
TOSCA Intent Models: Goal-Modelling for 
Infrastructure-as-Code

Damian A. Tamburri, Willem-Jan Van den Heuvel (TU/e, UvT - JADS)
Chris Lauwers (VNomic) Paul Lipton (CA Tech.) 

Derek Palma (UDemy) Matt Rutkowski (IBM)



What are we up to here today?

DevOps in a Nutshell

TOSCA in a Nutshell

Research Problem & Scope

TOSCA Intent-Modelling Explained

Outlook and Future Work

Conclusions

- 2 -



• What is it: “Practices or tools that bridge the gap between 
development and operations”

• Goal: Creates a collaborative mindset where a single team 
performs Dev and Ops
àthe team must contain differentiated competences, background, etc.

• Requires:
• Culture management;
• Automation tools;
• Organisational as much as technical metrics

• Continuous sharing artifacts, procedures, languages, approaches…

DevOps

3



• What is it: “Practices or tools that bridge the gap between 
development and operations”

• Goal: Creates a collaborative mindset where a single team 
performs Dev and Ops
àthe team must contain differentiated competences, background, etc.

• Requires:
• Culture management;
• Automation tools;
• Organisational as much as technical metrics

• Continuous sharing artifacts, procedures, languages, approaches…

DevOps

4

Infrastructure-as-code!



TOSCA in a Nutshell

OASIS Standard for infrastructure-as-code

- 5 -



Towards standard Infrastructure Code

6

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

è An Application Deployment Topology, i.e., “a graph of physical artefacts that need support for 
several lifecycle phases (e.g., procurement, installation, configuration, deployment, undeployment, 
teardown, etc.)” [6]



Towards standard Infrastructure Code

7

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

è Infrastructure-as-code, i.e., “a blueprint detailing physical artefacts, all scripts for all lifecycle 
phases and all artefacts needed for deployment” [6]

IasC
Blueprint

IasC Middleware
Scripts (e.g., Chef,
Puppet, etc.)

Deploy artefacts 
(e.g., JARs, etc.)

Referenced in

Included in



TOSCA in a Nutshell

OASIS Standard for infrastructure-as-code
(btw, thanks Frank!)

- 8 -



Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

- 9 -



Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

- 10 -

Our
Frank



Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

- 11 -

Our
Frank another

Frank
(not as
friendly
as ours)



Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

- 12 -

myself
Average
EU FP7, 
H2020 
reviewer



Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

RQ: What is its intended *design* and *programming* 
model?

- 13 -



Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

RQ: What is its intended *design* and *programming* 
model?

Why is this important?
1. If you know the *design model* you can automate

it, prepare process models for it… 

2. If you know the *programming model*, you can 
extend it, play around with it, design tools for it…

- 14 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

- 15 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

- 16 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)?

<Frank is involved so this is your first go-to thought…>

- 17 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)?

<Frank is involved so this is your first go-to thought…>

<BUT… you would be wrong!>

- 18 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)?

- 19 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)?

<the formalists would be making this guess, I think J>

- 20 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)?

<Wrong again! [but almost right, let’s say 50%]>

- 21 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)
Intent Design!

- 22 -



TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)
Intent Design!

- 23 -



TOSCA vs. Goal-Modelling

Goal

Functional goal Non-functional goal

Satisfaction

Information
Stimulus-
Response

Quality of Service

Safety

Security Reliability

Performance

Accuracy

Compliance

Architectural

Development

Confidentiality

Integrity

Availability

Time
Space

Cost

Usability

Cost 

Deadline
Variability

Maintainability

Installation

Distribution

Highest-Order Goal

…

…

…
…

…

- 24 -



TOSCA Intent-Modelling Explained

Intent modelling!
«modelling by specifying a highest-level goal to be 
satisfied, regardless of how sub-level goals are 
satisfied»

- 25 -



TOSCA Intent-Modelling Explained

Intent modelling.
«modelling by specifying a highest-level goal to be 
satisfied, regardless of how sub-level goals are 
satisfied»

This goes in 
the blueprint

- 26 -



TOSCA vs. Goal-Modelling

Goal

Functional goal Non-functional goal

Satisfaction

Information
Stimulus-
Response

Quality of Service

Safety

Security Reliability

Performance

Accuracy

Compliance

Architectural

Development

Confidentiality

Integrity

Availability

Time
Space

Cost

Usability

Cost 

Deadline
Variability

Maintainability

Installation

Distribution

Highest-Order Goal

…

…

…
…

…

- 27 -

TOSCA Blueprint!



