study reliability.

5.3.1. Replaceability. Two observations can immediately be made from Figure 10(a):
(i) there seems to be an important difference between the average ratings produced
by Expert and Individual, and (ii) Individual seems to provide similar ratings for all
criteria. Here, we consider only (i); we leave (ii) for the discussion of the reliability sub-
question. We use Mann-Whitney’s U test (non-paired) with the null hypothesis H0 :
⌘
ind

= ⌘
exp

(the medians of the two experiments are equal) to test whether experts and

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Replaceability of experts

Pair-wise

—> Individual does not produce anything like the experts
—> Pair-wise does not produce anything like the experts

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 39:19

Spearman’s correlation coefficients ⇢
Criteria Mann-Whitney’s test Expert vs. Individual Expert vs. PairWise

Reusability p = 5.787 ⇥ 10�9;U = 8029 -0.0783 0.1581
Novelty p = 3.287 ⇥ 10�13;U = 8741 0.1212 -0.1017
Usefulness p = 6.392 ⇥ 10�10;U = 8197 0.0257 0.1755
Understandability p = 5.744 ⇥ 10�4;U = 6870 0.0732 0.1403

Table I. Comparison of ratings between Expert and Individual (H0 : ⌘
ind

= ⌘
exp

), and Spearman’s
correlation coefficient ⇢ for Expert vs. Individual and Expert vs. PairWise.

the crowd produce comparable results. The alternative hypothesis is that the medians
are not equal, i.e., H

A

: ⌘
ind

6= ⌘
exp

. The results of the test reported in Table I make
us reject H0 for all four criteria and conclude that the ratings produced by Individual
and Expert are indeed significantly different. A further inspection of the ratings using
Spearman’s correlation (see the third column in Table I) shows that also the pair-wise
correlation (per same pattern) of the ratings by Individual and Expert is very low.

The data produced by the PairWise experiment are not directly comparable to the
one by the experts (votes vs. Likert scale rating). We can however rank patterns us-
ing the sum of the votes they obtained. Figure 10(b), for instance, plots the pattern
ranking for the understandability criterion (we compute similar rankings for all four
criteria). Now we can compute the pair-wise Spearman correlation between PairWise
and Expert (see the last column in Table I). The correlation is very low, and we cannot
conclude that the two experiments produce similar assessments for individual pat-
terns.

If we relax our similarity criteria and only look at the selectivity of the three exper-
iments (“good” vs. “bad” inside the ranked lists of patterns), we can compute the pre-
cision and recall of the two crowd experiments. Figure 11 shows the results obtained
when comparing the top 25th, 50th and 75th percentiles of the rankings. The results
obtained for the 25th percentile report a mediocre precision; Individual looks more
promising in terms of recall. As we relax the selectivity, the performance increases,
with PairWise outperforming Individual in the 75th percentile. Although these results
appear positive, we do not consider them reliable enough (too few data), e.g., Figure
10(b) shows that the 50th percentile includes 30 patterns out of 42 and the 75th even
39.

Spearman’s correl. coefficients ⇢
Criteria Expert Individual PairWise

Reusability vs. Novelty -0.5452 0.8249 0.8862
Reusability vs. Usefulness 0.5682 0.8520 0.9053
Reusability vs. Understandability 0.6389 0.8319 0.9026
Novelty vs. Usefulness -0.2545 0.7971 0.9503
Novelty vs. Understandability -0.3356 0.8075 0.9485
Usefulness vs. Understandability 0.7978 0.8832 0.9969

Table II. In-group, cross-criteria Spearman’s correlations for the Expert,
Individual and PairWise quality assessments.

5.3.2. Reliability. Even if
the Individual experiment
produces assessments
that are different from
those by the experts, we
would expect ratings to
vary across criteria. Yet,
we already pointed out
that Individual produces
roughly the same ratings for all criteria. Using Friedman’s analysis of variance
and the null hypothesis that the medians of the ratings are instead the same for
all criteria, i.e., H0 : ⌘

und

= ⌘
use

= ⌘
reu

= ⌘
nov

, we obtain a p-value of p = 0.4995
(df = 3, n = 42,�2 = 2.368). The high p-value forces us to accept H0 and that the
ratings are the same for the different criteria. This conclusion is reinforced by a
further inspection using Spearman’s correlation (third column of Table II) that shows
high correlations (⇢) across criteria.

The design of the PairWise experiment makes sure that each pattern appears ex-
actly 3 times as the first pattern in the task (see Figure 16 in the appendix) and 3

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

39:18 C. Rodrı́guez, F. Daniel, and F. Casati

0"

1"

2"

3"

4"

5"

22
5"

37
3"

39
5"

26
3"

28
4"

30
0"

33
0"

33
2"

34
3"

35
3"

36
7"

37
7"

22
7"

24
8"

25
3"

26
9"

27
3"

27
4"

27
7"

30
5"

31
1"

31
9"

32
0"

32
2"

33
6"

33
9"

34
6"

34
7"

35
2"

39
1"

23
0"

25
0"

30
9"

33
4"

34
0"

34
5"

37
9"

38
5"

38
9"

39
7"

27
8"

36
2"

Patterns (IDs.)

