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Ecosystems: People, Systems, and Things
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Ecosystems for 10T Systems




Perspectives on the |oT: Edge, Cloud, Internet

Things

(a) A cloud-centric perspective:  (b) An Internet-centric perspective:
Edge as “edge of the cloud” Edge as “edge of the Internet”



Cloud-centric perspective

Assumptions

* Cloud provides core services; Edge provides local proxies for the Cloud (offloading parts of the cloud’s
workload)

Edge Computers

e play supportive role for the loT services and applications

e Cloud computing-based loT solutions use cloud servers for various purposes including massive computation,
data storage, communication between loT systems, and security/privacy

Missing

* |n the network architecture, the cloud is also located at the network edge, not surrounded by the edge

 Computers at the edge do not always have to depend on the cloud; they can operate autonomously and
collaborate with one another directly without the help of the cloud



Internet-centric perspective

Assumptions

* Internet is center of loT architecture; Edge devices are gateways to the Internet (not the Cloud)
e Each LAN can be organized around edge devices autonomously

* Local devices do not depend on Cloud

Therefore

* Things belong to partitioned subsystems and LANs rather than to a centralized system directly
* The Cloud is connected to the Internet via the edge of the network

 Remote loT systems can be connected directly via the Internet. Communications does not have to go via the
Cloud

* The Edge can connect things to the Internet and disconnect traffic outside the LAN to protect things ->
loT system must be able to act autonomously



Smart City Example
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Dynamic Analytics (e.g., Smart City)
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Vertical vs. Horizontal Edge Architecture
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Kim, H., Lee, E.A., Dustdar, S. (2019). Creating a Resilient loT With Edge Computing,
I[EEE Computer 2019 forthcoming



Paradigm 1: Elasticity (Resilience)

(Physics) The property of returning to an initial form or state
following deformation

/% stretch when a force stresses them

e.g., acquire new resources, reduce quality

shrink when the stress is removed

e.g., release resources, increase quality _\%



Elastic Computing > Scalability

/

Resource elasticity
Software / human-based
computing elements,

multiple clouds

elasticity
rewards, incentives

Elasticity

g

Quality elasticity
Non-functional parameters e.g.,
performance, quality of data,
service availability, human

trust

Dustdar S., Guo Y.,
Satzger B., Truong H.
(2012) Principles of Elastic
Processes, IEEE Internet
Computing, Volume:

16, Issue: 6, Nov.-Dec.
2012



http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel%20PrinciplesOfElasticProcesses%20SD.pdf
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355499

High level elasticity control

#SYBL.CloudServicelLevel

LoadBalancerUnit
Consl: CONSTRAINT responseTime <5 ms _ .@ . |
EventProcessingUnit T2:STRATEGY CASE responseTime < 10 ms
Cons2: CONSTRAINT responSETime <10 ms EventProcessingTopology @ AND avgThroughput < 200 operations/s:scalein;
WHEN nbOfUsers > 10000 -
Strl: STRATEGY CASE fUIﬁIIEd(ConSI) OR 802:CONSTRA\NT responseTime < 30 ms;
fulfilled(Cons2): minimize(cost)
#SYBL.ServiceUnitLevel -
ElasticloT
Str2: STRATEGY CASE ioCost < 3 Euro : sl oy
maxim iZE( dataFreshness ) sn :STRATEGY CASE avgBufferSize < 50 #:scalein;
#SYBL.CodeRegionLevel
Cons4: CONSTRAINT dataAccuracy>90% AND pataControllertnt GOl
cost<4 Euro DataEndTopology EjataNodeUnit Sﬂ :STRATEGY CASE cpuUsage < 40 %:scalein;

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar, "SYBL: an Extensible Language for Controlling Elasticity in Cloud
Applications", 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), May 14-16, 2013, Delft, Netherlands

Copil G., Moldovan D., Truong H.-L., Dustdar S. (2016). rSYBL: a Framework for Specifying and Controlling Cloud Services Elasticity. ACM
Transactions on Internet Technology



