
Scalable Cloud Data Management
Felix Gessert, Norbert Ritter, Wolfram Wingerath

ritter@informatik.uni-hamburg.de
SummerSOC 2019

www.baqend.com

• New field tackling the design, implementation,
evaluation and application implications of database
systems in cloud environments:

Cloud Data Management

Application
architecture,
Data Models

Load distribution, Auto-Scaling, SLAs
Workload Management, Metering

Multi-Tenancy, Consistency,
Availability, Query
Processing, Security, Privacy

Replication,
Partitioning,
Transactions,
Indexing

Protocols, APIs,
Caching

Cloud-Database Models

Deployment
Model

Data
Model

structured

unstructured

RDBMS
machine

image
relational

schema-
free

unstructured

NoSQL
machine

image

Analytics
machine

image

Managed
RDBMS/

DWH

Managed
NoSQL

Analytics-
as-a-

Service

RDBMS/
DWH

Service

NoSQL
Service

Analytics/
ML
APIs

Database-as-a-Service

Cloud-Deployed Database
Database-image provisioned in IaaS/PaaS-cloud

IaaS-Cloud

IaaS/PaaS deployment of
database system

Does not solve:
Provisioning, Backups, Security,
Scaling, Elasticity, Performance
Tuning, Failover, Replication, ...

Managed RDBMS/DWH/NoSQL DB
Cloud-hosted database

IaaS-Cloud

RDBMS DWH NoSQL DB

DBaaS-Provider

Provisioning, Backups, Security,
Scaling, Elasticity, Performance
Tuning, Failover, Replication, ...

Amazon Redshift

SQL Azure

Google
Cloud SQL

RD
BM

S
N

oSQ
L

D
B

D
W

H

Proprietary Cloud Database
Designed for and deployed in vendor-specific cloud environment

Cloud

Black-box system

Managed by
Cloud Provider

Provider‘s
API

Amazon
SimpleDB

Google Cloud
Storage

Azure Blob
Storage

Google Cloud
Datastore

Azure Tables

Openstack
Swift

Database.com

BigTable, Megastore, Spanner, F1, Dynamo,
PNuts, Relational Cloud, …

D
atabase

O
bjectStore

Analytics-as-a-Service
Analytic frameworks and machine learning with service APIs

Cloud

Analytics Cluster

Provisioning,
Data Ingest

Azure
HDInsight

Google
BigQuery

Google
Prediction API

Amazon Elastic
MapReduce

Analytics
M

L

Backend-as-a-Service
DBaaS with embedded custom and predefined application logic

IaaS-Cloud

Backend API

Service-Layer

Data API

Authentication, Users,
Validation,etc. Maps to Database

(m
obile) BaaS

AppCelerator
Cloud

Backend-as-a-Service
DBaaS with embedded custom and predefined application logic

Backend-as-a-Service
DBaaS with embedded custom and predefined application logic

 rather recent trend
 progress currently driven by industry projects

(similarly to early cloud computing and big data processing)
 structured research yet to be established

 most comfortable approach for applications
 but many unsolved problems
 latency challenge: all clients access the service via high-latency WAN
 persistence on top of one single database technology
 service/NoSQL-DBS selection problem
 usually, tenants colocated on a shared database cluster

→ database system configuration (e.g., the replication protocol)
prescribes the guarantees for each tenant

Service Level Agreements (SLAs)
Specification of Application/Tenant Requirements

SLA

Legal Part
1. Fees
2. Penalties

Technical Part
1. SLO
2. SLO
3. SLO

Service Level Objectives:
• Availability
• Durability
• Consistency/Staleness
• Query Response Time

Functional Service Level Objectives
• Guarantee a „feature“
• Determined by database system
• Examples: transactions, join

Non-Functional Service Level Objectives
• Guarantee a certain quality of service (QoS)
• Determined by database system and service provider
• Examples:

• Continuous: response time (latency), throughput
• Binary: Elasticity, Read-your-writes

Service Level Agreements
Expressing application requirements

Utility expresses „value“ of a continuous non-functional requirement:
𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 → [0,1]

Service Level Objectives
Making SLOs measurable through utilities

Goal: minimize penalty and
resource costs

Resource & Capacity Planning
From a DBaaS provider‘s perspective

T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

Resources

Time

Expected
Load

Provisioned Resources:
• #No of Shard- or Replica

servers
• Computing, Storage,

Network Capacities

Actual
Load

Overprovisioning:
• SLAs met
• Excess Capacities

Underprovisioning:
• SLAs violated
• Usage maximized

SimpleDB
Table-Store
(NoSQL Service)

