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Current Research Topics

Privacy & database
systems and
KRy medical) workflows

Using modern HW
| for efficient query
processing

bl e

... and now back to the talk
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The changes in the world of HW

During the last 15 to 20 years....

Modern CPUs — Multi-Core & more

e Features: pipelining, superscalar,
branch prediction, prefetching

e Multi-core and simultaneous
multi-threading (SMT, hyper-
threading)

e S|IMD vector instructions
(MMX/SSE/AVX)

e Multi-Level cache hierarchy
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Memory Hierarchy
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Changes in memory cost

Quelle: www.deepspar.com/images/Storage Cost.jpg
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Changing technology: Flash disk

¢ Characteristics
Today: 1 TB - Cost about $300 (Samsung)
!l Less power consumption !!

Device Sequential Random 8KB Price $ Power iops/$ |iops/watt

SCSI 15k rpm 75 MBps 200 iops 500$ 15 watt 0.5 13
SATA 10k rpm 60 MBps 100 iops 1505 8 watt 0.7 12
Flash- read 53 MBps 2,800 iops 400$| 0.9watt| 7.0 3,100
Flash - write 36 MBps 27 iops 400$| 0.9 watt 0.07 30

Gray, J., & Fitzgerald, B. (2007), FLASH Disk Opportunity for Server-Applications, from
microsoft. doc; Jan 2007; Retrieved March 8, 2007

Changing technology: CPU farms,

_Clusters & BiEData Centers

* Compute Container * Big Data Center (Google
> 1200 CPUs & others)
> 22000 cores

> 5.4 TB Main memory
> 7.0 PBytes Disk storage

Only Need power &
Internet access & water

Quelle: http: com/2013/06/24/where-th | look-inside-googles-data-centers
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Challenge: The “Memory Wall”

100,000
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Performance
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Year

1980 1985 1990

https://www.extremetech.com/computing/261792-what-is-speculative-execution

What does it mean for DBMS

T I ——
e The world of HW has changed

¢ The world of data management has changed

MapReduce Systems
* 1stgeneration: Hadoop, Google proprietary;, ....
» 2n generation: Apache Flink (Berlin), Apache Spark (Berkeley)

— Relational DBMS technology has not changed
Architecture is 40+ years old
Needs rethinking with new HW/OS opportunities

Architecture & HW impact
* From static (2 phase) to dynamic (decide during execution)
* Include new HW (GPUs, FPGAs, Cluster, ...)

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 15
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Database Query Execution

-
v
q Logical
Query Rewrite Query Plan
y
| Physical
Query Plan

SQL Query

Physical Plan
Generation

v

Execution

Focus of our work so far

Progressive Optimization
on modern CPUs
\ Physical Plan 4 Physical
Generation Query Plan
\ 4
Execution k—-

Performance analysis of
operators on modern CPUs
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Part 1:
Faster index search
using modern CPU features

Motivation

. B*-Tree: commonly used index structure
. Finding a key in O(logpn)
. Common node-internal search algorithm:

. Binary search in O(logzn)

Can we do

better?
Yes with SIMD!

; Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 E
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Outline Part 1
T

a. Binary Search & SIMD
b. K-ary Search

c. Segmented Tree

d. Segmented Trie

e. Evaluation & Contribution

SIMD

¢ Single Instruction Multiple Data:
Available on CPU and GPU
Arithmetical, comparison, conversion, logical

Add const
to vector

+
+2 |+2 \

Add two vectors

Compare two vectors
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1

2

3

Binary Search

Iteration

Search Key =9

D Search Space D Excluded . Search Key . Separator

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018

Outline

a. Background v
b. K-ary Search

c. Segmented Tree
d. Segmented Trie
e. Evaluation

f.  Conclusion Part 1
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Binary Search - two Separator

. Search Key =9
Iteration

1

D Search Space D Excluded . Search Key . Separator

Binary Search + SIMD
T I ——

SIMD Register C

Search Space Excluded . Search Key . Separator

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Problem: SIMD on CPU

SIMD on CPU does not support scatter and gather
functionality.

SIMD load (start position)

4 x 32-bit
SIMD Register

Solution: K-ary Search by Schlegel et al.