Elasticity Model for Cloud Services

Moldovan D., G. Copil, Truong H.-L., Dustdar S. (2013). MELA:

Monitoring and Analyzing Elasticity of Cloud Service. CloudCom
2013

Elasticity Pathway functions: to characterize the
elasticity behavior from a general/particular view
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. Dustdar S., Fernandez P., Garcia J. M., Ruiz-Cortés A. (2019). Elastic
E d ge & B ‘ O C kC h a I n S Smart Contracts across Multiple Blockchains. 2nd International Symposium
on Foundations and Applications of Blockchain (FAB 2019), April 5, 2019,

Los Angeles, CA, USA
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e Granularity (Fine/Coarse): Blockchain assigned to single level (fine) or multiple (coarse)
» Accessibility (Private / Public): Private BC or public open system; analyze BC by different
agents?

* Deployment Model (Virtual/Real):Virtual BCs materialized inside a regular BC


http://www.infosys.tuwien.ac.at/Staff/sd/papers/FAB_2019_SD_Elastic.pdf
https://scfab.github.io/2019/index.html
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Edge & Blockchains — Integration aspects

Level N

- Accessibility Deployment

Fine Hybrid Regular
2 Coarse Hybrid Regular
3 Fine Public Virtual

4 Coarse Private Virtual



Smart contracts are executed
within a single Blockchain

EIastic e Resources
e Quality

Contracts e Cost

Make data available
across 2 different

chains (virtual or regular)
with horizontal

(same level) Elastic Glue Elastic Analytics

or vertical
(different levels) Contracts Contracts




Granularity Accessibility Deployment T ——— l

Coarse Public Virtual

Fragments of a Blockchain: Block i to Block i+7




Accessibility Deployment i I

Coarse Public Virtual

Fragments of a Blockchain: Block i to Block i+7

S1: loT sensor data



Accessibility Deployment i I

Coarse Public Virtual

Fragments of a Blockchain: Block i to Block i+7

S1: loT sensor data

S2: loT sensor data
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S1: loT sensor data

S2: 1oT sensor data

e.g. creating a service for “presence prediction” (alpha) for the next steps



Granularity Accessibility Deployment

Coarse

Public

Virtual

EGC: Elastic Glue Contract
2 types of EGCs:

a) EGC1: aggregates Level 1
info + brings it as new data
to Level 2

a) EGC2: (implemented as an
oracle) imports data off-
chain to Level 2



Towards Edge Intelligence

Computational Fabric
e dispersed resources allow training, monitoring, serving of models

 Heterogeneity of applications and models requires
e (1) flexible and modular infrastructure and
e (2) intelligent operations mechanisms (due to the scale of the infrastructure)

Operationalization
 Automated Al application lifecylce management to the Edge

Rausch, T., Dustdar, S. (2019). Edge Intelligence: The Convergence of Humans, Things, and Al.
In IEEE International Conference on Cloud Engineering (IC2E) 24-27 June 2019.



Fabric for Edge Intelligence

1. Sensing (Sensor Data as a Service)

e Large number, dynamic and mobile nature of Eublishers/subscribers of sensor data +
QoS requirements of edge intelligence ->> rethink centralized messaging services such
as AWS loT or MS Azure loT Hub

e Management and governance of such a distributed/decentralized sensing
infrastructure

2. Edge computer network with modular Al capabilities

 New Al accelarators for edge devices (e.g., Google Edge TPU with an aplication
specific integrated circuit; MS BrainWave with field-programmable gate arrays
(FPGASs); Intel Neural Compute Stick; Baidu Kunlun, Huawei Atlas Al Platform

3. Intelligent orchestration mechanisms for decentralized and distributed
infrastructure



Edge self-adaptive middleware & scheduling Wfs
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Cluster Middleware

