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Machine Learning – promising potential for fault diagnosis
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• Improving quality 

control in 

manufacturing systems 

[1,2,3,4,5,6]

• Manufacturing data is 

often labeled with 

expert feedback [7]

Potential

• Real-world 

manufacturing data is 

imprecise, uncertain and 

vague [5,6,8]

• Data characteristics 

have critical effect on 

data-driven approaches 

[1,6,20,30]

Limitation(s)

Decision support in fault diagnosis 

via classification techniques

Inherent data characteristics are not 

discussed in literature [2,4]
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Use case: powertrain aggregates of commercial vehicles 
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Development Procurement Production Distribution After Sales

Forming Machining Assembly

[Daimler 2019]
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End-of-Line testing of complex products; aim is to reduce the 

number of rework attempts and relieve the quality engineer
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 Severe issue for 

algorithms to 

distinct between 

classes properly

Data-driven recommendation system must consider all four 

challenges (C)
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 Inconsistent 

sensor signals for 

different product 

variants 

 Reduce the number 

of faulty 

components that 

can be predicted

 1,050 samples 

with 84 classes 

and 115 features 

makes learning a 

concept difficult

C1

Small size of 

sample set 𝒳

C2

Class 

imbalance

C3

Heterogenic

product 

space

C4

Noise and 

overlapping 

samples
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Set Name Topic Sample feature 𝑵∗ 𝑴∗

𝒟1 Engine Spec 

sheet

- Engine type

- Engine design

519,214 22

𝒟2 Test bench Test runs - Sensor signals 621,689 383

𝒟3 Diagnostic Faults - Error codes 20,631 77

Majority class circle:

- e.g., turbocharger

- 𝑨 : concept

- 𝑨’: sub-concept

𝑜𝑖𝑙
𝑡𝑒𝑚𝑝.

𝑩‘𝑨‘

𝑩

Minority class star:

- e.g., fuel injector

- 𝑩 : concept

- 𝑩’: sub-concept

Noisy samples
Overlapping

𝑨
Content in figure: # C

- classes 2 -

- majority samples 50 C2

- minority samples 15 C2

- concepts 2 C3

- sub-concepts 2 C3

- overlapping samples 5 C4

- noisy samples 3 C4

𝑒𝑛𝑔𝑖𝑛𝑒 𝑠𝑝𝑒𝑒𝑑

* Raw data from source systems, where 𝑁 is the amount of observations and 𝑀 of features
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Interim conclusions of a theoretical investigation of methods 

to deal with analytical challenges
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• AdaBoost: sensitive to noise (focuses on it)

• Random Forest: handles all analytical 

challenges to a certain degree

Ensemble procedures 

• One-Vs-All (OvA): intensives class imbalance

Binarization strategy

• Random undersampling (RUS): concepts are not 

recognized

• Random oversampling (ROS): decision 

boundaries become too tailored (overfitting)

• Synthetic minority oversampling technique 

(SMOTE): introduces “artificial” noise

Sampling strategies

• Boruta: concepts to characterize faulty 

components are rather complex

Feature selection
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Technical evaluation of examined methods; results for 
recommendation list ℛ𝑝 of length four
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Turbocharger

EGR cooler

Cylinder

Accuracy@𝒑 (𝑨@𝒑):

• A@𝑝 measures the portion of correctly 
predicted error codes among the first 𝑝
elements of the list ℛ𝑃

• ℛ4 is limited to four error codes, as 
quality engineers need in average four 
attempts to identify the faulty component
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• Key message(s):

• Operators can solve the quality issue by themselves:

• in 1/3 of all cases with only one repair attempt

• in 6 out of 10 cases, by working through the list (ca. 2 repair attempts required)

• Increase efficiency of the workforce, because:

• Operators can carry out rework attempts without involving the quality engineer

• Quality engineer needs to be consulted in only 41% of all required rework attempts

Prediction performance and the amount of estimated rework 

attempts; comparison with an experienced quality engineer
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Recommendation list ℛ𝑝 Estimated ∅ rework

attempts𝐴@1 𝐴@2 𝐴@3 𝐴@4

(1) Random Forest + Boruta 33% 42% 49% 59% ~1.9

(2) Experienced quality engineer subjective experiences (100%) ~4.0
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Conclusion and future work
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Summary:

• We can found similar data characteristics i.e., analytical 

challenges, in other use cases as well

• Methods from the area of data analytics, e.g., sampling, are 

associated with tradeoffs with an effect on the challenges

• With a score A@4 of about 59%, we can achieve improvements 

in the practical application

Next steps:

• Domain-specific approach in order to increase further the 

prediction performance by incorporating domain knowledge 

• Where the system is uncertain, incorporating cost aspects in 

order to adjust the order of the components

• Automatic adaption of the system, since the manufacturing 

domain is non-stationary

[Daimler 2019]
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