V
ot

es
 c

ou
nt

(b) Understandability pattern ranking in decreasing order of aggregated votes

1"

2"

3"

4"

5"

Reusability" Novelty" Usefulness" Understandability"

Individual Expert

R
at

in
gs

Reusability Novelty Usefulness Understan-

dability

(a) Individual vs. Expert rating (avg of Likert ratings)

Fig. 10. Quality assessment results: (a) Individual/Expert ratings, (b) PairWise understandability rank-
ing.

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

PairWise"vs."Expert"

Individual"vs."Expert"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1"

(c)"75th"percenBle"(b)"50th"percenBle"(a)"25th"percenBle"

Pr
ec
is
io
n"

Recall"

Fig. 11. Precision and recall of the Individual and PairWise assessment experiments with varying selec-
tivity (top 25, 50, 75 percentiles) for understandability (2), usefulness (3), reusability(4), novelty (�).

Reliability: We use Fiedman’s analysis of variance to test whether the Individual
ratings provided for each criteria are comparable among each other. The use of this
test is again motivated by the use of the Likert scale for ratings and the non-normality
of the distribution of the dataset; in addition, since we test a set of criteria that refer
to the same set of patterns and patterns are assessed by the same set of workers, we
cannot assume independence in this test. Spearman’s correlation coefficient provides
further insight into the strength and direction of the associations for each criteria. For
the PairWise assessment, we compare whether there is a bias in the preferences ex-
pressed by the crowd toward either the first or the second pattern shown in the task.
The samples (rankings of first patterns vs. rankings of second patterns) are depen-
dent, expressed with ordinal data, and follow a non-symmetrical distribution. We thus
use the Wilcoxon signed-rank test for this decision. In all statistical tests we use a
significance level of ↵ = 0.05.

5.3. Results
Figures 10 and 11 present the aggregate assessments by Expert and Individual, one of
the pattern rankings obtained by PairWise, and the respective precision/recall charts.
We use these and Table I to study replaceability. Tables II–III help us study reliability.

5.3.1. Replaceability. Two observations can immediately be made from Figure 10(a):
(i) there seems to be an important difference between the average ratings produced
by Expert and Individual, and (ii) Individual seems to provide similar ratings for all
criteria. Here, we consider only (i); we leave (ii) for the discussion of the reliability sub-
question. We use Mann-Whitney’s U test (non-paired) with the null hypothesis H0 :
⌘
ind

= ⌘
exp

(the medians of the two experiments are equal) to test whether experts and

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 39:17

using a Likert scale (from 1-negative to 5-positive). We also include the pre-selection
questionnaire already used for the mining tasks, in order to make sure that workers
are knowledgeable in Yahoo! Pipes. Figure 15 in Appendix B shows the task design.

5.1.2. Pair-Wise Crowd Assessment. This task design implements the PairWise crowd
experiment that aims to study whether it is possible to obtain an overall pattern rank-
ing similar to the one by the experts. It shows a pair of patterns and asks workers to
identify the one with the highest understandability, reusability, usefulness and nov-
elty. Patterns are thus not assessed individually, but in relation to other patterns,
which has proven to help workers make better decisions [Jung and Lease 2011]. To
compute a (partial) ranking, each pattern is given 6 chances to be voted. The task
again includes the pre-selection questionnaire used in the previous tasks. See the task
UI design in Figure 16 in Appendix B.

5.2. Experiment Design
Answering the second research question requires again identifying a set of sub-
questions that can be studied in detail. The two questions we want to study in the
following to understand whether the crowd is able to assess the quality of mashup
patterns are:

— Replaceability: does crowd-based quality assessment with Individual and PairWise
produce similar results than an expert-based assessment?

— Reliability: In crowd assessments collected with Individual and PairWise, is the
bias introduced by misunderstandings, cheaters, malevolent workers negligible?

In order to answer these questions, we compare the Expert, Individual and PairWise
assessment approaches using the following data and metrics.

5.2.1. Experiment Design and Dataset. The Expert assessment is done locally on our own
machine; the Individual and PairWise crowd assessments are again implemented on
CrowdFlower. For both crowd tasks we estimated a maximum duration of 300 sec.
per task and payed a reward of USD 0.02 per task. The Individual setting asks for
exactly 3 judgments per pattern, a requirement that is configured in CrowdFlower. The
PairWise setting makes sure that each pattern appears exactly 6 times in different
pair combinations. All tasks use as input dataset the 42 patterns obtained by Naive.

5.2.2. Metrics and Statistical Tests. We use four criteria to assess the quality of patterns.
The understandability of a pattern refers to how comprehensible the pattern is; a pat-
tern is understandable if one can easily figure out what the pattern does and how to
use it. The usefulness of a pattern refers to the utility of the pattern, i.e., to how handy
and convenient it is to use the pattern for solving a given problem. The reusability of
a pattern is the extent to which the pattern can be used in different contexts. Finally,
the novelty of a pattern refers to how new and innovative the pattern is. Appendix C
discusses examples of good and bad patterns for each of these criteria.