Execution

Monitor

Agent

Metrics
(Power, Util., RTT)
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General Purpose Computing

Embedded Al

Rausch T., Avasalcai C., Dustdar S. (2018). Portable
Energy-Aware Cluster-Based Edge Computers. 3rd
ACM/IEEE Symposium on Edge Computing (SEC
2018), October 25-27, 2018, Bellevue, WA, USA

Rausch T., Dustdar S., Ranjan

R. (2018). Osmotic Message-Oriented
Middleware for the Internet of Things.IEEE Cloud
Computing, Volume 5, Issue 2, pp. 17-25

Nastic S., Rausch T., Scekic O., Dustdar S.,
Gusev M., Koteska B., Kostoska M., Jakimovski
B., Ristov S., Prodan R. (2017). A Serverless
Real-Time Data Analytics Platform for Edge
Computing. IEEE Internet Computing, Volume 21,
Issue 4, pp. 64-71



http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_2018_S_Dustdar_Osmotic.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_S_Nastic_A_Serverless.pdf
http://acm-ieee-sec.org/2018/index.html

Paradigm 2: Osmotic Computing

" |n chemistry, “osmosis” represents the
seamless diffusion of molecules from a
higher to a lower concentration solution.

= Dynamic management of
(micro)services across cloud and
edge datacenters

= deployment, networking, and
security, ...

=  providing reliable loT support with
specified levels of QoS. .

Villari M., Fazio M., Dustdar S., Rana O., Ranjan R. (2016). Osmotic
Computing: A New Paradigm for Edge/Cloud Integration. IEEE Cloud
Computing, Volume 3, Issue 6, pp. 76-83

Cloud computing (L1)

Semipermeable membrane

Sugar

moleculesl molecules

Water

Cloud datacenters

Edge computing (L2)

Edge micro datacenters



http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel_2016_SD_%20Osmotic.pdf

loT/Data/Application Orchestration
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Osmotic movement of MELs in Clouds, Edge, Things

Legend:
MEL...Micro Element




0T Mircoelements (MELSs)

. MicroServices (MS), which implement specific functionalities and can be deployed and migrated across
different virtualized and/or containerized infrastructures (e.g., Docker) available across Cloud, Edge, and
Things layers

. MicroData (MD), encodes the contextual information about (a) the sensors, actuators, edge devices, and
cloud resources it needs to collect data from or send data to, (b) the specific type of data (e.g., temperature,
vibration, pollution, pH, humidity) it needs to process, and (c) other data manipulation operations such as
where to store data, where to forward data, and where to store results

. MicroComputing (MC), executing specific types of computational tasks (machine learning, aggregation,
statistical analysis, error checking, and format translation) based on a mix of historic and real-time MD data
in heterogeneous formats. These MCs could be realized using a variety of data storage and analytics
programming models (SQL, NoSQL, stream processing, batch processing, etc.)

. MicroActuator (MA), implementing programming interfaces (e.g., for sending commands) with actuator
devices for changing or controlling object states in the loT environment




loT Data Sources

. Representation: Structure and represent the data to facilitate multiple modalities,
exploiting the complementarity and redundancy of different data sources.

. Translation: Interpret data from one modality to another, i.e., provide a translator that
allows the modalities to interact with each other for enabling data exchange.

. Alignment: Identify the relation among modalities. This requires identifying links
between different types of data.

. Fusion: Fuse information from different modalities (e.g., to predict).
. Co-learning: Transfer knowledge among modalities. This explores the field of how the

knowledge of a modality can help or enhance a computational model trained on a
different modality.



0T Programming Patterns needed

Decomposing loT data analysis activities into fine-grained activities (e.g., statistics,
clustering, classification, anomaly detection, accumulation, filtering), each of which
may impose different planning and run-time orchestration requirements;

ldentifying and integrating real-time data from loT devices and historical loT data
distributed across Cloud and Edge resources;

ldentifying data and control flow dependencies between data analysis activities
focusing on coordination and data flow variables, as well as the handling of dynamic
system updates and re-configuration;

Defining and tagging each data analysis activity with runtime deployment constraints
(QoS, security and privacy).



