
SUMMERSOC Χερσόνησος June 19, 2019

Conceptual Foundations
of Service Orientation

and beyond

Wolfgang Reisig
Humboldt-Universität

zu Berlin Prof. Dr. W. Reisig

Introduction: Two remarks

1. A short remark on
Einstein Center Digital Future

develop embedded systems
in the current buzzwords areas:
Health, mobility, industries, services, …

Executive Board
“ When I look into the digital future ...

...I see great need of
harmonizing unlimited potential
of a planet-sized Universal Turing machine …”

What he wants to say:
...I see great need of
a Unifying Theory for really big
(“planet sized”) Digital Infrastructures

Introduction: Two remarks

2. A short remark on
yesterday’s talk of Schahram
On Digital Ecosystems

“nobody is looking at the whole zoo”
… at least two do: him and me
Elements of the zoo:
Resiliance
Elasticity

Granularity

Accessability
Block chain

A unifying Theory for all this
will require notions motivated by theory:

canonical, universal principles,
independent of semantical details

… inspired by natureElastic contract

Decentralization
Sensing

Everything as a service

Micro-services, ~ data,
~ computing, ~activities

Conceptual Foundations of Service Orientation
and beyond

Long term objective:
a unifying Theory for

The Digital infrastructure
The Digital ecosystem

Contents of this talk:
four aspects

1. Models
2. Invariants
3. Distributedness
4. Components and composition

1. Models

Models in science:

THE central concept

May be quite difficult

Distance to „the modeled“ may be large

Monday: a quantum computing model
may be quantum immplemented in
different ways

1.1 Models in Informatics

Late 1960ies:
„Software crisis“

Proposed soluton:
Better programming languages
Big ones: Algol 68, PL1
Small ones: Pascal

Later on: ADA; OO, DSLs

„Programs as models“

Focus on implementation
Not on the problem
or the algorithmic idea

7

… how to model
this behavior ?

“Programs as models”

Given: An urn, containing finitely
many black and white pebbles.

The actions:
Repeat as long as possible:
(1) remove two pebbles, a, b

return one pebble, c .
(2) If colour of a and b differ:

c is white;
otherwise, c is black.

Example: Dijkstra’s Pebble Game

Dijkstra‘s model

integer variables

initial number of black and white pebbles Dijkstra‘s model

A schema for infinitely many initial states:

PEBBLES : a symbol, to be interpreted
by a set of black and white pebbles.

A Petri Net model

An instantiation

… and its
sequential behaviors

Sequ. Beh.: a sequence of actions

An instantiation

… and its
distributed behaviors

Modeling languages
executable modeling languages:
actors
Stream based functions
TLA
UNITY

“pure” modeling languages
SADT
Petri Nets
Statecharts
Later on: UML

14

Grady Booch, (2004):
We must “elevate models
as to a first class citizenship ...
a peer of traditional text languages
(and potentially its master)”.

“models as products”.

THE fundamental difference to programming:
1. Modeled behavior is not necessarily implemented.
2. The modeler freely chooses the level of abstraction

UML

2. Invariants
What is a good scientific theory?
It provides good descriptions
(“Models”) of the realm of interest

What is a good model?
It allows good predictions
of future behavior
and the derivation of
other interesting properties
of realm.

15

Central aspect:
Invariants

generally:
“what remains constant
while a system proceeds”

16

A physical process preserves
the involved amount of energy.

A motor has a maximal torsion moment
(2nd derivative of speed)

Invariants in sciences

A chemical reaction preserves
the involved atoms:

CH4 + 2 O2 → CO2 + 2 H2O.

Theoretical Biology (“Systems Biology”):
Metabolism retains the amount of matter

Invariants govern the design of scientific notions

17

2.1 Invariants in Informatics
Classical programs: C.A.R. Hoare’s invariant calculus

Petri nets: Place invariants, transition invariants

temporal logic

Not too impressive

More general invariants

18

Amount of
money in
account
+ in hand

- a garbage collector
- a communication protocol
- an elevator control
- a telephone switching system
- a seat booking system

- a cash machine

What remains invariant when using

?

19

We need basic notions based on invariants!

… a notion of “information”:

As long as the computer
does not interact with others,
the amount of information
within the computer
remains constant.

stated differently:

During computation,
information is re-ordered,
but neither generated
nor destroyed.

Information is what you use
to decide an alternative.

This notion then may imply
a god notion of privacy.

3. Distributedness
In the Digital infrastructure,
In the Digital ecosystem
there is nothing “global”!

Every action/event/activity
has local causes and local effects.

Autonomy is inevitable

What about the
planet-sized Universal Turing machine ?
A distributed version …

A distributed interpreter
running on any distributed architecture
interpreting all distributed descriptions
of distributed systems that are to run
on a distributed architecture …

Does such a thing exist?
1. No
2. Yes, for the prize of probability
As Sefanie showed us on Monday
in the case of quantum computing

Paxos Protocol

3. Distributedness

Are probabilistic, distributed algorithms
the standard, basic notion
for a theory of the Digital ecosystem?

