
DevOps and Continuous Architecting
with TOSCA

Damian A. Tamburri
Technical University Eindhoven and

Jeronimus Academy of Data Science (NL)

1

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design, and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

My Wheel of Life

- 2 -

- 3 -

Mission Accomplished*!

That was a lot of hair ago...

- 4 -

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

M.Sc.
Formal Software Architecture
Representation and Reasoning

M.Sc.
Global Software
Engineering

Ph.D.
Information Mgmt. &
Software Engineering

Research Fellowship
Advanced Software
Architectures for Big Data

- 5 -

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

M.Sc.
Formal Software Architecture
Representation and Reasoning

M.Sc.
Global Software
Engineering

Ph.D.
Information Mgmt. &
Software Engineering

Research Fellowship
Advanced Software
Architectures for Big Data

- 6 -

B.Sc.
Formal Languages
and Methods for
Software Analysis,
Design and Testing

Junior Sw. Eng.
Architecture Recovery and
Roundtrip Engineering

M.Sc.
Formal Software Architecture
Representation and Reasoning

M.Sc.
Global Software
Engineering

Ph.D.
Information Mgmt. &
Software Engineering

Research Fellowship
Advanced Software
Architectures for Big Data

Assistant Professor
Socio-Technical
Intelligence

Currently:

Hot Topic for Today!

Continuous Architecting!
1. What is it, where does it come from (i.e., DevOps)
2. Where does TOSCA fit in

• Digest: w.t.h. is this TOSCA already???

3. Continuous Architecting with TOSCA
• The simple way: orchestrators make arch. Decisions
• The hard way: orchestrator controls entire process

4. Continuous Architecting with TOSCA: a real
example of the simple way!

5. Conclusions & Take-home messages

7

Hot Topic for Today!

Continuous Architecting!
“Say What???????”

8

Not something I, or EU DICE
invented...

9

Let’s check the status of your
face...

Continuous Architecting!
“Say What???????”

10

My Face when I heard of it...

Continuous Architecting!
“Say What???????”

11

Hot Topic for Today!

Continuous Architecting!

12

SAs Before…

Hot Topic for Today!

Continuous Architecting!

13

SAs Before… SAs After!

Hot Topic for Today!

Software Architectures

14

SAs Before…

Set of design decisions;
Assessed before starting
implementation, then changed
during lifecycle;
Documented;
...

Hot Topic for Today!

15

SAs Before…

Continuous Architecting!
Architecture Decisions are
not taken, they *emerge* in
a *data-driven* fashion;
Decision-Making is “Just-in-
time”, only where and when
extremely needed;
Make everything as a
product, leveraging the
small (Microservices);
…

Hot Topic for Today!

“Say What???????”

16

My Face when I heard of it...

Continuous Architecting!
“Say What???????”

17

But first... A bit of history!

Let’s take a step back to where it all began...

18

It’s 2013...

And...

19

It’s 2013...

And...

20

It’s 2013...

And...

21

Meanwhile in Software Engineering...
Top failure causes*

l Unrealistic deadlines, e.g., imposed by someone external to
the technical staff

l Requirements & people change (too) often
l Effort and resources have been estimated in an overly

optimistic way,
l Risks have not been taken into account from the start of the

project.
l Risks can be technical or human difficulties

l Communication problems among staff members
l Difficulty by the management to recognize recurrent delays

and take immediate action
l Subversive stakeholders

- 22 -
*Gartner Report 2013

l Unrealistic deadlines, e.g., imposed by someone external
to the technical staff

l Requirements & people change (too) often
l Effort and resources have been estimated in an overly

optimistic way,
l Risks have not been taken into account from the start of the

project.
l Risks can be technical or human difficulties

l Communication problems among staff members
l Difficulty by the management to recognize recurrent delays

and take immediate action
l Subversive stakeholders

- 23 -
*Gartner Report 2013

Meanwhile in Software Engineering...
Top failure causes* - An Example!

(UNFORESEEN) OVERHEAD COST: 174,000,000 $ (give or take)*

- 24 -*http://www.cio.com/article/2380827/developer/6-software-
development-lessons-from-healthcare-gov-s-failed-launch.html

Meanwhile in Software Engineering...
Top failure causes* - An Example!

