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• What is it: “Practices or tools that bridge the gap between 
development and operations”

• Goal: Creates a collaborative mindset where a single team 
performs Dev and Ops
àthe team must contain differentiated competences, background, etc.

• Requires:
• Culture management;
• Automation tools;
• Organisational as much as technical metrics

• Continuous sharing artifacts, procedures, languages, approaches…

DevOps
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Infrastructure-as-code!



TOSCA in a Nutshell

OASIS Standard for infrastructure-as-code
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Towards standard Infrastructure Code
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Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

è An Application Deployment Topology, i.e., “a graph of physical artefacts that need support for 
several lifecycle phases (e.g., procurement, installation, configuration, deployment, undeployment, 
teardown, etc.)” [6]
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Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

è Infrastructure-as-code, i.e., “a blueprint detailing physical artefacts, all scripts for all lifecycle 
phases and all artefacts needed for deployment” [6]
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TOSCA in a Nutshell

OASIS Standard for infrastructure-as-code
(btw, thanks Frank!)
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Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…
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RQ: What is its intended *design* and *programming* 
model?
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Research Problem & Scope

Problem statement 
Suppose you want to recommend TOSCA to your
friends or foes…

RQ: What is its intended *design* and *programming* 
model?

Why is this important?
1. If you know the *design model* you can automate

it, prepare process models for it… 

2. If you know the *programming model*, you can 
extend it, play around with it, design tools for it…
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TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?
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<Frank is involved so this is your first go-to thought…>
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TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)?

<Frank is involved so this is your first go-to thought…>

<BUT… you would be wrong!>
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TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)?

<the formalists would be making this guess, I think J>
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TOSCA Intent-Modelling Explained

So… how is TOSCA design model different than those
we know already?

Imperative Design (e.g., BPMN)
Declarative Design (e.g., Alloy, SMV, Goal-Modelling)?

<Wrong again! [but almost right, let’s say 50%]>
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TOSCA vs. Goal-Modelling

Goal

Functional goal Non-functional goal
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Installation

Distribution

Highest-Order Goal

…

…

…
…

…
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TOSCA Intent-Modelling Explained

Intent modelling!
«modelling by specifying a highest-level goal to be 
satisfied, regardless of how sub-level goals are 
satisfied»
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TOSCA Blueprint!



Intent modelling.
«modelling by specifying a highest-level goal to be 
satisfied, regardless of how sub-level goals are 
satisfied»

This is left to the 
orchestrator

TOSCA Intent-Modelling Explained
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TOSCA Orchestrator!



TOSCA Intent-Modelling: what
does it mean?

Empowering the language to empower the 
orchestrator
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TOSCA Intent-Modelling: what does
it mean? Here’s an example!
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Resource-Based Intent Evolution
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This is really nothing new (i.e., SoC lecture from 
Wolfgang this morning… thanks Wolfgang!)



Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

Opportunistic Hierarchization. Orchestrator creates a 
hierarchy dynamically at run-time by approximating as
much as possible the higher-level goal.
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Some Intuitive Properties

Substitutability

Opportunistic Hierarchization (instance modelling)

Resource-Based Intent Evolution

Intent Evolution. Orchestrator maintains an intent as a 
steady-state, i.e., automated maintenance!
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Conclusions

Designing and programming for TOSCA involves
intent modelling

Intent modelling means empowering the 
orchestrator

Several interesting properties emerge but many are 
not that new

E.g., for services design, QoS assessment/analysis, …

But some are *extremely * interesting and may
need further research!
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Any Questions?
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That’s all folks!
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