Modelling, analysing and reusing
composite cloud applications

Jacopo Soldani
Dipartimento di Informatica, Universita di Pisa

\
)

SOCC

il

SummerSOC 2018, 25t of June 2018

Mail: soldani@di.unipi.it Web: http://pages.di.unipi.it/soldani

Context

Ty
'S

Challenge!:
» Flexibly manage complex composite applications
» over heterogeneous cloud platforms.

L F. Leymann. Cloud computing. it—Information Technology, 53(4):163-164, 2011.

Two major issues-?

Flexibly manage complex composite applications
over heterogeneous cloud platforms.

Automate the management Support a vendor-agnostic design
of composite cloud applications. of composite cloud applications.

1 T. Binz et al. TOSCA: Portable automated deployment and management of cloud applications. Advanced Web Services, pp. 527-549, Springer, 2014.

2 R. Di Cosmo et al. Aeolus: A component model for the cloud. Information and Computation, 239(0):100 —-121, 2014.

Research objectives

l-.! c;
o @
Modelling Analysing Reusing
composite cloud composite cloud composite cloud
applications. applications. applications.

From objectives to research contributions

&% Q “»

Modelling Analysing Reusing
composite cloud composite cloud composite cloud
applications. applications. applications.

i : :
Compositional, Techniques for Techniques for
fault-aware checking and matching and
modelling for the planning the adapting existing
management management of applications.
behaviour of applications.

applications.

Roadmap

Chapter 2
TOSCA

' (Background)

__

Chapters 3-4
(Syntactic) matching
of cloud applications

https://tinyurl.com/soldani-thesis

Chapter 6
Behaviour-aware matching
of cloud applications

Chapter 5

Chapter 7

Management protocols

Fault-aware management
protocols

https://tinyurl.com/soldani-thesis

TOSCA (Topology and Orchestration Specification for Cloud Applications)

» OASIS standard

» Goals:
1. Create portable cloud applications.
2. Automate application management.

Service Template

__Topology Template Node Types
N
!
Relationship B Te
Template)
P _| type fors Relationship Types Legend

@ Property
E----.\ Node > Relat. @ Interface
| Template type for (o &J Capability
--------------------- - Type O Requirement

A toy example

Port il
Resource i

APIEndpoint \,4
e \)
APIEndpoint 4
e Setup
""""""""""""" POft' ReStAPI Eonflgure
--------------- Resource (Dropwizard) Stop
Uninstall
MavenContainer MongoEndpoint
hostedOn connectsToT‘
Container,lq MongoEndpoint
~ Run > Run
Volumes® Maven Start portManpines Mongo Start
PortMappings @ (Docker) Stop PRINg (DockerMongo) Stop
Delete Delete
Run
Maven Setup ConfigureH Start]_O
RUN RestAPI RestAPI RestAPI
Mongo

-@—OStart

Roadmap

Chapter 2
TOSCA

(Background)

__

Chapters 3-4
(Syntactic) matching
of cloud applications

https://tinyurl.com/soldani-thesis

Chapter 6
Behaviour-aware matching
of cloud applications

Chapter 5

Management protocols

Chapter 7
Fault-aware management
protocols

https://tinyurl.com/soldani-thesis

A running example

Objective: Deploy/manage a web application on a cloud.

EntryPointl® PHPModule

rlﬂVIySQLConn
N 8

MySQL
DBName@ Database

PHPRuntime Y YDBConnection §

YI\/IySQI:Runtime
PHPRuntime% _________________ él_l}{l_y_‘SQLRuntime

Application i Desired | SenlovPHPA
i . -@—ODeplo
HostID™ Environment POy PP

...

Approach:
1. Abstractly describe the desired hosting environment (DesiredEnvironment).
2. Match and adapt existing applications to actually implement DesiredEnvironment.

Substitutability of TOSCA applications

Existing TOSCA applications can be reused to actually implement desired components?.

/" PHPRuntime , s MySQLRuntime
1 (V V
PHPRuntimer 4 MySQLRuntime |
Application _i Desired -.—OD lovPHPA J
; : : eplo <
HostID™ ' Environment Py PP \
H H I
""""""""""""""""""""""""" i Application
i HostID._
i
1
1
1
1
1
1
1
1
1
1
1
1
l
\\ _

™\

+@—-ODeployPHPApp

-~

No additional information on how to match nodes/applications is given.