“DevOps is a set of practices
intended to reduce the time
between committing a change to a
system and the change being placed
into normal production, while
ensuring high quality.”

L. Bass et Al. [11]

How is DevOps a response?

- 25 -

“DevOps is a set of practices
intended to reduce the time
between committing a change to a
system and the change being placed
into normal production, while
ensuring high quality.”

L. Bass et Al. [11]

What is DevOps?

- 26 -

DevOps Practices

Acceleration

Waste-Reduction

Omniscience

DevOps Practices: Let’s take a look

Acceleration Tactics

Use Faster Organization: Merge Dev+Ops Teams…
Infrastructure-as-Code
Use Continuous Integration Tools
Use Continuous Deployment Tools
Use Continuous Testing Tools
…

Waste Reduction Tactics

Canary Testing
A/B Testing
Reduce Documentation
Minimalistic Architecting èMicroservices
…

27

DevOps Practices: Let’s take a look

Omniscience Tactics
Monitor Everything
Monitoring-as-a-service
On-The-Fly Risk Engineering

...

28

DevOps Practices: Let’s take a look

Omniscience Tactics
Monitor Everything
Monitoring-as-a-service
On-The-Fly Risk Engineering
Continuous Architecting!

...

29

Continuous Architecting Explained

Software Architecture responds to architecture
drivers... So... “Just” upgrade the drivers for DevOps!

Design for Modifiability
Design for Observability
Design for Organisability
Design for Fast Evolution & Testability
Design for High Scalability

30

but… most of all…

Continuous Architecting Explained

Software Architecture responds to architecture
drivers... So... “Just” upgrade the drivers for DevOps!

Design for Modifiability
Design for Observability
Design for Organisability
Design for Fast Evolution & Testability
Design for High Scalability

Design for SA failure!
SA is incremental, refined from a rough draft via
neverending continuous architectural improvement!

31

but… most of all…

Continuous Architecting In
Context

32

Dev Goal: “Prepare a Software
Architecture designed to be
immediately deployable”

Ops Goal: “Observe the architecture runtime
and provide Ops feedback to Dev…then
improve architecture continuously”

DevOps processes and toolchain:
Putting it all together...

33
Image by Kharnagy (Own work) [CC BY-SA 4.0
(http://creativecommons.org/licenses/by-sa/4.0)],
via Wikimedia Commons

- Continuous
Architecting
Def. “architect for test, build and deploy,
take quality attributes into account, take
advantage of feedback from runtime” [1]

- Continuous
Integration
Def. “merge all developer
work-copies to a shared mainline frequently”
[4]
Examples. Apache Jenkins, Hudson, etc.

- Continuous
Testing Def. “run tests as part the build pipeline so that

every check-in and deployment is validated” [3]
Examples. Selenium+GitHub+LI-API, etc. …

DevOps process and toolchain

34

1.Configuration
Management

2. Server
Provisioning

3. Application
Deployment4. Monitoring

5. Self-
Adaptation

DevOps process and toolchain

35

1.Configuration
Management

2. Server
Provisioning

3. Application
Deployment4. Monitoring

5. Self-
Adaptation

Spoiler-alert!
We’re moving
towards TOSCA J

Continuous Architecting…
Where does TOSCA fit in?

I’m assuming some of you know TOSCA, but just in
case… DIGEST!

36

Towards standard Infrastructure Code

37

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

è An Application Deployment Topology, i.e., “a graph of physical artefacts that need support
for several lifecycle phases (e.g., procurement, installation, configuration, deployment,
undeployment, teardown, etc.)” [6]

Towards standard Infrastructure Code

38

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

è Infrastructure-as-code, i.e., “a blueprint detailing physical artefacts, all scripts for all
lifecycle phases and all artefacts needed for deployment” [6]

IasC
Blueprint

IasC Middleware
Scripts (e.g., Chef,
Puppet, etc.)

Deploy artefacts
(e.g., JARs, etc.)

