s Jheronimus
Academy
® of Data Science

DevOps and Continuous Architecting
with TOSCA

Damian A. Tamburri

Technical University Eindhoven and
Jeronimus Academy of Data Science (NL)

My Wheel of Life JADS

B.Sc. Junior Sw. Eng.

Formal Languages Architecture Recovery and
and Methods for Roundtrip Engineering
Software Analysis,

Design, and Testing

Mission Accomplished*! J !1 D ? —

*"

-4" wt b‘l

That was a lot of hair ago...

JADS=

(-esa

B.Sc. " : \\Junior Sw. Eng.

Formal Languages Architecture Recovery and

and Methods for Roundtrip Engineering

Software Analysis, M.Sc.

Design and Testing Formal Software Architecture

Representation and Reasoning

Research Fellowship Ph.D. . M.Sc.
Advanced Software Information Mgmt. & Global Software
Architectures for Big Data Software Engineering Englneerlng

|\ POLITECNICO

MILANO 1863

V U UNIVERSITY
R° AMSTERDAM

JADS=

(-esa

B.Sc. " : \\Junior Sw. Eng.

Formal Languages Architecture Recovery and

and Methods for Roundtrip Engineering

Software Analysis, M.Sc.

Design and Testing Formal Software Architecture

Representation and Reasoning

Research Fellowship Ph.D. . M.Sc.
Advanced Software Information Mgmt. & Global Software
Architectures for Big Data Software Engineering Englneerlng

8

DICE

V U UNIVERSITY
R° AMSTERDAM

Assistant Professor (s ih:,’-n;-u,
C urren t I y Socio-Technical

Intelligence ‘)

B.Sc. Junior Sw. Eng.

Formal Languages Architecture Recovery and

and Methods for Roundtrip Engineering

Software Analysis, M.Sc.

Design and Testing Formal Software Architecture

Representation and Reasoning

Research Fellowship Ph.D. . M.Sc.
Advanced Software Information Mgmt. & Global Software
Architectures for Big Data Software Engineering Englneerlng

:‘\37* POLITECNICO
F35) MILANO 1863

V U UNIVERSITY
R° AMSTERDAM

Hot Topic for Today! .l nﬂ D 5‘

e Continuous Architecting!

What is it, where does it come from (i.e., DevOps)

2. Where does TOSCA fit in
- Digest: w.t.h. is this TOSCA already???

—
.

3. Continuous Architecting with TOSCA
- The simple way: orchestrators make arch. Decisions
- The hard way: orchestrator controls entire process

4. Continuous Architecting with TOSCA: a real
example of the simple way!

5. Conclusions & Take-home messages

7

Hot Topic for Today!]nl) 3 o

e Continuous Architecting!

Not something |, or EU DICE ; g
invented... J!l D 2

Go OlP. CoNlNUOUS architecting Q

e 30 % Googe Home
Al nagod Videos Shopprg Neas Wovn Settings Toos Hocenrt Updates
y P —
FOOO—— s
At Fyoed
Continuous Architecture W R IO I RS P OIS A A
FEROUICES. it G 0OUWSLIANY aset-viow Cim Tassetid <454 378 ~ - — T — S S - e a—
This tak wiroduces Continuous Architecture. Dased on six princpies of Agle and Contruous Dedvery .
practcas arc & st of looks hat suppont Peam - - G S— - “: - -

Continuous architecture
in a large distributed agile
organization

o

Continuous Architecting
& DevOps

Let’s check the status of your N
face... ‘lnl) 2

e Continuous Architecting!

10

My Face when | heard of it... J.ﬂ D ?

e Continuous Architecting!

11

Hot Topic for Today! 1 1ADS

¢ Continuous Architecting!

C.. ..
}: ° ’ ...
. ..‘
i . The
f o i
-

SAs Before...

12

Hot Topic for Today! 1 1ADS

¢ Continuous Architecting!
CONTINUQUS

2 -t | 4

. - -+)

-)

5 ® 4 . |
» |

-
.

™~ . ! {

. '
LR} .

] * Jvwm L
-
-
. -
-
- -
bo i
3 © } } ’ {
» ’:
- J ! }
o » . e "4 ’
o~

g

SAs Before... 2 SAs After!