4. Components and composition

The Digital Ecosystem is structured.

Structure: frequently hierarchical

To this end, required:
Canonical, universal principles,
independent of semantical details.

Specification: abstract
Implementation: refined

Required property:
specification implies implementation

Refinement calculus, encapsulation, …

4. Components and composition

The Digital Ecosystem is structured.

Structure: frequently hierarchical

To this end, required:
Canonical, universal principles,
independent of semantical details.

Structure: frequently composed, shaped
A1 • A2 • … • An , with components Ai .

Example: A supply chain

24

RM • Su • Ma • Di • Cu • Co

Structure: frequently hierarchi

To this end, required:
Canonical, universal principles,
independent of semantical details.

Event based systems: PubSub

SOC: provider/requester/broker

So, what are (the) fundamentals
of composition?

Structure: frequently composed, shaped
A1 • A2 • … • An , with components Ai .

Let‘s start with components

25

RM • Su • Ma • Di • Cu • Co

Structure: frequently hierarchi

To this end, required:
Canonical, universal principles,
independent of semantical details.
A component consists of
• its interface and
• its inner structure.
• Interface: strict, formal.
• Inner structure: liberal.
• Composition: formal;

dependig only on the interface.

Structure: frequently composed, shaped
A1 • A2 • … • An , with components Ai .

Let‘s start with components

26

RM • Su • Ma • Di • Cu • Co

Structure: frequently hierarchi

To this end, required:
Canonical, universal principles,
independent of semantical details.

Fundamental:
Composition is associative:

(A • B) • C = A • (B • C).

Structure: frequently composed, shaped
A1 • A2 • … • An , with components Ai .

s

r
(B • C)

t

r

r

27

ts

r

A

r

B

r C

A•

An obvious start

s

r

t

r
(A • B)

r

• C

An interface is
a set of labeled gates.
Composition:
Glue equally labelled gates,
remove them from
the interfaces.

Hoe solve this problem?

• ignore it
• restrict choice of labels
• define „n-fold composition“
• …

… our proposal:

A closer look:
• Frequently, the interface is 2-partitioned:
• input and output,
• customer and supplier,
• requester and provider,
• consumer and producer,
• buy side and sell side,
• predecessor and successor,
• assumptions and guaranties,
• pull and push,
• etc.

29

Beispiel:

A component C frequently has
a left and a right interface, *C und C*.

composition A • B:
Glue gates of A* und *B .

RM • Su • Ma • Di • Cu • Co

30

Fundamental idea

pr

t

r

r

p

s
q

A

A A

t

B B

B

A component C frequently has
a left and a right interface, *C und C*.

(A • B) (A • B)

31

r p

t

r

Ds t

A • B

r

p

q

Fundamental idea

pr

t

r

r

p

s
q

A

A A

t

B B

B

A component C frequently has
a left and a right interface, *C und C*.

composition A • B:
Glue gates of A* und *B .

(A • B) (A • B)

32

r p

t

r

Dst

A • B

r

p

q

Fundamental idea

pr

t

r

r

p

s
q

A

A A

t

B B

B

A component C frequently has
a left and a right interface, *C und C*.

composition A • B:
Glue gates of A* und *B .

broker

nego-
tiate send

offer

send
reject

send
order

a

b

a

b

c

producer

nego-
tiate

prod-
uce

a

b

d
ship

client

rec.
offer

reject
offer

accept
offer

a

b

c

d rec-
eive

Example

33

c. composed workflow model, N • N • N

machine machine

material

material

material

product

product

product

a. workflow model N

Composition of several instances

2nd instance of N,

b. composed workflow model, N • N

machine machine

material product

productmaterial

machine machine

material product

machine machine

material product

product parcel

product workflow model, M

N • N • N • M

… so, in mathematical terms …
Let be given a finite set Σ of symbols
“gate labels”. Then
- an interface over Σ

is a finite, ordered set, labeled over Σ.
- a component C over Σ

is any structure with
a left and a right interface,
C und C.

Let SΣ denote the class of
all components over Σ .
Composition • then is defined on SΣ .

Fundamental, not trivial:
Theorem. Composition • on SΣ is

total and
associative.

Observation. With *E = E* = ∅,
A•E = E•A = A.

Corrollary.
M =def (SΣ , •, E) is a monoid

How can you do „everything“ with this?
Compose A and B
under side conditions
Conformance,
Interoperability,
Composability,
Semantic restrictions,
Data types,
Alternative gate matches,
Nondeterminism, …

formulate as an adapter C,
in A • C • B.

examples:

36

requirement:
want to glue
non-matching
gates

A

a

b

a

b

adapter C

a

b

B

a

b

a

A

a

b

Badapter D

a

b

areqirement:
nondeterministic
choice

37

To express a property π
of a composition operator •π :

Construct an adapter [π] ;
replace A •π B by A • [π] • B .