1 OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer. 2013.

Four (formal) notions of matching

Exact matching (=)
Plug-in matching (=) + adaptation methodology
Renaming-based matching (~) + adaptation methodology

White-box matching (o) + adaptation methodology

A limitation of the proposed matching notions

All notions of matching (=,=,~,0) permit reusing applications only in their entirety.

" PHPRuntime , s MySQLRuntime
f (\/)
PHPRuntime ;.. ;4 MySQLRuntime |
Application Desired DeblovPHPA J 5
HOStID : Environment é-._o ep Oy pp \\‘ :. P.HP.R.UIltlme M.\[SQLRLI.ﬂtlmE
H H i
""""""""""""""""""""""""" i Application Application é
i HOStlD._ HostID. XAMPP
i — H@—ODeployPHPApp----1-@-ODeployPHPApp
]
| N
i J
]
1 ._ .
i — DebianOS
i
AN _ J

-~

This would potentially waste resources to deploy unnecessary software.

1 OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer. 2013.

Reusing fragments of TOSCA applications

TOSCAMART (TOSCA-based Method for Adapting and Reusing application Topologies)
» Reuse only the necessary fragments of application topologies.

MCIMRIMPIMO

CANDIDATESUNION o

-

N j:l ‘] .
MATCHMAKE » >‘ RATE FILTER Cut b‘
: J Candidates Rated Filtered Elected
Repo — Candidates Candidates Candidates
for each

T;in Repo
MAPPING MANUAL
ADAPTATION
SELECTION REFINEMENT
Elected Reusable Refined

Candidates Implementations Implementations

Properties of TOSCAMART

1. TOSCAMART always terminates.
2. TOSCAMART is sound.

3. The time complexity of TOSCAMART is
T(TOSCAMART) = 0(rt)

where
> 1 is the size of the repository, and
° t is the maximum amount of features available in an application.

Implementation

We implemented a prototype of TOSCAMART.

» Open-source’
Ocithub HHMH

License

» Fully-compatible with the OpenTOSCA open-source ecosystem.

Vinothek
@ .Csar l
TOSCA-MART (===~ ¥ Winery OpenTOSCA

S—
.tosca) .tosca
Repository

» Expected time performances

30

25

20

15

Elapsed time (s)

10

Elapsed time ()

0 I l L ! 0 I I L L
0 279 558 837 1116 1395 0 53 106 159 212 265

r t

1 https://github.com/jacopogiallo/TOSCA-MART

Road map https://tinyurl.com/soldani-thesis

__

Chapters 3-4 | Chapter 6
(Syntactic) matching Behaviour-aware matching
of cloud applications | ~ of cloud applications
Chapter 2 : 5
TOSCA Y
| (Background) |
Chapter 5 Chapter 7
Fault-aware management
Management protocols
|) L protocols)

https://tinyurl.com/soldani-thesis

Motivations

Analyse/automate the management of composite cloud applications.
» Intra-component dependencies.
» Inter-component dependencies.

Seturp_\

S Endpoint
Frontend Egﬂnect 6 ol Setup
ushc) N 1)) | et (€502
ninsta WebAPI top
Serverv Backend (eﬁ/) Uninstall
connectsTo

ostedOn——

—hostedOn
AppRTEl

O/
WebServer
(Docker)

How to easily take into
account all dependencies?

Management protocols WebAppRuntimey- ,

Setup
: Run
The management protocol of a component is a FSM?. Apache Configure
g
(Server) lSJto_p o
s M) ninsta
» Transitions model intra-component dependencies. ServerContainers/

» Conditions on requirements/capabilities capture inter-component dependencies:
- reqs needed and caps offered in a state.
- reqs needed to execute a transition, and caps preserved during its execution.

{ServerCont} {} {ServerCont} {}
Setup Run

Unavailable Working
R:{} R: {ServerCont}

9Jn31juo)

C:{} C:{WebAppR}

{ServerCont} {} {ServerCont} {}
Uninstall Stop

1 Notions of well-formedness and determinism of management protocols are defined and can be automatically checked.

Reasoning with composite applications

The management behaviour of a composite application is derived by composing the
management protocols of its components.

» A global state G is a set containing the current state of each component.

» A global state G is consistent iff all the requirements assumed in G are satisfied.