13

Hot Topic for Today!]nﬂ D 5‘

e Software Architectures

SAs Before...

e Set of design decisions;
e Assessed before starting

implementation, then changed
during lifecycle;

e Documented;
® ...

14

Hot Topic for Today! ,l 11 D ?

e Continuous Architecting!

» Architecture Decisions are e f
not taken, they *emerge* in csciddhes
a *data-driven* fashion;

» Decision-Making is “Just-in- |
time”, only where and when !
extremely needed;

» Make everything as a

product, leveraging the
small (Microservices);

SAs Before...

15

Hot Topic for Today!]nD o e

16

My Face when | heard of it... J.ﬂ D ?

e Continuous Architecting!

17

But first... A bit of history! JRADS

e Let’s take a step back to where it all began...

18

It’s 2013... JRAD G

& And...

19

& And...

20

EU election 2014: taly’s Renzi triumphs as comic Grillo
e And... loses ground

New PM soores sweeping victory (n dection, leaving former comic Beppx
Grllo's anti-ostabinbanent 5-Star Movement and Svio Berlusconi’s Yorza

Itada tratling

21

Meanwhile in Software Engineering... o
Top failure causes® JI“)s

» Unrealistic deadlines, e.g., imposed by someone external to
the technical staff

» Requirements & people change (too) often

» Effort and resources have been estimated in an overly
optimistic way,

 Risks have not been taken into account from the start of the
project.

. Risks can be technical or human difficulties

« Communication problems among staff members

» Difficulty by the management to recognize recurrent delays
and take immediate action

« Subversive stakeholders

-22 -
*Gartner Report 2013

Meanwhile in Software Engineering... >
Top failure causes* - An Example! Jﬂ |)s

» Unrealistic deadlines, e.g., imposed by someone external
to the technical staff

- Requirements & people change (too) often

« Effort and resources have been estimated in an overly
optimistic way,

o Risks have not been taken into account from the start of the
project.

. Risks can be technical or human difficulties

« Communication problems among staff members

o Difficulty by the management to recognize recurrent delays
and take immediate action

» Subversive stakeholders

-23 -
*Gartner Report 2013

Meanwhile in Software Engineering... ¢ o
Top failure causes® - An Example! ."1 l)\ o

(UNFORESEEN) OVERHEAD COST: 174,000,000 $ (give or take)*

This is going to hurt

'_ ——
—

OBAMACARE

*http:/lwww.cio.comarticle/2380827/developer/6-software- -24-

development-lessons-from-healthcare-gov-s-failed-launch.html

How is DevOps a response? JI‘D 5‘

“DevOps is a set of practices
intended to reduce the time
between committing a change to a
system and the change being placed
into normal production, while
ensuring high quality.”

L. Bass et Al. [11]

-25 -

What is DevOps? 11ADS

“DevOps is a set of practices
intended to reduce the time
between committing a change to a
system and the change being placed
into normal production, while
ensuring high quality.”

L. Bass et Al. [11] y | fi
cceieration

DevOps Practices Waste-Reduction

Omniscience

- 26 -

DevOps Practices: Let’s take a look J!‘ D 5"

e Acceleration Tactics

» Use Faster Organization: Merge Dev+QOps Teams...
» Infrastructure-as-Code

» Use Continuous Integration Tools
» Use Continuous Deployment Tools

» Use Continuous Testing Tools

¢ Waste Reduction Tactics

» Canary Testing
» A/B Testing

» Reduce Documentation
» Minimalistic Architecting =» Microservices

’ L XX J

27

Jhersmiemys
Azadery

DevOps Practices: Let’s take a look J.‘l D Ss

¢ Omniscience Tactics
» Monitor Everything

» Monitoring-as-a-service
» On-The-Fly Risk Engineering

28

DevOps Practices: Let’s take a look J.fl D S"g?‘;{’nf-ﬂf-

¢ Omniscience Tactics
» Monitor Everything

» Monitoring-as-a-service
» On-The-Fly Risk Engineering
» Continuous Architecting!

29

Continuous Architecting Explained ”‘1 D Ss

e Software Architecture responds to architecture
drivers... So... “Just” upgrade the drivers for DevOps!

» Design for Modifiability

» Design for Observability

» Design for Organisability

» Design for Fast Evolution & Testability
» Design for High Scalability

but... most of all...