Advantage (among others):
Composition of properties:
A • [π] • [π‘] • B .

Complex composition as Adapter

38

Example: PubSub migration
SCl • SCo • TCl • TCo

Source
Client

Source
Coordinator

Target
Coordinator

Target
Client

runningstopped moved move move
rejected aborted accepted aborted rejected moved

cleaned
after

rejection

successfully cleaned
after
abort

waiting

Example: PubSub migration
… redundant messages:SCl • SCo • TCl • TCo

Source Client

Source Coordinator

Target Coordinator

Target Client

running

stopped

moved

move	move rejected aborted

accepted

aborted rejected

moved

cleaned after rejection

successfully	cleaned

after abort

waiting

image1.png

image5.png

image16.png

image7.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image12.png

image23.png

image24.png

image25.png

image26.png

image9.png

image10.png

image13.png

image4.png

image14.png

image15.png

image3.png

image6.png

image8.png

image11.png

image2.png

40

C • C • L • S • S • E • Sc • D
C client
L load balancer
S service
Sc scheduler
D data base
E editor

a

b
C

a

a

b

L

b

a a c
S

d

c
S

d

c

d

c

d

c

d

Sc c

d

b

D

a

b
C

E
b

a a

a messages from
client or load bal.

b messages to client
or editor

c message from
service or schedul.

d message to service
or schleduler

Example: a small computer architecture

41

Preservation of properties
Example:

car rental
business process

at trafic accident

Buyer

Send
Order

Recieve
Invoice

Recieve
Products

Reseller-B

Place
Invoice
Request

Place
Product
Request

Payment Org

Send
Invoice

Manufacturer

Send
Products

BPMN
Buyer

Send
Order

Recieve
Invoice

Recieve
Products

Reseller-B

Place
Invoice
Request

Place
Product
Request

Payment Org

Send
Invoice

Manufacturer

Send
Products

MessageMessage

Message

Message

Message

Message

Message

Message

Message-2

Message-2

components

BPMN

Send
Order

Recieve
Invoice

Recieve
Products

Place
Invoice
Request

Place
Product
Request

Payment Org

Send
Invoice

Manufacturer

Send
Products

MessageMessage

Message

Message

Message

Message

Message

Message

Message-2

Message-2

Buyer • Reseller-BBuyer

Send
Order

Recieve
Invoice

Recieve
Products

Reseller-B

Place
Invoice
Request

Place
Product
Request

Payment Org

Send
Invoice

Manufacturer

Send
Products

Buyer • Reseller

BPMN
Buyer

Send
Order

Recieve
Invoice

Recieve
Products

Reseller-B

Place
Invoice
Request

Place
Product
Request

Payment Org

Send
Invoice

Manufacturer

Send
Products

Send
Order

Recieve
Invoice

Recieve
Products

Place
Invoice
Request

Place
Product
Request

Send
Invoice

Manufacturer

Send
Products

MessageMessage

MessageMessage

Message

Message

MessageMessage

Message-2

Message-2

Buyer • Reseller-B • Payment Org

Buyer • Reseller • Payment Org

BPMN Buyer • Reseller • Payment Org
• Manufacturer

Buyer

Send
Order

Recieve
Invoice

Recieve
Products

Reseller-B

Place
Invoice
Request

Place
Product
Request

Payment Org

Send
Invoice

Manufacturer

Send
Products

Send
Order

Recieve
Invoice

Recieve
Products

Place
Invoice
Request

Place
Product
Request

Send
Invoice

Send
Products

MessageMessage

MessageMessage

MessageMessage

MessageMessage

Message-2Message-2

Buyer • Reseller-B • Payment Org • Manufacturer

SAP:TAM Standardized Technical Architecture Modeling

46

Cha R>
HTTP

Cha R>
HTTP

Controller Int -(o-Cha R>
HTTP

Cha R<

System Views

Navigation
View

Search Result
View

Specify User
View Modify View

... ...

Int -(o-

Int -(o-

Cha R<

Cha R>
HTTP

Int -(o-

Int -(o-

Backend

Acc ->
User Manager

Data Access Agent

Search Cache

Search
Cache Manager

Navigation
Cache Manager

Navigation
Cache

Data Manager

Search Enginge

Metadata
Controller

Personalization Manager

Int -(o-

Int -(o-

Int -(o-

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc <-

Database

User Rights

Directory

Personalization Data

User
Mapping

XLST
Repository ...