Replaceability: To compare the Expert and Individual assessments, we use Mann-
Whitney’s U test (non-paired) to test whether they produce comparable ratings. Both
experiments produce ordinal data (Likert scale) that generally do not meet the normal-
ity condition. We further compute Spearman’s correlation coefficient (for paired ordinal
data) for Individual and PairWise against Expert. Finally, we order all patterns in de-
creasing order for each of the three approaches and quality criteria individually and
check the precision (P = TruePos

TruePos+FalsePos

) and recall (R = TruePos

TruePos+FalseNeg

) of the top-
ranked patterns by Individual and PairWise compared to Expert (the ground truth).
We specifically compute P and R for the 25th, 50th and 75th percentiles to test different
quality assessment policies (hard vs. soft).

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

Mining and Quality Assessment of Mashup Model Patterns with the Crowd 39:17

using a Likert scale (from 1-negative to 5-positive). We also include the pre-selection
questionnaire already used for the mining tasks, in order to make sure that workers
are knowledgeable in Yahoo! Pipes. Figure 15 in Appendix B shows the task design.

5.1.2. Pair-Wise Crowd Assessment. This task design implements the PairWise crowd
experiment that aims to study whether it is possible to obtain an overall pattern rank-
ing similar to the one by the experts. It shows a pair of patterns and asks workers to
identify the one with the highest understandability, reusability, usefulness and nov-
elty. Patterns are thus not assessed individually, but in relation to other patterns,
which has proven to help workers make better decisions [Jung and Lease 2011]. To
compute a (partial) ranking, each pattern is given 6 chances to be voted. The task
again includes the pre-selection questionnaire used in the previous tasks. See the task
UI design in Figure 16 in Appendix B.

5.2. Experiment Design
Answering the second research question requires again identifying a set of sub-
questions that can be studied in detail. The two questions we want to study in the
following to understand whether the crowd is able to assess the quality of mashup
patterns are:

— Replaceability: does crowd-based quality assessment with Individual and PairWise
produce similar results than an expert-based assessment?

— Reliability: In crowd assessments collected with Individual and PairWise, is the
bias introduced by misunderstandings, cheaters, malevolent workers negligible?

In order to answer these questions, we compare the Expert, Individual and PairWise
assessment approaches using the following data and metrics.

5.2.1. Experiment Design and Dataset. The Expert assessment is done locally on our own
machine; the Individual and PairWise crowd assessments are again implemented on
CrowdFlower. For both crowd tasks we estimated a maximum duration of 300 sec.
per task and payed a reward of USD 0.02 per task. The Individual setting asks for
exactly 3 judgments per pattern, a requirement that is configured in CrowdFlower. The
PairWise setting makes sure that each pattern appears exactly 6 times in different
pair combinations. All tasks use as input dataset the 42 patterns obtained by Naive.

5.2.2. Metrics and Statistical Tests. We use four criteria to assess the quality of patterns.
The understandability of a pattern refers to how comprehensible the pattern is; a pat-
tern is understandable if one can easily figure out what the pattern does and how to
use it. The usefulness of a pattern refers to the utility of the pattern, i.e., to how handy
and convenient it is to use the pattern for solving a given problem. The reusability of
a pattern is the extent to which the pattern can be used in different contexts. Finally,
the novelty of a pattern refers to how new and innovative the pattern is. Appendix C
discusses examples of good and bad patterns for each of these criteria.

Replaceability: To compare the Expert and Individual assessments, we use Mann-
Whitney’s U test (non-paired) to test whether they produce comparable ratings. Both
experiments produce ordinal data (Likert scale) that generally do not meet the normal-
ity condition. We further compute Spearman’s correlation coefficient (for paired ordinal
data) for Individual and PairWise against Expert. Finally, we order all patterns in de-
creasing order for each of the three approaches and quality criteria individually and
check the precision (P = TruePos

TruePos+FalsePos

) and recall (R = TruePos

TruePos+FalseNeg

) of the top-
ranked patterns by Individual and PairWise compared to Expert (the ground truth).
We specifically compute P and R for the 25th, 50th and 75th percentiles to test different
quality assessment policies (hard vs. soft).

ACM Transactions on Internet Technology, Vol. X, No. Y, Article 39, Publication date: March 2014.

—> The approaches could be used to filter out the worst patterns

Precision and recall

Conclusion

• Using suitable task designs, the crowd is able to
identify meaningful model patterns.

• More visibility into the dataset (e.g., to spot
repetitions) does not help, to the contrary.

• We were not able to obtain reliable quality
assessments from the crowd.

The real conclusion

• Model patterns can really help if suitably
recommended and used

• The key problem is finding good patterns
• The crowd may be a viable alternative (or

complement?) to computational approaches in
identifying patterns