30

Continuous Architecting Explained ”“) Ss

e Software Architecture responds to architecture
drivers... So... “Just” upgrade the drivers for DevOps!

» Design for Modifiability

» Design for Observability

» Design for Organisability

» Design for Fast Evolution & Testability
» Design for High Scalability

but... most of all...

» Design for SA failure!

e SAis incremental, refined from a rough draft via
neverending continuous architectural improvement!

31

Continuous Architecting In =
Context jn D)

Dev Goal: “Prepare a Software Ops Goal: “Observe the architecture runtime
Architecture designed to be and provide Ops feedback to Dev...then

immediately depoy;i e” improve architecture continuously”

 WAS

DevOps processes and toolchain: : S
Putting it all together... J!l D +

Continuous
Architecting

Def. “architect for test, build and deploy,

take quality attributes into account, take

advantage of feedback from runtime” [1] .
o\
=

v

Continuous —
ntegration

Def. “‘merge all developer

work-copies to a shared mainline frequent ‘q,/
[4] s
Examples. Apache Jenkins, Hudson, etc

Continuous

€SUNG pef. “run tests as part the build pipeline so that

every check-in and deployment is validated” [3]
Examples. Selenium+GitHub+LI-API, efc.

Image by Kharnagy (Own work) [CC BY-SA 4.0

(http://creativecommons.org/licenses/by-sa/4.0)],
via Wikimedia Commons

33

DevOps process and toolchain ””\ D S

1.Configuration
Management

5. Self- 2. Server

Adaptation Provisioning

o 3. Application
4. Monitoring Degl%yment

DevOps process and toolchain ””\ D S

1.Configuration
Management

5. Self-

2. Server
Adaptation

Provisioning

Spoiler-alert!
We ’re mOVing 4. Monitori 3. Application
towards TOSCA @ -

35

Continuous Architecting... J ‘(1 D b
Where does TOSCA fit in? .

e |I’m assuming some of you know TOSCA, but just in
case... DIGEST!

36

Towards standard Infrastructure Code .”I D \;

= An Application Deployment Topology, i.e., “a graph of physical artefacts that need support

for several lifecycle phases (e.g., procurement, installation, configuration, deployment,
undeployment, teardown, etc.)” [6]

Infrastructure

Middleware

Application

37

\ Jhersnirmys
Azadermy

Towards standard Infrastructure Code].ﬂ D S)

= Infrastructure-as-code, i.e., “a blueprint detailing physical artefacts, all scripts for all
lifecycle phases and all artefacts needed for deployment” [6]

lasC
Blueprint

Referenced in

lasC Middleware

Scripts (e.g., Chef,

Middleware Puppet, etc.)

Included in

Deploy artefacts
(e.g., JARs, etc.)

Application

Where Does TOSCA fit into? JADS &
Here’s What We’ve Seen there...

An application topology

e 3 layers
» Infrastructure (Cloud or DC objects)
» Platform or Middleware (App

containers)
» Application modules, schemas and

configurations
e Relationships between

components:

» What’s hosted on what or installed on
what

» What’s connected to what

39

Where Does TOSCA fit into? JADS &
Here’s What We’ve Seen there...

An application topology

e 3 layers
» Infrastructure (Cloud or DC objects)
» Platform or Middleware (App

containers)
» Application modules, schemas and

configurations
e Relationships between

components:
TOSCA: "Topology and P : .
: e 4 » What’s hosted on what or installed on
Orchestration Specification what

for Cloud Applications” . What’s connected to what

40

Where Does TOSCA fit into?

Here’s What We’ve Seen there...

TOSCA: “Topology

41

Where Does TOSCA fit into? JADSG

Here’s What We’ve Seen there...

Orchestration

42

Where Does TOSCA fit into?

Here’s What We’ve Seen there...

Orchestration

43

Where Does TOSCA fit into? JADSG

Here’s What We’ve Seen there...

Orchestration

What’s in a TOSCA Topology?]!1 D Ss e

component in the topology
are called Nodes

Each Node has a Type (e.g.
Host, BD, Web server).