Referenced in

Included in

Where Does TOSCA fit into?

39

Here’s What We’ve Seen there…

An application topology
3 layers

Infrastructure (Cloud or DC objects)
Platform or Middleware (App
containers)
Application modules, schemas and
configurations

Relationships between
components:

What’s hosted on what or installed on
what
What’s connected to what

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

Where Does TOSCA fit into?

40

Here’s What We’ve Seen there…

An application topology
3 layers

Infrastructure (Cloud or DC objects)
Platform or Middleware (App
containers)
Application modules, schemas and
configurations

Relationships between
components:

What’s hosted on what or installed on
what
What’s connected to what

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

TOSCA: “Topology and
Orchestration Specification
for Cloud Applications”

Where Does TOSCA fit into?

41

Here’s What We’ve Seen there…

An application topology
3 layers

Infrastructure (Cloud or DC objects)
Platform or Middleware (App
containers)
Application modules, schemas and
configurations

Relationships between
components:

What’s hosted on what or installed on
what
What’s connected to what

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

TOSCA: “Topology and
Orchestration Specification
for Cloud Applications”

Where Does TOSCA fit into?

42

Here’s What We’ve Seen there…

An application topology
3 layers

Infrastructure (Cloud or DC objects)
Platform or Middleware (App
containers)
Application modules, schemas and
configurations

Relationships between
components:

What’s hosted on what or installed on
what
What’s connected to what

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

TOSCA: “Topology and
Orchestration Specification
for Cloud Applications”

Where Does TOSCA fit into?

43

Here’s What We’ve Seen there…

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

TOSCA: “Topology and
Orchestration Specification
for Cloud Applications”

1.Configuration
Management

2. Server
Provisioning

3. Application
Deployment4. Monitoring

5. Self-
Adaptation

Remember this?

Where Does TOSCA fit into?

44

Here’s What We’ve Seen there…

Infrastructure

Middleware

Application

Host Host Network

Apache Tomcat MySQL

Mod_proxy WAR Schema

TOSCA: “Topology and
Orchestration Specification
for Cloud Applications”

1.Configuration
Management

2. Server
Provisioning

3. Application
Deployment4. Monitoring

5. Self-
Adaptation

Orchestration!

What’s in a TOSCA Topology?

component in the topology
are called Nodes

Each Node has a Type (e.g.
Host, BD, Web server).

The Type is abstract and hence
portable
The Type defines Properties and
Interfaces

An Interface is a set of hooks
(named Operations)
Nodes are connected to one
another using Relationships

TOSCA, IasC Standard

46

TOSCA Service Template [7]

TOSCA Core Ingredients

- 47 -

TOSCA Service Template

Node Type

Describes a Cloud or Software type (e.g. Server or
Apache)

Maps the type to the actual impl. of the lifecycle
interface

Node Type (cont.)

Defines properties as YAML maps
Might define capabilities (What it can provide to
other nodes)

Node Type (cont.)

Might define requirements (what it needs from
other nodes)

TOSCA Core Ingredients

- 51 -

TOSCA Service Template

Relationship Type

Requirements and Capabilities are an implicit way to
describe relationships

Usually you need the explicit way
You need hooks to configure the source or target node or
both

So relationships have types and interfaces as well

Relationships (cont.)

The basic relationship types are:
dependsOn – abstract type and its sub types:
hostedOn – a node is contained within another
connectsTo – a node has a connection configured to
another

The basic interface is configure
preconfigure_source, preconfigure_target
postconfigure_source, postconfigure_target
add_target, remove_target

Node Templates

An instance of a type (like Object to Class)
Has specific properties
Has artifacts:

What to install
How to install (mapped to interface hooks)

Has requirements and capabilities (or relationships)

Node Template (Examples)

Translated to TOSCA

Node

Node

Node

“Connects_to”
relationship

“Hosted_on”
relationship

Workflows

Imperative flow algorithm
Using a workflow engine

Timing the invocation of operations on different
node

Examples? Any BPMN specification!

