

Blockchain Insights

Prof. Dr.-Ing. Stefan Tai

https://news.bitcoin.com/berlin-students-chess-ethereum/

berlin

Berlin

BLOCKCHAIN PROJECT ECOSYSTEM

DATA

FACTOM

-

31

compound @JOSH NUSSBAUM

TEO GIANPIETRO

THE INTERNET OF BLOCKCHAIN FOUNDATION

Technische Universitä

Berlin

Google

"If you are not operating at the edge of new technologies, you will surely be disrupted. If you are not willing to embrace new technologies like blockchain [...], you are, maybe subtly, at some point ... going to extinction."

FedEx CEO Fred Smith at Consensus 2018

The power and disruption of blockchain is evident... "...but so are the challenges to its broad implementation."

MIT Sloan Management Review, March 2017

So, what is a **blockchain**?

Perspectives matter

Crypto economy

Decentralized database

Programming platform

"A blockchain is an economic system"

- Crypto-economic perspective

Blockchains enable the implementation of purely decentralized digital currency (aka cryptocurrency).

- Payment method
- Decentralized incentive and governance mechanism
- Financing model (token sales, ICOs)

"A blockchain is a distributed decentralized database"

- Data management & IT architect perspective

A blockchain is a special type of peer-to-peer database with the following key properties:

- Stores an append-only ordered linked list of transaction records
 the transaction history
- The transaction history is fully replicated among all peers using a decentralized consensus protocol
- The transaction history is practically immutable and tamper-proof (under some assumptions)

"A blockchain is (part of) a programming platform"

– Developer perspective

Blockchains enable building decentralized applications (DApps):

Smart contracts = decentralized business logic

emerging decentralized software stack for storage, messaging, naming, routing, etc.

"Web 3.0 browsers" and light clients

"A blockchain is a shared ledger"

- Business perspective

Enables business disintermediation

→ promises lower cost of business transactions

- Cut out the middleman
- Single source of truth, golden record
- > Open data platform for value-add services

Berlin

...and even more perspectives and combinations thereof...

At the core: Transactions

Recall ACID transactions and RDBMS

ACID Transaction

Atomicity – all or nothing

Consistency – only valid data

Isolation – no interference

Durability – committed data is never lost

Recall BASE systems and NoSQL stores

BASE Systems

Basically Available – partial system failures ok

- Soft-state system state can change even without further updates
- Eventually consistent system will become consistent if no new updates are made

Blockchain transactions and blockchain systems: Not ACID, not BASE, but SALT

Sequential – transactions are processed in sequential order

Agreed - community consensus determines transaction validity

Ledgered – all agreed-on transactions are added to an append-only ledger

Tamper-Resistant – A transaction cannot be manipulated or censored

Symmetric – a peer-to-peer network with symmetric responsibilities

Admin-free – no concept of a system admin

Ledgered – all peers maintain a copy of the ledger

Time-consensual – working with block intervals

Comparing ACID, BASE, and SALT

TP systems in support of ACID transactions

Tx agreement vs. Block agreement

$$TX_0 \rightarrow TX_1 \rightarrow TX_2 \rightarrow TX_3 \rightarrow TX_4 \rightarrow TX_5 \rightarrow TX_6 \rightarrow \dots \rightarrow TX_N$$

Agreement on single TX \rightarrow overhead

Blocks of Transactions

- Chronological orderReference to predecessor

Blocks are...

- Collections of transactions ٠
- Chronologically linked to their predecessor The data structure consensus is found on •
- •

Solving Consensus

Who is allowed to write a block?

"Traditional" Consensus Algorithm

High message complexity

Bitcoin Solution

- Lottery (Proof-of-Work)
 - All nodes try to solve a hard problem
 - The solution is easy to verify
 - The first node to find a solution, writes a block
 - Other nodes verify solution and accept the block

Understanding SALT

Applications will likely use a combination of all three transaction and system models

Technische Universität Berlin

Still SALTy? Well-seasoned or just bad taste?

Why should you care?

Asking the right questions may help

Not a single system, but different types of blockchain systems exist

...with different characteristics

cryptocurrency,

web 3.0

Public (Permissionless) Private (Permissioned) KYB/KYC checking, Identity management anonymous or pseudonymous PKI peers Access management open participation, central authorities, fully decentralized only partly decentralized **Consensus protocol** Proof-of-Work, Proof-of-* and/or Proof-of-Stake (typical) BFT protocols trustless some trust in central Trust (= no trust required) authorities is required

ISEngineering Information Systems Engineering

cross-organization and

cross-border enterprise

applications

Applications

(typical/envisioned)

Look at all constituent parts of a blockchain

cryptokitties.co

Collectible. Breedable. Adorable.

Collect and breed digital cats.

Lessons (to be) learned

Simple chess game, tough challenges

• Computations cost money. Hence, like in a physical chess game, we should have a player trigger endgame condition checks instead of doing them after every valid move.

Technisc

Berlin

Challenge-Response Pattern

Context:

- A smart contract models a state machine with well-defined final states.
- State transitions are cheap to compute, but checking whether a given state is a final state is expensive or may not be possible at all.

Solution:

- Perform the check off-chain on the client side. A client can notify a smart contract when a final state has been reached.
- Other clients can prove claims wrong by providing a valid state transition.

S. Tai 2017 | ise.tu-berlin.de

(1) In case of statemate, if Player falsely claimed a win, nether the Player nor the Opponent would have a chance to do anything, because that state can only be resolved when there is a valid move. Because of that, an additional way to resolve the state is added: After two times the timeout, both players are allowed to offer a draw.

Information Systems Engineering

Off-Chain Signatures Pattern

Context:

- Two network participants want to transact with each other multiple times in the future.
- They want to reduce the cost of these transactions or want to hide them from others.

Solution:

- Specify a smart contract including a function, which applies an external state given as argument to the contract state.
- This function includes a signature check to ensure both participants agree with the state change.
- The participants perform transactions purely off-chain and peer-to- peer, without involving the blockchain.
- Any transaction, signed by both parties, can then be sent to the smart contract by a participant at any point in time. After validating both signatures, the contract updates its state accordingly.

Delegated Computation Pattern

Delegated computation

Problem:

Prover

ΤХ

verify

ΤХ

Verifiable computations are extremely complex to specify and require deep technological understanding

ZoKrateS – A Toolbox for Off-Chaining

https://github.com/JacobEberhardt/ZoKrates

Information Systems Engineering

Come work with us / collaborate!

Blockchain Expertise in the ISE Team

Blockchain-based Service Marketplace

http://www.ise.tu-berlin.de/fileadmin/fg308/publications/2017/2017-klems-eberhardt-tai-service-marketplace.pdf

https://news.bitcoin.com/berlin-students-chess-ethereum/

ZoKrateS – A Toolbox for Off-Chaining https://github.com/JacobEberhardt/ZoKrates

berlin

Technische Universität Berlin

obstacle to blockchain adoption. In this paper, we make two

main contributions to address these two problems: (i) To increase

Blockchains are a combination predominantly including pee Transaction throughput is directly linked to the cost implied for clients for block validation. While only mining nodes spite high hopes, serger scale. Systems like

ng

Thank you!

Stefan Tai tai@tu-berlin.de ise.tu-berlin.de

S. Tai 2018 | ise.tu-berlin.de