» The Type is abstract and hence
portable

» The Type defines Properties and
Interfaces

An Interface is a set of hooks
(named Operations)

Nodes are connected to one
another using Relationships

TOSCA, lasC Standard

TOSCA Service Template [7]

JAD

(Topology Template

! | type for

Node Types \

Node Type
(w] Dt sl nmy

w)vpol

ﬂtm»onshp chs
(. RelationshipType)

~h0 =ys

~) DaScm

TOSCA Core Ingredients J !l D Ss s

TOSCA Service Template
Topology Templnte

- 47 -

Node Type

JAADS

e Describes a Cloud or Software type (e.g. Server or

Apache)

e Maps the type to the actual impl. of the lifecycle

interface

tosca. interfaces.node.Lifecycle:

create:

description:

configure:
description:
start:
description:
stop:
description:
delete:
description:

Basic lifecycle create operation.

Basic lifecycle configure operation.

Basic lifecycle start operation.
Basic lifecycle stop operation,

Basic lifecycle delete operation.

....

) of Data Salence

Node Type (cont.) j !.‘ |) S -

e Defines properties as YAML maps
e Might define capabilities (What it can provide to
other nodes)

tosca.nodes .DaMS
derived from: tosca.nodes.SoftwareComsponent
properties:
ded_root password:
type: string
description: the root password for the DBMS service
el _port:
type: integer
JRSCr : : 1isten to for data and requests

host:

type: Contaliner
contairmee types: [tosca.nodes.Database)

Node Type (cont.) JADS

e Might define requirements (what it needs from
other nodes)

tosca.nodes.Database:
cerived_from: tosca.modes, oot
properties:
db_user:
type: string
description: user accownt nase for DR admisistration
db_passwonrd:
type: string
description: the password for the D8 user account
db port:
type: Lnteger
description: the port the underlying database service will listen to data
dd_name:
type! str

of the database

requirenesats:
« DOSt! tosca.nodes.DEMS

~ database_endpoint: tosca.capabilities.DatadaseEndpoint

TOSCA Core Ingredients J !l D 3 s

TOSCA Service Template
Topology Templnte

-51 -

¢ Requirements and Capabilities are an implicit way to
describe relationships

e Usually you need the explicit way

» You need hooks to configure the source or target node or
both

e 50 relationships have types and interfaces as well

Relationship Type JRADEGE

Relationships (cont.) JRADGE

e 1he basic relationship types are:
» dependsOn - abstract type and its sub types:
» hostedOn - a node is contained within another

» connectsTo - a node has a connection configured to
another

e Ihe basic interface is configure
» preconfigure_source, preconfigure_target
» postconfigure_source, postconfigure_target
» add_target, remove_target

Node Templates JRADEGE

An instance of a type (like Object to Class)
Has specific properties

e Has artifacts:

» What to install
» How to install (mapped to interface hooks)
Has requirements and capabilities (or relationships)

Node Template (Examples) J DG

node_templates:
wordpress:

type: tosca.nodes.WebApplication.wWordPress
properties:

omitted here for sake of brevity
requirenents:

-~ host: apache

~ database: wordpress_db

interfaces:
tosca.interfaces.relationships.Configure:
pre_configure_source: scripts/wp_db_configure.sh

node_templates:
wordpress:
type: tosca.nodes.WebApplication.WordPress
properties:
omitted here for sake of brevity
requirements:
- host: apache
- database: wordpress_db
relationship_type: my.types.WordpressDbConnection

Translated to TOSCA “'1 D ? =S

Workflows JRA DG

Imperative flow algorithm

e Using a workflow engine
e Timing the invocation of operations on different

node
Examples? Any BPMN specification!

But... Considered out of scope for the standard (but
currently debated, two factions formed in the
TOSCA T(C)

Policies J I,‘ |) J

Brings monitoring to the orchestration as input
Ongoing evaluation of Rules

Enforce SLA, Health, and anything else

Can invoke more processes
Standard Structure: <Event><Condition><Action>

Standard Types:

» Access-Control;

» Placement;

» QoS (Quality) or (Continuity) CoS;
Example?

TQSCA Policy Example

j ﬂ D > E
%

Event Type

Sl L >
derived_from: <parent event tvype>

version: < i >
descriptiohn® cription>

Event
name of a normative
TOSCA Event Type

Condition
described as a
constraint of an
attribute of the node
(or capability)
identified by the
filter.