But… Considered out of scope for the standard (but
currently debated, two factions formed in the
TOSCA TC)

Policies

Brings monitoring to the orchestration as input
Ongoing evaluation of Rules
Enforce SLA, Health, and anything else

Can invoke more processes
Standard Structure: <Event><Condition><Action>

Standard Types:
Access-Control;
Placement;
QoS (Quality) or (Continuity) CoS;

Example?

Event Type
<event_type_name>:

derived_from: <parent_event_type>

version: <version_number>
description: <policy_description>

Policy Definition
<policy_name>:

type: <policy_type_name>

description: <policy_description>
properties: <property_definitions>

allowed targets for policy association

targets: [<list_of_valid_target_templates>] *
triggers:

<trigger_symbolic_name_1>:

event: <event_type_name>
TODO: Allow a TOSCA node filter here

required node (resource) to monitor

target_filter:
node: <node_template_name> <node_type>
Used to reference another node related to

the node above via a relationship

requirement: <requirement_name>
optional capability within node to monitor

capability: <capability_name>
required clause that compares an attribute
with the identified node or capability

for some condition

condition: <constraint_clause>
action:

a) Define new TOSCA normative strategies

per-policy type and use here OR

b) allow domain-specific names
<operation_name>: # (no lifecycle)

TBD: Do we care about validation of types?

If so, we should use a TOSCA Lifecycle type
description: <optional description>
inputs: < list of property assignments >
implementation: <script> | <service_name>

<trigger_symbolic_name_2>:
...

<trigger_symbolic_name_n>:

Event
name of a normative
TOSCA Event Type

Condition
described as a

constraint of an
attribute of the node

(or capability)
identified by the

filter.

Action
Describes either:
a)a well-known strategy
b)an implementation

artifact (e.g., scripts,
service) to invoke

with optional property
definitions as inputs
(to either choice)

TOSCA Policy Example

Putting it All Together

TOSCA Template
contains:

Application Topology
Nodes

– Interfaces
– Properties
– Artifacts (Plugins in Cloudify)

Relationships
– Interfaces

Workflows
Policies

tosca_definitions_version: tosca_simple_yaml_1_0_0

description: >
This TOSCA simple profile deployes nodejs, mongodb, elasticsearch, logstash and

kibana each on a separate server
with monitoring enabled for nodejs server where a sample nodejs application is

running. The syslog and collectd are
insatlled on a nodejs server.

imports:
- tosca_base_type_definition.yaml
- paypalpizzastore_nodejs_app.yaml
- elasticsearch.yaml
- logstash.yaml
- kibana.yaml
- collectd.yaml
- rsyslog.yaml

dsl_definitions:
host_capabilities: &host_capabilities

container properties (flavor)
disk_size: 10 GB
num_cpus: { get_input: my_cpus }
mem_size: 4096 MB

os_capabilities: &os_capabilities
architecture: x86_64
type: Linux
distribution: Ubuntu
version: 14.04

topology_template:
inputs:

my_cpus:
type: integer
description: Number of CPUs for the server.
constraints:

- valid_values: [1, 2, 4, 8]
…

TOSCA YAML IasC Examples

WordPress+MySQL
NodeJS App+MongoDB

63©DICE 7/3/18

WebServer-DBMS-1:
WordPress - MySQL

name
WebServer

Properties
• component_version:
• admin_credential:

Requirements

Container

server
Compute

Capabilities

Container

HostedOn

Capabilities

Container

wordpress
WebApplication

Properties
• context_root:

Requirements

Container

HostedOn

mysql_dbms

DBMS
Properties
• component_version
• admin_credential
• root_password
• port

Requirements

Container

HostedOn

Capabilities

Container

mysql_database

Database
Properties
• password
• user
• port
• name

Requirements

Container

HostedOn

Capabilities

ConnectsTo

Endpoint.DB

Endpoint.DB

WebServer-DBMS-3:
Nodejs - MongoDB

nodejs
WebServer

Artifacts
• nodejs_sample_app

Requirements

Container

app_server
Compute

Capabilities

Container

HostedOn

Capabilities

Container

paypal_sample
WebApplication

Properties
• context_root:

Requirements

Container

HostedOn

mongo_dbms
DBMS

Properties
• port

Requirements

Container

HostedOn

Capabilities

Container

mongo_database

Database
Properties
• password
• user
• port
• name

Requirements

Container

HostedOn

Capabilities

ConnectsTo

Endpoint.DB

Endpoint.DB

GitHub
Repo.