T I ——
Search Key =9

3-ary Search Tree
(k=3)

Linearized Order

Search Space Excluded . Search Key . Separator

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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]
3-ary Search Tree

Linearized Order

Applied K-ary Search

Search Key =9

1| [8]#] 2] 5 [11]14][20[23[ 0 [1 ]3[4 [6 [ 7 [@]10]12]13]15]18]18]19]21]22]24]25

2

Search Space

Excluded

3 |8 17] 2] 5 [11]14]20|23[ 0 |1]3 |4 |6 | 7 [@]0] 12]13]15]16]18]19]21]22]24 |25

. Search Key .Separator

Degree of Parallelism

SIMD Search Data Parallel
Bandwidth | Method Type Comparisons
8-bit 16
16-bit 8
K-ary
Search i
128-bit 32-bit 4
64-bit 2
Binary
Search Al !
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Outline Part 1

a. Binary Search & SIMDY"
b. K-ary Search v

c. Segmented Tree

d. Segmented Trie

e. Evaluation

f.  Conclusion Part 1

Segmented Tree

Change inner-node search algorithm from commonly
binary search to k-ary search.

| Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 ii I
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Problem: Unfilled Nodes

K-ary requirement: multiple of k-1 keys Smaxt+1
£\
11

3-ary Search Tree

Linearized Order

Insert implies Reordering

. Inserting a new key requires a reordering if it is
inserted between two existing keys:

. Sorting = Inserting - Linearizing
. Not necessary if:
« Empty Node

. Key is greater than the largest existing key

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 ii
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Segmented Tree
I
Advantages:
» High resource utilization
. Less iterations required

. Binary Search: logz2n vs. k-ary Search logkn
Disadvantages:
. Reordering overhead
. Large data types decrease performance
Open/Challenge:
. Updates

Outline Part 1

a. Binary Search & SIMD v
b. K-ary Search v

c. Segmented Tree v

d. Segmented Trie

e. Evaluation

f.  Conclusion Part 1

I Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 ii |
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Segmented Trie (SegTrie) m
e
Key (Dec) / 1 4128 4144 \
Key (Hex) ox0001

Segmented Trie (SegTrie) m
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Segmented Trie (SegTrie)

« High SIMD search performance
« Prefix compression
. Early termination

. Fix level count
. Reordering overhead

. Updates

SegmentedTree vs. Segmented Trie
—
SegTree SegTrie
Derived . Prefix
From B'-Tree B-Tree
Number of Tree Height Max. #Level
Iterations g (Early termination)
Number of Dynamic Static (Pre-defined)
Level
DOP Depends on .
Data Type 16 (8-bit)

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Outline Part 1

a. Binary Search & SIMD ./
b. K-ary Search "

c. Segmented Tree v

d. Segmented Trie v

e. Evaluation

f.  Conclusion Part 1

Test Setup
T

HW/SW Configuration:

. CPU: Intel Xeon 5520, 4 x 2,26 GHz

» L1:32KB, L2: 256 KB, L3: 8 MB, MM: 8 GB

. Cacheline: 128 Byte, SIMD bandwidth: 128 Bit
« Windows 7 64-bit Professional

Test Dataset:

. Synthetically generated, ascending, starting at 0

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 41
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|___|
T

hree Algorithms:  sivD
1. Bit Shifting
2. Case-Switch

3. PopCnt

Evaluation: Bitmask

Register A

SIMD Register C

SIMD
Register B

Time [clock ticks]

Single = 4k page

900

800

700 -

600

500

Evaluation: SegTree

B+ Tree, binary scarch
Breadth-First Seg-Tree, SIMD scarch s
Depth-First Seg-Tree, SIMD search mmmm

%, 2, % o, % @, % 4,
wlol ke, Wk, Wl

b 16-b 32-by 64-b
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Outline Part 1

a. BinarySearch&SIMD\/
b. K-ary Search

c. Segmented Tree v

d. Segmented Trie v

e. Evaluation v

f.  Conclusion Part 1

oo
Q

Our Contributions — Part 1

Using SIMD

B+-Tree -> Segmented Tree

Prefix B-Tree -> Segmented Trie

+ Transformation and search algorithm using breadth-first and

depth-first data layout

+ Three algorithms for interpreting SIMD comparison results

+ Generalization for an arbitrary key count (“Filling up”)

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June

2018 ii
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Part 2: QTM: A Model for Query Execution

Progressive Optimization
on modern CPUs
\ Physical Plan 4 Physical
Generation Query Plan

\ 4
/ Execution k--
Performance analysis of
operators on modern CPUs

Motivation

T I ——
¢ Different DBMS execute the same QEP using
different schedules
Run-time execution not query optimization
No uniform scheduling format

Query execution in different DBMS are not
comparable

¢ Major differences between DBMS:
Chunk Size: Size of operator’s input

Scheduling Strategy: Execution model vs. run-time
scheduler

How to make different schedules comparable to explain
why one schedule performs better than another?