Action
Describes either:
a)a well-known strategy
b)an implementation
artifact (e.g., scripts,
service) to invoke

with optional property
definitions as inputs
(to either choice)

Policy Definition

<polic

name> :

TYPe ! (Rl

description: < i iptiogn>
properties: it >

allowed targets for policy association

targets: [<list_of_valid_target_templates>] *
triggers:

<trigger_symbolic_name_1>:

<tr.

event: <event_type_name>

#
#

#
#

#

TODO: Allow a TOSCA node filter here
required node (resource) to monitor
rget_filter:

node: <node_template_name> <node_type>
Used to reference another node related to

the node above via a relationship

requirement: <requirement_name>
optional capability within node to monitor

capability: <capability_name>

required clause that compares an attribute
with the identified node or capability

for some condition

condition: <constraint_clause>

action:

a) Define new TOSCA normative strategies
per-policy type and use here OR

b) allow domain-specific names
<operation_name>: # (no lifecycle)

TBD: Do we care about validation of types?

If so, we should use a TOSCA Lifecycle type
description: <optional description>

inputs: <list of QLopClQ2Ri00MmERly >
implementation: <script> | <service_name>
“er.symbolic_name_2>:

<trigge _symbolic_name_n>:

Putting it All Together JADS -

tosca_definitions_version: tosca_simple_yaml_1_0_0

description: > . I OS(A I ‘ I I I lat‘
This TOSCA simple profile deployes nodejs, mongodb, elasticsearch, logstash and

kibana each on a separate server

°
with monitoring enabled for nodejs server where a sample nodejs application is)

running. The syslog and collectd are ‘ O n a] I l S
[J

insatlled on a nodejs server.

i"j rth(:sr::sa:_base_type_definition.yaml > Application TOpOlOgy

- paypalpizzastore_nodejs_app.yaml
- elasticsearch.yaml d
- logstash.yaml ® NO eS

- kibana.yaml

- collectd.yaml - |nterfaCeS

- rsyslog.yaml .

o st - Properties

oot prasontioe Ty - Artifacts (Plugins in Cloudify)

disk_size: 10 GB

num_cpus: { get_input: my_cpus } ® RelationShipS

mem_size: 4096 MB
os_capabilities: &os_capabilities

architecture: x86_64 B Interfaces

type: Linux

distribution: Ubuntu > WorkflOWS

version: 14.04

topology_template: [POliCieS

inputs:
my_cpus:
type: integer
description: Number of CPUs for the server.

constraints:
- valid_values: [1, 2,4, 8]

TOSCA YAML lasC Examples JJAID &5

e WordPress+MySQL
¢ NodelS App+MongoDB

©DICE 7/3/18 63

WebServer-DBMS-1:

WordPress - MySQL J I‘ ') (J‘,:.;‘."‘Zm
‘)

mysql_database

wordpress

Properties

Properties

* context_root: J
* passwor

Requirements

* user

Requirements
* port

Endpoint.DB

* name

Capabilities

Endpoint.DB

mysql_dbms

Properties
* component_version:
* admin_credential:

Properties

* component_version

* admin_credential
* root_password

Capabilities

GitHub
Repo.

Artifacts:
nodejs_sample_app

Properties

Artifacts

* nodejs_sample_app

* context_root:

paypal_sample

Requirements

Capabilities

WebServer-DBMS-3:
Nodejs - MongoDB

Endpoint.DB

JAD

Properties
* password

Requirements

* user
* port

* name

Capabilities

mongo_dbms

Properties

(

%

Jhersnimys
Azadery

) of Data Salence

Continuous Architecting... J J“l D ;
%

Where does TOSCA fit in?

e The Simple Way (more or less €)

» Capture automated decision-making policies as TOSCA
policies, and let the Orchestrator make your

Architecture Decisions

» Continuously Evaluate Decisions against SLAs (e.g.,
Monitoring + Runtime Instance-Model Checking)

» Instrument DevOps Pipeline to measure the quantities

and qualities of Automated Decision-Making Policies in
the blueprint = Continuous Improvement!

67

Continuous Architecting... J J"l D S
%

Where does TOSCA fit in?

e The Hard Way...