» An operation can be executed in G iff all the requirements it needs are satisfied in G.

Example — Consistent global state & operation execution

Started {Server} {} {Server} {}
{Server} {} {Servert{} ¥ . {Server} N {Server,Backend} {} Setup Run
Setup Run : Connect
Notlnstalled Installed Running
otAvailable Available R:{} R:{Server} R: {Server}
R:{} R:{Server} {Server} {} R: {Server, C:{} C:{} :{Endpoint
c: C:0) Stop Backend}

{Server} {} {Server} {}
{Server,Backend} {} Uninstall Stop
{Server}{} Stop Setup .
Uninstall Frontend Run ndpoint

Connect Setup

Stop Backend Run

Uninstall WebAPI Stop

Server Backend () Uninstall
Serve
connectsTo—

hostedOn

hostedOn
AppRTE
Create

WebServer Start
(Docker) Stop
Delete

Installed

: : {} {AppRTE}
R:A) ' Configure

{H} {H{}

Uninstall Shutdown

Analysing the management of applications

Validity of plans
»A sequence of management operations 0,0, ... on is valid from a global state G, iff
G, 4 G4 3 G, 3.3 (-, and each G; is consistent.
»A workflow plan is valid from a global state G, iff all its sequential traces are valid from G,,.

Effects of (valid) plans

»The effects of a plan (on states, requirements, capabilities) can be directly determined from
global states.

»A valid plan is also deterministic if all its sequential traces reach the same global state.

Finding plans (achieving desired goals)
»The problem can be solved with a visit of the graph of reachable global states.

Implementation

Barrel!
» Web-based editor/analyser of management protocols in TOSCA applications.
» Open-source and compatible with the OpenTOSCA ecosystem.

IMPORT CSAR EXPORT CSAR ANALYZE IMPORT CSAR EXPORT CSAR ANALYZE info

Available TOOLBOX ANALYZER 30X
4 A
NodeTypes i Notinstalled :)
E oo B i Available
i Relies on: E . -
VirtualMachine i offers: & Set as initial state VMWare [VirtualMachine] -
Reli State: Up Capabilities: { Container} Requirements: { }
) elies on:
OperatingSystem Lifecycle:St
P &Y % Add requirement.. ent..

WebService & Remove requirement.. Debian [OperatingSystem] rement..
- State: Running Capabilities: { SoftwareContainer} Requirements: { OSContainer}
Server r_) 1 Offers: -
Lifecydle:Install . Lifecycle:Shutdown
~-----L-- -T: {0sContainer} | & Add capability.. Apache [S : .
1 : Ui ache [>erver
Lifecycle:Uninstall & Remove capabili p qF
Show XML ! Relies on: {0SContainer} ' R) P v State: Stopped Capabilities: {} Requirements: {} dility..
----- Relisl;:mng Outgoing transitions: |L\'fecyc|e:Run‘ Lifecycle:UninstaH| tions:
Lifecycle:Start - OSContainer “ Add transition.. R e
= “ Remove transition.. State: NotDeployed Capabilities: { } Requirements: { } tion..

- SoftwareContainer

Translator [WebService_2]
State: NotDeployed Capabilities: { } Requirements: { }

Available Y = —~-----)
Relies on: Lifecycle:Shutdown
Offers:

edit analyse

1 http://ranma42.github.io/MProt.

Case study

Thinking el e

Ablog where people can openly Share thoughts

» Real application, made by three components e ,. |
fm P‘Yﬁﬁ* St ntres a \ofi more 10 Tk fhen 'bfnr\aj vealy, veally, videulously @oo& lodking, And | plan
- GUI (deployed on a NodelS Docker cont.) on g ot vt tof

- REST API (deployed on a Maven Docker cont.) T e ol
- Mongo database (running as a Docker cont.)

Mo Hre forte be with Sou

Yoda, Unknown —

» Validation and test of existing deployment plans
- Valid plans effectively deploy application.
- Non-valid plans resulted in crashes/exceptions. Thmkmg

A blog where people can openly Share thoughts

[]
» Planning
INFO [2016-08-04 14:38:05,071] org.mongodb.driver.cluster: Exception in monitor

- Valid plan to undeploy GUI and REST API (only) o et ks Eeception nknow: o error
- Effectively resulted in undeploying them.

at java.net.InetAddress$2.lookupAllHostAddr(InetAddress.java:928)
jacopo@yellow:~$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
f385a566c619 mongo "/fentrypoint.sh mongo" 17 minutes ago Up 17 minutes 27017/ /tcp
jacopo@yellow:~S]

I

]

!