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Outline Part 2

a. Parallel Query Execution
b. QTM: Query Task Model
c. Evaluation

d. Outlook

Chunk Size

Tuple- Buffer-
at-a-time

at-a-time

g e

Column-
at-a-time

.C. Freytag Ph.D.: Talk @ SummerSoc, Juni

Chunk Size DBMS

1 Tuple System R, MysQL,
(PostgresQl)

“Fit into Cache” Monet X100, DB2
with BLU

Fix number of tuples | Hyper

Fixed Block Size C-Store

Column MonetDB MIL

26.06.2018
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Scheduling Strategie

Probe (R)

Volcano Execution Model
Open-Next-Close Iterator

Hash
Probe (R)

Hash
Probe (S)

eytag Ph.D.: Talk @ SummerSoc,
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(Run-time) Scheduler @

Hash Spatial Locality Temporal Locality

Probe (R) [
Prob_R(t2)

Prob_R(t1)

Hash
Probe (S)

Prob_S(t1) Prob_R(t1)

Prob_S(t1)

Sel(t1) Sel(t1)

Time

Further Optimiziation Criteria: |/0, NUMA or Memory Usage

Dynamic Load Balancing @

: Talk @ SummerSoc,
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||
MonetDB MIL
Column-at-a
QNJ time
“7, MonetDB X100
DB2 DB2 BLU

L 1
[S Buffer-at-a PostgreSQL StagedDB SAP HANA
.g time Hyper

Q

Tuble-at System R
uple-at-a
time MVSQL
PostgreSQL
Volcano (Run-time) Dynamic
3 Execution Scheduler Load

!nach: I. Psaroudakis et al. Task :
scheduling for highly concurrent Model Balancing

lytical and transactional main- .
memory workloads. In ADMS, 2013, Scheduling Strategy

Outline Part 2

Parallel Query Executiony”
QTM: Query Task Model
Evaluation

Outlook

o 0 T

- I Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 I h
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QTM: Query Task Model

= |dea: A model that describes parallel query execution
with tasks

QEP - Queue of tasks
Task: Encapsulates a piece of work on some data

= Goal:
Open a design space for DBMS schedules
Make main aspects of query scheduling comparable:

Execution order, degree of parallelism and thread
coordination, and partitioning

Query Task Model

|
\
\
\
N
Work \
\
Data AN
— \\ Task Queue
4
/
Processing /
. ’
Strategies /
/
/
/
/

Table

I Data Queue

26.06.2018
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QTM Transformation: Input

||
A
o)
B / - — ‘Socket 1 Socket 2 Table N
5\ (UN-1) Table 2
éN+T‘ N cPU1 CPU: cPU1 CPU: Table 1
\J/f’{ ‘ o NSM DSM
(sN) . + Ce | |2 Ce | |Ce=] A7 AA
‘7‘]’2\‘ I Bo) | I o) ] A,..Z, |OR| B..B
\\7& A.Z C..C,
/ X i i ////,,,,
\/83\}‘ ) ‘,1,1,/" ‘ Main Mermory ‘ e
/
(s2) (s1) =
N N o __
QEP Hardware Architecture Table Format

NSM = “row oriented”

DSM = “column oriented”

Step 1: QTM Transformation

e
{f = I8 e
g "

<.
@ » @ [ ' ] JZ»Pipefi

@ e-er Y
@5 & ® @ e

Choosing Max. Plpelmes

Hash Join

De endenc Graph
Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018

'\ Pipe 1

26.06.2018

28



SummerSoc 2018
Crete, June 2018

Step 2: QTM Task Configuration

Max. Pipelines
+

Task Configuration
(Task Blueprints)

Dependency Graph

Step 3: QTM Task Generation

~=="" Task 4 of TC 1
— | Task3ofTC 1
- I
Task 2 of TC 1
Task 1 of TC 1

Operator
Sequence: P

Buffer Size: 128

Instantiation —
Task Internal  Buffer-at-a-time —
Scheduling:
New Tuple
Strategy 2

Tuple Fetch :
Strategy

Task Configuration Set of Tasks
(Task Blueprints) (TC Instantiation)

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Step 4. QTM Task Execution

Set of Tasks in QTM

Global Task Queue

Task Configuration 1

Task 1 Task Configuration N:
S \ A
Sequence: & Placement \ .
Buffer Size: I - Strategy | co0o coo
g{;ﬁ:;f;’;g TISS, TFSNTS) | —’
Processing " -t
Strategies TR, TS AT Compile-time

Run-time

‘tab

I iequeuef‘.=P'pe1(t1) enqueue t, g Output

Input
Data Data
Queue Queue

o
o Q
ﬂ_»-_ > out
dequeue t,,, Pipet(t,,) enqueuet,,

Outline

Parallel Query Execution v
QTM: Query Task Model
Evaluation

Outlook

o 0 T

-I Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 iil-
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Evaluation: Scenario

||
1) Tup - Pipe
2)Tup - M
B2 Schedule | Workload
) h . . Tuples per
3) Tup - Seq . __ Relation
4)Buf-CL&5)L1&6)L2&7)L3 Fx ~Sivales | | '

“: o - S2 Values 0,2/4,...