» Use TOSCA blueprint to design the (1) organizational
structure of the DevOps team, the (2) Software

Architecture it maintains *and* the (3) DevOps
pipeline;

» Use TOSCA-based orchestration to:

e Study the performance of (1) - (3) for continuous
improvement;

e Use TOSCA-based orchestration automation to make
improvement as automated as possible;

68

Continuous Architecting with J !1 D (s as
TOSCA: the EU H2020 DICE Example -

o DevOps
DEV OPS
inf

= BN S o
2 \\ 4
X 7 |
04 s
5 3 =10
o S
0

ngineer

Q I [l
- —_—
o ———
- -t e ey —
—_——
-
-
_———— e —— . ——
— —— —— —— —-—
B e —
-
t— e
——— e e —— e
.- -
-
_—— - ——— o —
— — —— -
——

DICER, incremental arch. modeling”-.l D&
and analysis towards TOSCA .

DICE Deployment Specific Model Analysis &

DDSM Optimization
M2T transformation‘

TOSCA
blueprint |

DICE Platform Independent Model
DPIM

M2M transformationl 's' implemented
y
DICE Technology Specific Model
DTSM

M2M transformation is deployed
onto

ABojopoyis|N 3210

70

DICER actual deployment

”‘T"’"-'—" RIS A

Jhersnimys
Azademy

‘) of Data Salence

JADS

? b oow piflmsnge g vptean

W Hain us lacaile ha 2eee

BRI 00 0. 42 22 80007 } 1

Findshed

SCESS

€ C @ 1721490151 . = P\ last Attt - * @ Q49 a0
i1 apsiacge [l oy [) Coteboratue Pasmwnc O Mojraden 32 Ot code rewew Ot Opentasce OCL IO [Paguter Poi -
Jerkim OCE Dwrmo 2016-11 Degtoy Spack P o
[IMQ] -~ Container Buty, Blueprint s lastalling
[Iwr0)] « Container buay, Slueprint s lsatelling
{DW0] - Contadner Buty, blusprint Lo isstalling
{D0] ~ Comapliner By, bluepeint LS Lastalling
({INFO)] - Contadner Buty, bloeprint i3 lsatalling
{IVFO] - Comtadner sy, Musprint L5 Iastalling
{INFO] « Contedner Buay, blusprint i3 isatelling
[IWFO] - Container Busy, blusprint s lastalling
[0] ~ Comtalner Bbusy, blueprint s lastallirg
(DO] - Contaimer Buny, blusprint 4 {satalling
[IMQ] - Comtalner Busy, blusprint Is (astalling
{INFO] « Comtednmer Buny, bluepcint i3 Lsatelll
[IWFO] -~ Comtadner Busy, blusprint is lastalling
[IMG] » Comtainer Budy, blueprint is lastelling
[{IMFQ] - Contadner Swty, blusprint iz lastalling
[INFQ] -~ Contaliner By, blueprint Ls lastalling
{INrO | Container tuay, blueprint i3 1-:‘..11"(
[IAFQ] - Comtplner Busy, blusprint Is lastalling
{INFO] « Deployment i3 doece
{IAFQ] - Ovecling DICE Deplopment Service R
[ING] + Ohecuing OICE Deployment Service sthentication fote
{IWFO] « Oetalining cutputs for contalner 63103%4e-S0A0-4R0T-DOS2-0712141deCd
[Iw0] Inforsation seccessfully chtalned
j‘:ot:vh' (“sperk_master ul®: {“Sescription®: “ipache Store meater ULI®, “value®

Page germiated New2) 20 RS2 1A AMCET BESIAP Mrtmaym 27T

DICER Delivery Service 1 1ADS

platfor E P : Platfor
m]] - : m
params m - : params

DICER TOSCA technology library ~ JEY D%

- A plug-in for Cloudify
- A single import line in the TOSCA blueprint

- Node types + Chef cookbooks for Major Big Data
services

- Unified across supported laaS vendors

And After Deployment? JADSH™-

Anomaly Detection
Trace Checking

oo ||y
“

Configuration
Optimization

< IDE
based on Eclipse
g

©DICE

| | Repository & Cl

===

And After Deployment? JADSH™-

II

—~—
) Configuration
| Repository & Cl Optimization

Delivery

-

IDE
based on Eclipse

I —

—~—
Configuration

Repository & Cl Optimization

q

I
I —

And After Deployment? JAAD S

Closing
the loop!