! at java.net.InetAddress.getAddressesFromNameService(InetAddress.java:1323)
! at java.net.InetAddress.getAl1ByNameO(InetAddress.java:1276)

! at java.net.InetAddress.getAl1lByName(InetAddress.java:1192)

! at java.net.InetAddress.getAl1ByName(InetAddress.java:1126)

! at java.net.InetAddress.getByName(InetAddress.java:1076)

! at com.mongodb.ServerAddress.getSocketAddress(ServerAddress.java:186)

! . 5 common frames omitted

Roadmap

Chapter 2
TOSCA

| (Background) |

__

Chapters 3-4
(Syntactic) matching
of cloud applications

__

https://tinyurl.com/soldani-thesis

Chapter 6
Behaviour-aware matching
of cloud applications

Chapter 5

Management protocols

Chapter 7
Fault-aware management
protocols

https://tinyurl.com/soldani-thesis

Behaviour-aware matching of cloud applications

We extended the notions of syntactic matching.

ldea:
syntactic behavior behaviour-aware
matching simulation matching
(syntac.tlc) simulation of behaviour-aware
plug-in A management . .
_ plug-in matching
matching protocols

Simulation of management protocols

Two notions of simulation! of management protocols:

» simulation (for one-to-one operation matching)
M’ simulates M iff
(a) each transition t in M can be simulated by a transition t’ in M’,
(b) M’ requires less than M, and
(c) M’ offers more than M.

» f-simulation (for one-to-many operation matching)
M’ f-simulates M iff
(a) each transition t in M can be simulated by the sequence f(t) of transtions in M’,
(b) M’ requires less than M, and

(c) M’ offers more than M. How to cqmpute
the function f?

1 D. Sangiorgi. Introduction to bisimulation and coinduction. Cambridge University Press, 2011.

Computing f-simulations
Algorithm for finding all functions f such that M’ f-simulates M.

Two steps:

1. Initialisation
- Each transition of M can be simulated by any sequence of transitions in M’.

2. lterative refinement
- Iteratively remove mappings leading to states that cannot f-simulate.

- Continue until the mapping cannot be refined any more.

The algorithm is formally proved to be terminating, sound and complete.

Road map https://tinyurl.com/soldani-thesis

Chapters 3-4 | ! Chapter 6 |
(Syntactic) matching Behaviour-aware matching
of cloud applications ; of cloud applications
Chapter 2 | :
TOSCA 'f_'.'_'i
(Background)
Chapter 5 Sy
Fault-aware management
Management protocols
L) | protocols)

https://tinyurl.com/soldani-thesis

Motivations

{server, backend}

{server} setup connect {server} setup {server} run

{server} run

How to handle
i g available started
the faUIt Of : R:{server} R: {server}
requirements?

running
R: {server}

{server} uninstall { {server} stop

{server} uninstall {server} stop
{server,backend} stop
""""""""""" endpoint
tint-=nd ‘ selup {os} install {os} start
back-end o) —
Unihstall 2 Effects of
serve Q . °
- = misbehaving
: : : da
~ install =
start : o components?
configure {os}uninstall {os} shutdown
J stop
unlnstaII
‘ I?Sﬁlll {}install {} start
. sta i
debian éshutdown
J uninstall

available
R:{}
C:{}

running

R: {}
C:{os}

{} uninstall {} shutdown

Our approach

Fault-aware management protocols permit
» modelling how nodes behave when faults occurs, and
» analysing/automating application management in presence of faults.

Unexpected behaviour
» naturally modelled in (fault-aware) management protocols

» to permit analysing the (worst possible) effects of a misbehaving component.

Planning how to hard recover applications that are stuck
» since a fault was not properly handled, or
» because of a misbehaving component.

Fault-aware management protocols

r '%
”i ~Ac L
Vo

[{os}install | {os}start

o)

ot-installed installed started %
R:{os} R: {os} Sh

C:{} C:{app-rte} / |

@

{os} uninstall {os} shutdown

Default handling

Application designers may leave the handling of some faults unspecified.