Artifacts:
nodejs_sample_app

mongo_server
Compute

Capabilities

Container

Continuous Architecting…
Where does TOSCA fit in?

The Simple Way (more or less J)

Capture automated decision-making policies as TOSCA
policies, and let the Orchestrator make your
Architecture Decisions

Continuously Evaluate Decisions against SLAs (e.g.,
Monitoring + Runtime Instance-Model Checking)

Instrument DevOps Pipeline to measure the quantities
and qualities of Automated Decision-Making Policies in
the blueprint è Continuous Improvement!

67

Continuous Architecting…
Where does TOSCA fit in?

The Hard Way…

Use TOSCA blueprint to design the (1) organizational
structure of the DevOps team, the (2) Software
Architecture it maintains *and* the (3) DevOps
pipeline;

Use TOSCA-based orchestration to:
Study the performance of (1) - (3) for continuous
improvement;

Use TOSCA-based orchestration automation to make
improvement as automated as possible;

68

Continuous Architecting with
TOSCA: the EU H2020 DICE Example

o DevOps

o Model-Driven Engineering

!

Analysis

TOSCA Deployment blueprint

DICER, incremental arch. modeling
and analysis towards TOSCA

70

DICE Platform Independent Model
(DPIM)

DICE Technology Specific Model
(DTSM)

DICE Deployment Specific Model
(DDSM)

is implemented
by

is deployed
onto

TOSCA
blueprint

Analysis

Analysis

Analysis &
Optimization

M2M transformation

M2M transformation

M2T transformation

D
IC

E M
ethodology

DICER actual deployment

71

DICER Delivery Service

72

Logical
Container 1

Bluep
rint A

Platfor
m

params

Logical
Container 2

Bluep
rint B

Bluep
rint
B.2

Platfor
m

params

Logical
Container
15

Bluep
rint
B.2

DICER TOSCA technology library

o A plug-in for Cloudify
o A single import line in the TOSCA blueprint
o Node types + Chef cookbooks for Major Big Data

services
o Unified across supported IaaS vendors

73

74©DICE

IDE
based on Eclipse

Profile

Simulation

Optimizatio
n

Verification

Repository & CI
Configuration
Optimization

Delivery

Running DIA
Comp

Running DIA
Comp

Monitoring

Trace Checking

Enhancement

Anomaly Detection

Fault Injection
(Resilience)Quality Testing

MW

VM

MW

VM

MW

VMRunning DIA
Comp

And After Deployment?

DICER

75©DICE

IDE
based on Eclipse

Profile

Simulation

Optimizatio
n

Verification

Repository & CI
Configuration
Optimization

Delivery

Running DIA
Comp

Running DIA
Comp

Monitoring

Trace Checking

Enhancement

Anomaly Detection

Fault Injection
(Resilience)Quality Testing

MW

VM

MW

VM

MW

VMRunning DIA
Comp

And After Deployment?

DICER

DEV

76©DICE

IDE
based on Eclipse

Profile

Simulation

Optimizatio
n

Verification

Repository & CI
Configuration
Optimization

Delivery

Running DIA
Comp

Running DIA
Comp

Monitoring

Trace Checking

Enhancement

Anomaly Detection

Fault Injection
(Resilience)Quality Testing

MW

VM

MW

VM

MW

VMRunning DIA
Comp

And After Deployment?

DICER

DEV OPS

77©DICE

IDE
based on Eclipse

Profile

Simulation

Optimizatio
n

Verification

Repository & CI
Configuration
Optimization

Delivery

Running DIA
Comp

Running DIA
Comp

Monitoring

Trace Checking

Enhancement

Anomaly Detection

Fault Injection
(Resilience)Quality Testing

MW

VM

MW

VM

MW

VMRunning DIA
Comp

And After Deployment?