Anomaly Detection

DEV OPS

=

| | Repository & Cl

===

IDE
based on Eclipse

-
2

©DICE

Conclusions (1) JADS

e Continuous Architecting = New arch. drivers:
» Modifiability
» Observability
» Organisability
» Speed
» Failure

' 00

83

Conclusions (1) JRAD G

e Continuous Architecting = New arch. drivers:
» Modifiability
» Observability
» Organisability
» Speed
» Failure

' 00

84

Conclusions (1) JADS

e Of these “New” architecture drivers:
» Modifiability
» Organisability
> ...
e Only these are Actually New!
» Observability
» Speed
» Failure

’ [X X J]

85

Conclusions (2) JADS

e Continuous Architecting - “more of the same, only
faster” = TOSCA-centric Software Architecting!

86

Future Work (2) ,”1 D ?

¢ What we miss, architecturally:

» A better connection between the design of software,
the design of the infrastructure, and the design of the

organization;

» A precise and rigorous comparison approach between
the new languages and tools for coding

infrastructures;

» Metrics to track and evaluate all of the above;

87

Conclusions & Future Work (3) ”’x D .5;

e Who is the Architect?
» Anyone who enables Continuous-*
» Anyone who enables an Agile Organisation

» Anyone who enables for new Arch. Drivers’ equivalent
metrics (e.g., Observability, Modifiability)

» So... The architect is a Community Shepherd
- it can be anyone!

“The Architect is my Shepherd [...]”

88

ks JADS=

e DICE deployment service:
28rvice

e Big Data blueprint examples:
Examples

e DICER:

httos: //githul dice-proiect/DICER

89

https://github.com/dice-project/DICE-Deployment-Service
https://github.com/dice-project/DICE-Deployment-Examples
https://github.com/dice-project/DICER

That’s all folks! JRDSGE

Any Questions?

-90 -

References .l I\ D Ss

[1] Erder, Murat and Pureur, Pierre. Continuous Architecture: Sustainable Architecture in an
Agile and Cloud-Centric World. Amsterdam: Morgan Kaufmann, 2016.

[2] Continuous Testing Paperback - January 2, 2014 by W. Ariola, C. Dunlop

[3] Part of the Pipeline: Why Continuous Testing Is Essential, by Adam Auerbach, TechWell
Insights August 2015

[4] M. Fowler Continuous Integration, https://www. thoushtworks.com/continuous-
jntegration

[5] Chen, Lianping (2015) _Continuoys Deliverv. Huce Benefits, byt Challences 100" IEEE
Software. 32 (2): 50.

[6] http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd03/TOSCA-
Simple-Profile-YAML-v1.0-csd03.html

[7] P. Lipton, D. Palma, M. Rutkowski, and D. A. Tamburri, “Tosca solves big problems in
the cloud and beyond!” IEEE Cloud, vol. 21, no. 11, pp. 31-39, 2016.

[8] Bengtsson, PerOlof, Lassing, Nico, Bosch, Jan and van Vliet, Hans. "Architecture-level
modifiability analysis (ALMA)." Journal of Systems and Software 69 , no. 1--2 (2004): 129--
147.

[9] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Uncovering Latent Social Communities
in Software Development.’, IEEE Software 30 (1), 29-36 .

[10] M. Di Penta, D. A. Tamburri, Combining Quantitative and Qualitative Methods in
Empirical Software Engineering Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and the ACM Sigsoft Symposium of the Foundations of
Software

91

https://www.thoughtworks.com/continuous-integration
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7006384

Other Biblio JRA DG

[11] Bass, L. J.; Weber, I. M. & Zhu, L. (2015), DevOps - A Software Architect’s

Perspective. , Addison-Wesley .

[12] Tamburri, D. A. & Nitto, E. D. (2015), When Software Architecture Leads to
Social Debt., in Len Bass; Patricia Lago & Philippe Kruchten, ed., 'WICSA", IEEE
Computer Society, pp. 61-64 .

[13] Tamburri, D. A.; Kruchten, P.; Lago, P. & van Vliet, H. (2015), 'Social debt in
software engineering: insights from industry.’, J. Internet Services and
Applications 6 (1) , 10:1-10:17 .

[14] Tamburri, D. A.; Lago, P. & van Vliet, H. (2013), 'Organizational social
structures for software engineering.’; ACM Comput. Surv. 46 (1), 3.

-92 -

