
Theory of
Programming

Prof. Dr. W. Reisig

Conceptual
Fundamentals of
Reactive Systems

Wolfgang Reisig

Humboldt-Universität zu Berlin

SUMMERSOC

Hersonissos, Wednesday, June 27, 2018. 9.30 – 10.30

Conceptual Fundamentals
of Reactive Systems

 What could this be?

Identify the (??) fundamental concepts

and build a theory on top of this …

We are so wonderfully progressing without

… for a while

There is this deep “Theoretical Informatics” stuff. That’s enough.

No. There is something fundamentally new

What to do with such a conceptual fundament?

to make it conceptually simpler,

better teachable,

better usable, also by non-experts
2

Road map

1. Components and composition:

 the basic paradigm for communication

2. Fundamental properties of the composition operator

3. Components’ contents

4. … even more general

3

Road map

1. Components and composition:

 the basic paradigm for communication

2. Fundamental properties of the composition operator

3. Components’ contents

4. … even more general

4

a b a e c e

d

An analogy: Classical computing

Turing machine:

A sequence of containers

5

Each container

holds a symbol

finite control

actual container

can be updated

The starting point for
computable functions

The starting point for react. systems …?

6

Reactive systems are fundamentally different.

Don’t compute functions at all

Are not intended to terminate

Can not be abstracted to one device

…

… requires a fundamentally new
computation model

7

A system consists of components.

Each component has an interface.

An interface contains gates.

Components are composed

by gluing matching gates

b

a
C

Literature describes many
such system models

8

A system consists of components.

Each component has an interface.

An interface contains gates.

Components are composed

by gluing matching gates

Each gate has a label.

Equally labeled gates match.

b

a
C

d
S

c a

b

b

a
C

d
S

c a

b
C•S

A small, but decisive variant

9

A system consists of components.

Each component has an interface.

An interface contains gates.

Components are composed

by gluing matching gates

Each gate has a label.

Equally labeled gates match.

d
S

c a

b

b

a
C

d
S

c a

b
C•S

Each component has an interface.
A has two interfaces, *A and A*.

Components A and B are composed

of A* and *B match.

of A* and *B.

b

a
C

10

A system consists of components.

Each component has an interface.

An interface contains gates.

Components are composed

by gluing matching gates

Each gate has a label.

Equally labeled gates match.

A has two interfaces, *A and A*.

Components A and B are composed

10 10

b

a
C

d
S

c a

b

b

a
C

d
S

c a

b
C•S

(C•S) = () (C•S) = (c,d)

S = (a,b) S = (c,d) *C = () C* = (a,b)

of A* and *B.

of A* and *B match.

A small, but decisive variant

11 11 11

b

a
C

d
S

c a

b

A small exercise:
operating system

architecture

12

b

a
C

d
S

c a

b

A small exercise:
operating system

architecture

13

C client
S service
D data base

b

a
C

d

c
D

C • S

d
S

c a

b

a messages from client
b messages to client

c message from service
d message to service

C • S • D

b

b

14

C client
S service
D data base

a
C

b

c
D

d d
S

c a

a messages from client
b messages to client

c message from service
d message to service

C • S • D

C •S
c

d

b
S •D

a

b

alternative:

b

15

C client
S service
D data base
E editor

a
C

b

c
D

d

C • E • S • D

d
S

c a

a messages from client
b messages to client

c message from service
d message to service

b
E

b

C • S • E • D

16

C client
S service
D data base
E editor

b

a
C1

d
S

c

d

c

b

a

b
E

b

b

a

C1 • C2 • S • E • D

C2
b

a

a messages from client
b messages to client

c message from service
d message to service

C1 • C2 • E • S • D

D

C2

17

C client
S service
D data base
E editor
Sc scheduler

b

a

d
S

c

d
S

c

d

c

d

c

d

c

Sc
d

c

b

b

a

a

a

b

b
E

b

a messages from client
b messages to client

c message from service
d message to service

C1 • C2 • E • S • S • Sc • D

D C1

C2

18

L

b

a

a

a

d
S

c

d
S

c

d

c

d

c

d

c

Sc
d

c

b

b

a

a a

a a

b

b
E

b

C client
S service
D data base
E editor
Sc scheduler
L load bal.

C1 • C2 • L • E • S • S • Sc • D

D

a messages from client
b messages to client

c message from service
d message to service

C1

C2

L • E

19

C client
S service
D data base
E editor
Sc scheduler
L load bal.
E scheduler

b

a

a

a

d
S

c

d
S

c

d

c

d

c

d

c

Sc
d

c

b

b

a

a a

a a

b

b b

D

C1 • C2 • (L • E) • S • S • Sc • D

a messages from client
b messages to client

c message from service
d message to service

C1

C2

L • E

20

C client
S service
D data base
E editor
Sc scheduler
L load bal.
E scheduler

b

a

a

a

d
S

c

d
S

c

d

c

d

c

d

c

Sc
d

c

b

b

a

a a

a a

b

b

b
D

C1 • C2 • (L • E) • S • S • Sc • D

a messages from client
b messages to client

c message from service
d message to service

C1

21

b

a

 behavior of client C

x

y
b

a

c

d x x

y y

y'

bad
y

behavior of service S

good

y :=

f(x)

behavior of Data base D

c

d
y

x

y

y

b

a
C

d

c
D

d
S

c a

b

A look inside the components

22

behavior of
Scheduler Sc

c c

d

(x,1) x
(x,2)

c

d

x

(y,1)

d

y d
(y,2)

y

behavior of
Load balancer L

a a

(x,2)

x

(x,1)

x a a
(x,i)