DICER

DEV
Closing
the loop! OPS

Conclusions (1)

Continuous Architecting è New arch. drivers:
Modifiability
Observability
Organisability
Speed
Failure
…

83

Conclusions (1)

Continuous Architecting è New arch. drivers:
Modifiability
Observability
Organisability
Speed
Failure
…

84

Conclusions (1)

Of these “New” architecture drivers:
Modifiability
Organisability
…

Only these are Actually New!
Observability
Speed
Failure
…

85

Conclusions (2)

New architecture drivers:
Modifiability
Observability
Organisability
Speed
Failure
…

Continuous Architecting – “more of the same, only
faster” è TOSCA-centric Software Architecting!

86

Future Work (2)

What we miss, architecturally:

A better connection between the design of software,
the design of the infrastructure, and the design of the
organization;

A precise and rigorous comparison approach between
the new languages and tools for coding
infrastructures;

Metrics to track and evaluate all of the above;

87

Conclusions & Future Work (3)

Who is the Architect?
Anyone who enables Continuous-*
Anyone who enables an Agile Organisation
Anyone who enables for new Arch. Drivers’ equivalent
metrics (e.g., Observability, Modifiability)
So… The architect is a Community Shepherd
à it can be anyone!

88

“The Architect is my Shepherd […]”

Links

DICE deployment service:
https://github.com/dice-project/DICE-Deployment-
Service

Big Data blueprint examples:
https://github.com/dice-project/DICE-Deployment-
Examples

DICER:
https://github.com/dice-project/DICER

89

https://github.com/dice-project/DICE-Deployment-Service
https://github.com/dice-project/DICE-Deployment-Examples
https://github.com/dice-project/DICER

Any Questions?

- 90 -

That’s all folks!

References

[1] Erder, Murat and Pureur, Pierre. Continuous Architecture: Sustainable Architecture in an
Agile and Cloud-Centric World. Amsterdam: Morgan Kaufmann, 2016.
[2] Continuous Testing Paperback – January 2, 2014 by W. Ariola, C. Dunlop
[3] Part of the Pipeline: Why Continuous Testing Is Essential, by Adam Auerbach, TechWell
Insights August 2015
[4] M. Fowler Continuous Integration, https://www.thoughtworks.com/continuous-
integration
[5] Chen, Lianping (2015) "Continuous Delivery: Huge Benefits, but Challenges Too” IEEE
Software. 32 (2): 50.
[6] http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd03/TOSCA-
Simple-Profile-YAML-v1.0-csd03.html
[7] P. Lipton, D. Palma, M. Rutkowski, and D. A. Tamburri, “Tosca solves big problems in
the cloud and beyond!” IEEE Cloud, vol. 21, no. 11, pp. 31–39, 2016.
[8] Bengtsson, PerOlof, Lassing, Nico, Bosch, Jan and van Vliet, Hans. "Architecture-level
modifiability analysis (ALMA)." Journal of Systems and Software 69 , no. 1--2 (2004): 129--
147.
[9] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Uncovering Latent Social Communities
in Software Development.', IEEE Software 30 (1) , 29-36 .
[10] M. Di Penta, D. A. Tamburri, Combining Quantitative and Qualitative Methods in
Empirical Software Engineering Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM Sigsoft Symposium of the Foundations of
Software

91

https://www.thoughtworks.com/continuous-integration
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7006384

Other Biblio

[11] Bass, L. J.; Weber, I. M. & Zhu, L. (2015), DevOps - A Software Architect's
Perspective. , Addison-Wesley .
[12] Tamburri, D. A. & Nitto, E. D. (2015), When Software Architecture Leads to
Social Debt., in Len Bass; Patricia Lago & Philippe Kruchten, ed., 'WICSA' , IEEE
Computer Society, pp. 61-64 .
[13] Tamburri, D. A.; Kruchten, P.; Lago, P. & van Vliet, H. (2015), 'Social debt in
software engineering: insights from industry.', J. Internet Services and
Applications 6 (1) , 10:1-10:17 .
[14] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Organizational social
structures for software engineering.', ACM Comput. Surv. 46 (1) , 3 .

- 92 -