Intent modelling.
«modelling by specifying a highest-level goal to be 
satisfied, regardless of how sub-level goals are 
satisfied»

This is left to the 
orchestrator

TOSCA Intent-Modelling Explained

- 28 -



TOSCA vs. Goal-Modelling

Goal

Functional goal Non-functional goal

Satisfaction

Information
Stimulus-
Response

Quality of Service

Safety

Security Reliability

Performance

Accuracy

Compliance

Architectural

Development

Confidentiality

Integrity

Availability

Time
Space

Cost

Usability

Cost 

Deadline
Variability

Maintainability

Installation

Distribution

…

…

…
…

…

- 29 -

TOSCA Orchestrator!



TOSCA Intent-Modelling: what
does it mean?

Empowering the language to empower the 
orchestrator

- 30 -



TOSCA Intent-Modelling: what does
it mean? Here’s an example!

- 31 -



TOSCA Intent-Modelling: what does
it mean? Here’s an example!

This goes in 
my blueprint

- 32 -



TOSCA Intent-Modelling: what does
it mean? Here’s an example!

This goes in 
my blueprint

This is left to the 
orchestrator!

- 33 -



Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

- 34 -



Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

Substitutability. Orchestrator can change any node as
long as highest-level goal is maintained and policies are 
upheld

- 35 -



Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

Substitutability. Orchestrator can change any node as
long as highest-level goal is maintained and policies are 
upheld

- 36 -

This is really nothing new (i.e., SoC lecture from 
Wolfgang this morning… thanks Wolfgang!)



Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

Opportunistic Hierarchization. Orchestrator creates a 
hierarchy dynamically at run-time by approximating as
much as possible the higher-level goal.

- 37 -



Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

Intent Evolution. Orchestrator maintains an intent as a 
steady-state, i.e., automated maintenance!

- 38 -



Conclusions

Designing and programming for TOSCA involves
intent modelling

Intent modelling means empowering the 
orchestrator

Several interesting properties emerge but many are 
not that new

E.g., for services design, QoS assessment/analysis, …

But some are *extremely * interesting and may
need further research!

- 39 -



Any Questions?

- 40 -

That’s all folks!



References

[1] Erder, Murat and Pureur, Pierre. Continuous Architecture: Sustainable Architecture in an 
Agile and Cloud-Centric World. Amsterdam: Morgan Kaufmann, 2016. 
[2] Continuous Testing Paperback – January 2, 2014 by W. Ariola, C. Dunlop 
[3] Part of the Pipeline: Why Continuous Testing Is Essential, by Adam Auerbach, TechWell
Insights August 2015
[4] M. Fowler Continuous Integration, https://www.thoughtworks.com/continuous-
integration
[5] Chen, Lianping (2015) "Continuous Delivery: Huge Benefits, but Challenges Too” IEEE 
Software. 32 (2): 50. 
[6] http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd03/TOSCA-
Simple-Profile-YAML-v1.0-csd03.html
[7] P. Lipton, D. Palma, M. Rutkowski, and D. A. Tamburri, “Tosca solves big problems in 
the cloud and beyond!” IEEE Cloud, vol. 21, no. 11, pp. 31–39, 2016.
[8] Bengtsson, PerOlof, Lassing, Nico, Bosch, Jan and van Vliet, Hans. "Architecture-level 
modifiability analysis (ALMA)." Journal of Systems and Software 69 , no. 1--2 (2004): 129--
147. 
[9] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Uncovering Latent Social Communities 
in Software Development.', IEEE Software 30 (1) , 29-36 . 
[10] M. Di Penta, D. A. Tamburri, Combining Quantitative and Qualitative Methods in 
Empirical Software Engineering Proceedings of the 10th Joint Meeting of the European 
Software Engineering Conference and the ACM Sigsoft Symposium of the Foundations of 
Software

41

https://www.thoughtworks.com/continuous-integration
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7006384


Other Biblio

[11] Bass, L. J.; Weber, I. M. & Zhu, L. (2015), DevOps - A Software Architect's 
Perspective. , Addison-Wesley . 
[12] Tamburri, D. A. & Nitto, E. D. (2015), When Software Architecture Leads to 
Social Debt., in Len Bass; Patricia Lago & Philippe Kruchten, ed., 'WICSA' , IEEE 
Computer Society, pp. 61-64 . 
[13] Tamburri, D. A.; Kruchten, P.; Lago, P. & van Vliet, H. (2015), 'Social debt in 
software engineering: insights from industry.', J. Internet Services and 
Applications 6 (1) , 10:1-10:17 . 
[14] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Organizational social 
structures for software engineering.', ACM Comput. Surv. 46 (1) , 3 . 

- 42 -