Managing the Al Lifecycle

Al lifecycle pipeline with a rule-based trigger e that monitors available data and runtime performance
data to form an automated retraining loop

@—P[ Preprocess ]—b[ Train ]—b[ Evaluate J—’O"[ Deploy ]

v

Performance Runtime
emeemmmeennnns pl\_ 4[ Monitoring ] ------- » Model




Al Operations Workflows — Edge to Cloud

Data characteristics

Model characteristics

Enabling technologies

Example use cases

C2C - Training data is centralized - Models are large - Scalable learning infrastruc- - Image search
- Massive data sets - Huge number of inferencing re-  ture [39] - Recommender systems
quests need to be load balanced - Data warehousing
C2E - Training data is centralized - Inferencing may need to happen - Model compression [42] - Surveillance systems
- Inferencing data may be sensi-  in near-real time - Latency/accuracy tradeoff [43] - Self driving cars
tive - Large number of model deploy- - Distributed inferencing [44] - Fieldwork assistants
ments - Transfer learning [45]
- Models run on specialized hard-
ware
E2C - Training data is distributed - Models can be centralized - Decentralized/federated learning - Volunteer computing
- Training data may be sensitive - Huge number of inferencing re-  [41] - Novel Smart City use cases
quests need to be load balanced
E2E - Training data is distributed - Inferencing may need to be near- - Decentralized/federated learning - Industrial IoT (e.g., predictive

- Training and inferencing data
may be sensitive

real time

- Distributed inferencing

maintenance)
- Privacy-aware personal assistants
- Novel IoT use cases

Rausch, T., Dustdar, S. (2019). Edge Intelligence: The Convergence of Humans, Things,
and Al. In IEEE International Conference on Cloud Engineering (IC2E) 24-27 June 2019.



Conclusions

 Need for an Edge Intelligence Al Fabric and a “clear” ecosystems
understanding

e Better levels of integration between multiple (levels of) Blockchains and
stakeholders can be achieved

* Integrate Al, loT, and human collectives into processes distributed on the
Edge and Cloud
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ACM Transactions on the Internet of Things (TIOT) w‘

Co-Editors-in-Chief

Schahram Dustdar, TU Wien, Austria
Gian Pietro Picco, University of Trento, Italy

ACM Transactions on the Internet of Things (TICT) pubi ibuti wperience report:
in several research domains whose synergy and interrelations enable the laT vision. TIOT focuses on system
designs, end-to-end architectures, and enabling technologies, and on publishing results and insights
corrok: d by a strong experi | comp

Examples of topics refevant to the journal are:

« Real-world applications, application designs, industrial case studies and user experiences
of laT technologies, including fardization and social acceptance

- Communication networks, protocols and Interoperability for loT

= loT data analytics, machine learning, and associated Web technologies

- Waearable and personal devices, induding sensor technologies

- Human-machine and machine-machine interactions

+ Edge, fog, and cloud computing architectures

« Novel loT software architectures, services, middleware as well as future Internet designs

= Fuslon of soclal and physical signals In 1oT services

- Non-functional properties of loT systems, e.g., dependability, timeliness, security
and privacy, robustness

=+ Testbeds for loT

i

All submissions are expected to p p | evidence of their effectiveness in realistic scenarios [e.g.,
based on field deployments or user studies) and the related datasets. The submission of purely theoretical or
speculative papers is discouraged, and so is the use of simulation as the sole form of experimental validation.

Experience reports about the use or adaptation of known systens and techni in real Id

are equally welcome, as these studies elicit precious insights for researchers and practitioners alike. For this
type of submissions, the depth, rigor, and realism of the experimental component is key, along with the analysis
and expected Impact of the lessons learned.

For further information, please contact tiot-editors@acm.org.
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