8) Op - Mat
9) Op - Seq

Legend
Operator (TC)

Schedule Buffer Size Tasks per Op Total Tasks
1) Tu "wm[:
2) Tup — Mat - 1 30M
IHEHI\%?\\N wﬁ\ﬂ
4) Buf - CL
 5)Buf-L1

j . oM

L ﬁl‘im H

. e
1,832 5,496

B “\\MWNNmW\w%\\‘\mvmm\ i

75M 4

8) Op - Mat

o )

9) Op - Seq

s
Legend

Operator (TC)

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Evaluation: Runtimes
||

1) Tup - Pipe I | I I I I I I
L200F 113 g, B0 1)Tup-Pipe |
2) Tup - Mat [ 2)Tup-Mat
B1 B2 1,000 - 083)Tup-Seq ||
3) Tup - Seq L | DD4)Buf—CL 1
. 105 Bt L
4)Buf-CL&5)L18&6)L28&7)L3 < 600l loe)Buf-L2 ||
& 007)Buf-L3
8) Op - Mat E 400 - L S)Op'Mat L]
m 233 I 9)Op-Seq
9) Op - Seq 200 |- 118 112 |
i E 99 97 95

L i SOEEE

egend T T T T T T
om0 R L2 s 45 67 os
Test Schedules.

Evaluation: Insights

¢ Tradeoff between data and instruction cache
performance
¢ Medium sized tasks are data-efficient:
Pros: Buffer fits entirely into cache, high data locality
Cons: High number of tasks and instructions
e Large tasks are instruction-efficient:

Pros: Decrease number of instructions and tasks, high
instruction locality

Cons: More data cache misses if cache size is exceeded

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Part 2: QTM: A Model for Query Execution

Progressive Optimization
on modern CPUs

\ Physical Plan [’ Physical
Generation Query Plan
v
/ Execution k--
Performance analysis of
operators on modern CPUs

Motivation: TPC-H Q6 Example
P

SELECT sum(l_extendedprice * |_discount) as revenue FROM lineitem
WHERE |_shipdate <=VALUE and |_quantity < 24 and
|_discount between 0.06 - 0.01 and 0.06 + 0.01

Cost Warst Plan/Cosi Bust Plan
[
T

1wt wF ow? o' W W 1t
Bhiguue: Selbativity (g sole)
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Approach: Steps Taken (Selections)

Use CPU counters

2. Thorough analysis (understanding) of operators
with respect to CPU counters
3. From data to knowledge:
Interpret counters in the context of selections
4. Build model
Compare actual counters vs. predicted (by model)
Validate model extensively

5. Optimization algorithm by continuous observation
(actual) and adjustment (predicted vs. actual)

Cost Model for Selection

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 78
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Non-Invasive Progressive Optimization for In-Memory Databases. PYLDB 9(14):

Branch Prediction (Markov Model)

||
|-
/ Strong
P \ Not Taken
P

P l-p
Weak Weak Strong |
Not Taken Taken Taken -P
P P

P

TPC-H Query 6

Year between 1996 and 1998

>1996
1996 T~
19981
<1996
Year Scan

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018
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Contribution

e Markov model for branch prediction

e From Data to Knowledge: Interpreting counters for
need to optimize

e Algorithm for continuous optimization of a sequence
of selections

e Future: extend approach for joins (partially
addressed in paper)

Publications
I

e QTM: Modelling Query Execution with Tasks, ADMS
2014

e Adapting Tree Structures for Processing with SIMD
Instructions, EDBT 2014

e Selection on Modern CPUs, IMDM 2015

* Non-Invasive Progressive Optimization for In-
Memory Databases, PVLDB 9(14) 2016

Prof. J.C. Freytag Ph.D.: Talk @ SummerSoc, June 2018 85
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Summary

Progressive Optimization
on modern CPUs
\ Physical Plan 4 Physical
Generation Query Plan
v
/ Execution k--

Performance analysis of
operators on modern CPUs

Questions ??

.C. Freytag Ph.D.: Talk @ SummerSoc, Jun
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