{server} setup {server} run

hot-installec installed

R:{server}

C:{}

running
R: {server}
C:{endpoint}

{server} uninstall {server} stop
{server}

back%
R: {1 < {server}/

C:{}

Default handling to a sink state that requires/provides nothing (worst-case assumption).

Reasoning with composite applications (and with faults)

({se rver} setup

available
R:{server}

{server,backend}

{server, backend}
connect

{server} setup {server} run

grver}

How to handle
the fault of
requirements?

{server}run

installed
R:{server}

C:{}

running
R: {server}
C:{endpoint

started
R: {server}

{server} uninsta
{server}

{server} stop

{server,backend} stop

back-end;
R: {}

{server}

jreossess endpoint G
front-end 0 setup { {os}{?:s}tall
P back-end o) =
: : umRstaII t-install installed o
serve ot-installe inscallie 8
R:{} R:{os} 3
C: C: : - Q-
N install t t U%
gf)anrftlgure {os} uninstall {os} shutdown
) stop
unlnstaII

{} install {} start

~ Ir%strzéull
. sta
debian @shutdown
) “ouninstall

available running
R:{} R: {}
C:{} C:{os}

{} uninstall {} shutdown

Analysing the management of applications

»
»

»

All previously introduced analyses can still be automatically performed
(now also taking into account faults)

Dealing with «misbehaving components»

The unexpected behaviour of a component can be modelled with a special «crash» operation..

{server} setup {server} run

running
R: {server}
C:{endpoint

installed
R:{server}

C:{}

hot-installe
R:{}
C:{}

L] -/
{server} uninstall {server} stop
{servel} |{server}s
0 back h {server}s
7
. R: {} =

C:{} {server} /

..leading to a sink state that provides/requires nothing (worst-case assumption).

Dealing with misbehaving components

{server,backend}

grver}
{server} run

{server} setup connect

available
R:{server}

{server, backend}

R: {server,
backend}

front-end

stop

pN4
qouninstall [back-end

serve

N install
start
configure

J stop
uninstall

~ install
start
shutdown

J uninstall

setu
}_@run P
umRstaII

serve

ibacken

debian

{os}

R:{}
G}

{os} install

insta

{}install

not-installe available

{} uninstall

{4

R:{os}
C:H}

lled

R:{}
i}

{os} start

{} start

x running

R: {}
C:{os}

{} shutdown

{4

debian;
R:{}
C{}

{7

{server} setup

R:{server}

{server} run

installed

Effects of
misbehaving
components?

Hard recovery

Can recovery plans be generated automatically?

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you.

0% complete

For more information about this issue and possible
fixes, visit http://windows.com/stopcode

If you call a support person, give them this info:
Stop code: MANUALLY INITIATED CRASH

Hard recovery

Recovery plans can be generated automatically.

il - .
n Idea (from our experience):
Machine stu.ck, > ForublY by resetting the whole system
not responding restart it
Node stuck, Forcibly by resetting the container node,
not responding restartit hence resetting all nodes it contains

Implementation

Barrel!
» Web-based editor/analyser of management protocols in TOSCA applications.

» Open-source and compatible with the OpenTOSCA ecosystem.

About Barrel Visualise Edit Analyse CSAR~

Barrel Visualise Edit Analyse CSAR-
Management protocol editor Options
Node type: Dropwizard Show XML Hard recovery: [EJ
- .
__________ N ifecycle:confi
P L EaEmme Simulator
' . 1
s on: !
: Offered capabilities Assumed requirements Available operations
Lifecycle:uninstall Working Node Running
elies on: {Mavencontainer} - MongoEndpoim R
Relies on:
- MavenContainer Maven Running
- MongeEndpeint
Offers:
Relies on: {Mavencontainer} elies on: {MavenContainer, MongoEndpoint} - APIEndpoint Mongo Stopped
Lifecycle:configure ThoughtsAPI Working
Relies on: {MavenContainer, MongoEndpoint}
ThoughtsGUI Running
\ - Starting global state Target global state
Node State Node State

edit analyse

1 http://di-unipi-socc.github.io/barrel.

Case study

Thinking
» Real application, made by three components Thinking

A blog where people can openly Share thoughtS

- GUI (deployed on a NodelS Docker cont.) ——
- REST API (deployed on a Maven Docker cont.)
- Mongo database (running as a Docker cont.)