(x,i)

(x,i)

(x,i)

behavior editor E

b f(y) y b

Multiple labels
machine machine

material product

a. workflow N, transforming material into products by help of a machine

machine

material product

machine

Multiple labels
machine machine

material product

a. workflow N, transforming material into products by help of a machine

b. composed workflow, N•N

material product

machine

material

product material

machine

product

c. composed workflow, N•N•N

machine

material product

machine

25

customer and supplier

provider and requester

producer and consumer

buy side and sell side

input and output

requred and offered

Summing up

Double sided components
are intuitively most natural

Road map

1. Components and composition:

 the basic paradigm for communication

2. Fundamental properties of the composition operator

3. Components’ contents

4. … even more general

26

Composition is about architecture

- strict and formal for the interface

- entirely liberal for the components‘ contents

Assume a fixed interface alphabet L .

Let C denote the set of components with

- gate labels from L and

- empty contents

Components‘ contents: later

27

Composition on C is universal:

28

b

a

a

a

d

c

d

c

b b

a

a a

a a

c

b

 A

P1

P2 P3

P4

P1 • P2 • A • P3 • P4

Given any finite component network:
Can it be composed from its components? Yes!

Composition on C is total
Any two components in C can be composed.

29

b

a
A

d

c
B

d

Adapter

c a

b

Want to glue a with c and b with d.

New kind of composition?

Composability predicate for A and B?

Instead: Construct an adapter, C,

internally organizing composition,

and consider A • C • B.

30 RM • Su • Ma • Di • Sh • Co

Composition in C ist associative:

Am • Co

shop

amazon

 (A • B) • C = A • (B • C).

 … inevitable for “large”

compositions.

Summing up:
Composition in C yields a monoid

Observation: C contains

Hence (C; •, e) is a monoid.

… just as the words over an alphabet!

31

e (it holds: A • e = e • A = A)

A word on commutativity
Def. An operator + on C is commutative

 iff for all A, B  C holds:

 A + B = B + A.

Observation: • is not commutative

Theorem

A • B = B • A holds

if A and B use disjoint labels.

32

b

a
A

d
B

c a

b d

c

… but Frank loves commutativity!
Frank, please, don’t be so stupid!

Frank uses three services:

Haircut, new passport, border control.

33

H • P • B B

H

P

… but Frank loves commutativity!
Frank, please, don’t be so stupid!

Frank uses three services:

Haircut, new passport, border control.

34

H • P • B B

H

P

P • H • B

P

Road map

1. Components and composition:

 the basic paradigm for communication

2. Fundamental properties of the composition operator

3. Components’ contents

4. … even more general

35

Remember:
Composition is

- strict and formal for the interface

- entirely liberal for the components‘ contents

Formulate contents (behavior) as you wish!

- automata,

- programs,

 pcalculus,

- Petri nets,

- …

36

Construct classes D
of components such that
(D; •, e) is a monoid.

„Instantiations“

broker client

nego-

tiate send

offer

send

reject

send

order

a

b

a

b

c

producer

nego-

tiate

prod-

uce

a

b

d

ship

rec.

offer

reject

offer

accept

offer

a

b

c

d
rec-

eive

The Petri instantiation
Partition L into LP and LT

send
offer

send
reject

send
order

a

b

c

nego-
tiate

prod-
uce

d

ship

nego-
tiate send

offer

send
reject

send
order

a

b

rec.
offer

reject
offer

accept
offer

d
rec-
eive

producer • broker broker • client

producer • broker • client

nego-

tiate send

offer

send

reject

send

order

prod-

uce

ship

rec.

offer

reject

offer

accept

offer

rec-

eive

A

B

A

B

Def:A workflow is sound iff
- all its activities are executable,
- the final state is always
 reachable,
- upon termination,
 no further tokens remain.

The sound WF
instantiation

Theorem: Composition of sound workflows is sound.

A

B

A

B

N

N • N

Road map

1. Components and composition:

 the basic paradigm for communication

2. Fundamental properties of the composition operator

3. Components’ contents

4. … even more general

41

R

requester

P*

Right and left interface may overlap!

P

provider

42

R

requester

P*

exclusive requester

P

provider

43

R

requester

overlapping ports

P

provider

44

P*

R

requester

R*

sharing requester

P

provider

45

R

requester

R

requester

second requester

P

provider

46

R

requester

R

requester

second sharing requester

P

provider

47

R

requester

R

requester

third requester

R

requester

P

provider

48

more involved requester

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

P •Q •Q

P •Q •Q • Q

P•Q

generic

reques-

ter Q :
Q

requester

D

M

R

L

49

prefer this variant?

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester
P •Q •Q • Q

P • Q

A

A

A

A

A

A

50

P •Q •Q

generic

reques

ter Q :
Q

requester

D

M

R

L

prefer this variant?

P

provider
Q

requester

D

D

D

D

M

Q

requester

Q

requester

P •Q •Q

P •Q •Q • Q

P • Q

A

51

A

generic

reques

ter Q :
Q

requester

D

M

R

L
just make

a member of L

Theory of
Programming

Prof. Dr. W. Reisig

Conceptual
Fundamentals of
Reactive Systems

Wolfgang Reisig

Humboldt-Universität zu Berlin

SUMMERSOC

Hersonissos, Wednesday, June 27, 2018. 9.30 – 10.30