Acc ->

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc <-

Five components

composed

Int -(o-
Acc ->

User Manager

Data Access Agent

Search Cache

Search
Cache Manager

Navigation
Cache Manager

Navigation
Cache

Data Manager

Search Enginge

Metadata
Controller

Personalization Manager

Int -(o-

Int -(o-

Int -(o-

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc <-

User Rights

Directory

Personalization Data

User
Mapping

XLST
Repository ...

Acc ->

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc ->

Acc <-

Acc <-

Navigation
View

Search Result
View

Specify User
View Modify View

... ... Int -(o-

Int -(o-

Cha R<

Cha R>
HTTP

 • Controller • System Views • Backend • Database

Int -(o-

Int -(o-

Cha R>
HTTP

Cha R>
HTTP

Cha R>
HTTP

Cha R<

Five components

1.2 The seams of a composed system *

49

as well as
Early architecture description languages
Rapide
Wright
Weaves

A canonical, universal principle
for composed systems
independent of
their semantical contents.

Motivted by
Interface description languages
DARWIN
RADL
AADL

Idea: specify the interface
before you program
the operations. * Work together with Heinz Schmidt, Melbourne

The Problem

50

Let A =def A1 • A2 • … • An .

How recompute from A all the Ai ?
In general: not possible.

Idea: store enough information
when composing the Ai !
.. the seam !.

… what to remember upon composition?

A•B

52

a b

c

(d,e)

g

hf (i,k)

A B

label: red, green, yellow

a b

c

(d,e)

g

hf (i,k)

A•B

A B

53

a b

c

(d,e)

g

hf (i,k)

A•B

A B

54

a b

c

(d,e)

g

hf (i,k)

A•B

A B

a b

c

(d,e)

g

hf (i,k)

A•B

A B

55

a b

c

(d,e)

g

hf (i,k)

A•B

A B

a
(b,g)

c

(d,e) hf (i,k)

A•B

A B

56

a b

c

(d,e)

g

hf (i,k)

A•B

A B

a
(b,g)

c

(d,e) hf (i,k)

A•B

A B

57

a
(b,g)

c

(d,e) hf (i,k)

A•B

A B

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

58

a
(b,g)

c

(d,e) hf (i,k)

A•B

A B

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

59

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

60

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

A B

61

a
(b,g)

c

(d,e) h

f

(i,k)

A•B

62

a
(b,g)

c

(d,e) h

f

(i,k)

A•B
remember

A•B

a b

c

(d,e)

g

hf (i,k)

A B

… and now we decompose

64

Component C
C und C are bi-partitioned.
seam(C) is 3-partitioned.

65

A B

66

67

A B

Early composition,

One-fits-all – definition of composition,

Semantics of components: formulated in any formalism,

Associativity is for free.

Advantages …

68

… so, what did we achieve, conceptually?

• Canonical, universal principles for the
composition of components,
independent of their semantical contents.

• Strict at the interface,
Liberal at the inner structure.

Bernhard, this means autonomy

• Supporting horizontal scaling
As required by Gregor Hohpe

70

We need a theory for the Digital infrastructure!
… deep and strong as computability theory
but for a much broader area

Potential ingrediences:

- Model(s) that lean more on the problem side
- Theoretical notions based on invariants
- “Distributedness” from scratch,
- A universal composition operator

Resumé of this talk

SUMMERSOC Χερσόνησος June 19, 2019

Conceptual Foundations
of Service Orientation

and beyond

Wolfgang Reisig
Humboldt-Universität

zu Berlin Prof. Dr. W. Reisig

	SUMMERSOC Χερσόνησος June 19, 2019
	Introduction: Two remarks
	Introduction: Two remarks
	Conceptual Foundations of Service Orientation and beyond
	1. Models
	1.1 Models in Informatics
	“Programs as models”
	Foliennummer 8
	Foliennummer 9
	A Petri Net model
	An instantiation
	An instantiation
	Modeling languages
	UML
	2. Invariants
	Invariants in sciences
	2.1 Invariants in Informatics
	More general invariants
	We need basic notions based on invariants!
	3. Distributedness
	3. Distributedness
	4. Components and composition
	4. Components and composition
	Example: A supply chain
	Let‘s start with components
	Let‘s start with components
	Foliennummer 27
	Foliennummer 28
	A closer look:
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Foliennummer 35
	How can you do „everything“ with this?
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	BPMN
	BPMN
	BPMN
	BPMN
	SAP:TAM Standardized Technical Architecture Modeling
	Foliennummer 47
	composed
	Foliennummer 49
	Foliennummer 50
	Foliennummer 51
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	Foliennummer 60
	Foliennummer 61
	Foliennummer 62
	Foliennummer 63
	Foliennummer 64
	Foliennummer 65
	Foliennummer 66
	Foliennummer 67
	Foliennummer 68
	Foliennummer 69
	Foliennummer 70
	SUMMERSOC Χερσόνησος June 19, 2019