R £} inspector X Console @ Debugger {}StyleEd... @ Perfor... m EH-™ B &% 08 x
fi_all_Htmicss s [BBEY Fonts Images Media Flash Other @ One request, 0KB,0s er UR
Status Method File Domain Type Tra... Size oms 1320 ms | 640
)) GET choughts localhost:82... plain — 0KB ‘

REST APl does not return any answer when invoked

» Effects of misbehaving components Thinking

A blog where people can openly Share thoughts
- e.g., crashed API. S

Han Solo, Unknown

. Moy e force be with ~pu
» Planning

- e.g., hard recovery of crashed API.

R O Inspector X Console @ Debugger {}StyleEd... @ Perfor... m H- ™ Bi4%& 00 x

all _H s BB Fonts Images Media Flash Other @ One request, 0,00 KB, 0,42 s

Method File Domain Type Tra... Size oms 1320ms 640 md
GET houghts localhost:82... json 0,00KB 0,00 KB

Status
® 200

Road map & pu blicatiOnS https://tinyurl.com/soldani-thesis

QA. Brogi, J. Soldani. Finding available services in @F. Bonchi, A. Brogi, A. Canciani, J. Soldani. Behaviour-

TOSCA-compliant clouds. Sci. Comp. Progr., 2016. aware matching of cloud applications. TASE, 2016.
@J. Soldani, T. Binz, U. Breitenblicher, F. Leymann, A. F. Bonchi, A. Brogi, A. Canciani, J. Soldani.
Brogi. TOSCAMART: A Method for Adapting and Simulation-based matching of cloud applications.
A. Brogi, J. Soldani, P. Reusing Cloud Applications. JSS, 2016. Sci. Comp. Progr., 2017.
Wang. TOSCA in a nutshell: [h f)
Promises and perspectives. Chapters 3-4 Chapter 6

ESOCC, 2014.

(Syntactic) matching Behaviour-aware matching

Chapter 2 . of cloud applications of cloud applications
TOSCA O
e ™ E
| (Background) | | Chapter 7 :
- Chapter 5 ;
: Fault-aware management :
| Management protocols |
| protocols |
1\ J .) '
| |=|A. Brogi, A. Canciani, J. Soldani. Modelling and %A. Brogi, A. Canciani, J. Soldani. Fault-aware :
E analysing cloud application management. ESOCC, application management protocols. ESOCC, 2016.
E 2015. A. Brogi, A. Canciani, J. Soldani. Fault-aware
E %A- Brogi, A. Canciani, J. Soldani, P. Wang. A Petri |=[management protocols for composite applications.
! net-based approach to model and analyze the JSS, 2018.
Journal i management of cloud applications. Trans. on
Conference ! Petri Nets and other models of Conc., 2016.

https://tinyurl.com/soldani-thesis

Conclusions

&*% Q P

Modelling Analysing Reusing
— composite cloud composite cloud composite cloud
applications. applications. applications.
: ; :
Management protocols, Techniques for analysing Techniques for
which are a modular, and automating matching and adapting
compositional, and the management of (fragments of) existing
fault-aware modelling composite applications applications, by taking
for the management (e.g., validity of plans, into account both their
behaviour of application effects of plans, planning, structure and their
components. hard recovery, etc.). behaviour.

independent from the employed topology model

Conclusions (2)

(a) prototype implementation (a) prototype implementations

components, and
(iii) allowing to plan how to
manage/recover composite apps.

models/simulation to go beyond non-
relevant operation mismatches.

Feasibility | I

assessment ! (b) formal assessment of all
! (b) case study ! .
| | proposed algorithms
: First approach : .
! : : PP ! First approach
(i) allowing to model and analyse . L .
: : . : (i) considering both functional
. faults in composite apps, ! .

Related ! . .) . . ' and non-functional features, and
! (ii) dealing with misbehaving ! . .. :
work | : (ii) exploiting behaviour

Future work

e A

faults generated
during transitions

-

full-integration of the
proposed matching techniques

dynamic reconfiguration

of topologies substitutability

assumption

cost- and QoS-aware

ahalyses
y cost- and QoS-aware

matching

management protocols
in TOSCA

Thank you!

Mail: soldani@di.unipi.it Web: http://pages.di.unipi.it/soldani