CP

Dynamo-DB
Table-Store
(NoSQL Service)

CP

Azure Tables
Table-Store
(NoSQL Service)

CP 99.9%
uptime

AE, Cloud DataStore
Entity-Group
Store
(NoSQL Service)

CP

S3, Az. Blob, GCS
Object-Store
(NoSQL Service)

AP 99.9%
uptime
(S3)

SLAs in the wild

Model CAP SLAs

Most DBaaS systems offer no SLAs, or
only a a simple uptime guarantee

HBase Wide-
Column

CP Over
Row Key

~700 1/4 Apache

(EMR)

MongoDB Doc-
ument

CP yes >100
<500

4/4 GPL

Riak Key-
Value

AP ~60 3/4 Apache

(Softlayer)

Cassandra Wide-
Column

AP With
Comp.
Index

>300
<1000

2/4 Apache

Redis Key-
Value

CA Through
Lists,
etc.

manual N/A 4/4 BSD

Managed NoSQL Services
Model CAP Scans

Sec.
Indices

Largest
Cluster Lic.Lear-

ning DBaaS

SimpleDB Table-
Store

CP Yes (as
queries)

Auto-
matic

SQL-like
(no joins,
groups, …)

REST +
SDKs

Dynamo-
DB

Table-
Store

CP By range
key /
index

Local Sec.
Global
Sec.

Key+Cond.
On Range
Key(s)

REST +
SDKs

Automatic
over Prim.
Key

Azure
Tables

Table-
Store

CP By range
key

Key+Cond.
On Range
Key

REST +
SDKs

Automatic
over Part.
Key

99.9%
uptime

AE/Cloud
DataStore

Entity-
Group

CP Yes (as
queries)

Auto-
matic

Conjunct.
of Eq.
Predicates

REST/
SDK,
JDO,JPA

Automatic
over Entity
Groups

S3, Az.
Blob, GCS

Blob-
Store

AP REST +
SDKs

Automatic
over key

99.9%
uptime
(S3)

Proprietary Database Services
Model CAP Scans

Sec.
Indices Queries API SLAScale-

out

Our SCDM Approach

http://www.baqend.com
/files/nosql-survey.pdf

1. Aim at fully managed Backend (BaaS)

2. Exploit modern (NoSQL) Database Technology

Access
Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

NoSQL Decision Tree

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Sharding

Elasticity

Write Scalability

Read Scalability

Data Scalability
Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

System Properties
According to the NoSQL Toolbox

Functional Requirements

Sc
an

 Q
ue

rie
s

AC
ID

 T
ra

ns
ac

tio
ns

Co
nd

iti
on

al
W

rit
es

Jo
in

s

So
rt

in
g

Fi
lte

r Q
ue

ry

Fu
ll-

Te
xt

 S
ea

rc
h

An
al

yt
ic

s

Mongo x x x x x x
Redis x x x
HBase x x x x
Riak x x
Cassandra x x x x x
MySQL x x x x x x x x

 For fine-grained system selection:

System Properties
According to the NoSQL Toolbox

Non-functional Requirements

Da
ta

 S
ca

la
bi

lit
y

W
rit

e
Sc

al
ab

ili
ty

Re
ad

 S
ca

la
bi

lit
y

El
as

tic
ity

Co
ns

is
te

nc
y

W
rit

e
La

te
nc

y

Re
ad

 L
at

en
cy

W
rit

e
Th

ro
ug

hp
ut

Re
ad

 A
va

ila
bi

lit
y

W
rit

e
Av

ai
la

bi
lit

y

Du
ra

bi
lit

y

Mongo x x x x x x x x
Redis x x x x x x x
HBase x x x x x x x x
Riak x x x x x x x x x x
Cassandra x x x x x x x x x
MySQL x x x

 For fine-grained system selection:

System Properties
According to the NoSQL Toolbox

Techniques

Ra
ng

e-
Sh

ar
di

ng

Ha
sh

-S
ha

rd
in

g

En
tit

y-
G

ro
up

 S
ha

rd
in

g

Co
ns

is
te

nt
 H

as
hi

ng

Sh
ar

ed
-D

is
k

Tr
an

sa
ct

io
n

Pr
ot

oc
ol

Sy
nc

. R
ep

lic
at

io
n

As
yn

c.
 R

ep
lic

at
io

n

Pr
im

ar
y

Co
py

U
pd

at
e

An
yw

he
re

Lo
gg

in
g

U
pd

at
e-

in
-P

la
ce

Ca
ch

in
g

In
-M

em
or

y

Ap
pe

nd
-O

nl
y

St
or

ag
e

G
lo

ba
l I

nd
ex

in
g

Lo
ca

l I
nd

ex
in

g

Q
ue

ry
 P

la
nn

in
g

An
al

yt
ic

s F
ra

m
ew

or
k

M
at

er
ia

liz
ed

Vi
ew

s

Mongo x x x x x x x x x x x x
Redis x x x x
HBase x x x x x x
Riak x x x x x x x x x x
Cassandra x x x x x x x x x x
MySQL x x x x x x x x

 For fine-grained system selection:

NoSQL DBS support applications in achieving horizontal
scalability and backend performance through differentiated
trade-offs in functionality and consistency!

3. Consider the entire path
from the (mobile) application

through the net
to the data backend!

Challenge: Slow Websites / mobile Apps
Two Bottlenecks: Latency and Processing

High
Latency

Processing Overhead

www.baqend.com

Network Latency: Impact

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Network Latency: Impact

I. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

2× Bandwidth = Same Load Time

½ Latency ≈ ½ Load Time

Orestes Architecture
Infrastructure

Content-Delivery-
Network

Polyglot Storage

Backend-as-a-Service Middleware:
Caching, Transactions, Schemas,
Invalidation Detection, …

Standard HTTP CachingUnified REST API

F. Gessert, Low Latency for Cloud Data Management. PhD
thesis, University of Hamburg, 2018.

Solution: Global Caching
Fresh Data From Distributed Web Caches

Low Latency

Less Processing

www.baqend.com

New Caching Algorithms
Solve Consistency Problem

1 0 11 0 0 10

www.baqend.com

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache CDN

1

Consistent Web Caching
The Cache Sketch

www.baqend.com

1 4 020

purge(obj)

hashB(oid)hashA(oid)

31 1 110
Flat(Counting Bloomfilter)

hashB(oid)hashA(oid)

Browser
Cache CDN

1

Consistent Web Caching
The Cache Sketch

With 20.000 distinct updates and 5% error rate: 11 KByte

www.baqend.com

4. Make the backend push-based,
additionally (real-time queries)!

www.baqend.com

 C1: Scalability:
 Handle additional queries
 Handle increasing throughput

Challenge: Real-Time Queries

 C2: Expressiveness:
 Content search? Composite filters?
 Ordering? Limit? Offset?

 C3: Legacy Support:
 Real-time queries for existing databases
 Decouple OLTP from real-time workloads

 C4: Abstract API
 Data independence
 Self-maintaining queries

Research Question: „How can expressive push-based
real-time queries be implemented on top of an existing
pull-based database in a scalable and generic manner?“

www.baqend.com

Poll-and-Diff Change Log Tailing Unknown 2-D Partitioning

Write Scalability      
Read Scalability     ?

(100k connections)


Composite
Filters (AND/OR)     

(AND In Firestore)


Sorted Queries     
(single attribute)


Limit      

Offset     
(value-based)


Self-Maintaining

Queries      
Event Stream

Queries      

Overview Real-time DBSs

Storm Trident Samza Spark
Streaming

Flink
(streaming)

Strictest
Guarantee

at-least-
once

exactly-
once

at-least-
once exactly-once exactly-once

Achievable
Latency ≪100 ms <100 ms <100 ms <1 second <100 ms

State
Management


(small state)


(small state)

  
Processing
Model

one-at-a-
time micro-batch one-at-a-

time micro-batch one-at-a-
time

Backpressure   no
(buffering)  

Ordering  between
batches

within
partitions

between
batches

within
partitions

Elasticity     

Overview Stream-Processors

Storm Trident Samza Spark
Streaming

Flink
(streaming)

Strictest
Guarantee

at-least-
once

exactly-
once

at-least-
once exactly-once exactly-once

Achievable
Latency ≪100 ms <100 ms <100 ms <1 second <100 ms

State
Management


(small state)


(small state)

  
Processing
Model

one-at-a-
time micro-batch one-at-a-

time micro-batch one-at-a-
time

Backpressure   no
(buffering)  

Ordering  between
batches

within
partitions

between
batches

within
partitions

Elasticity     

Overview Stream-Processors

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

Event LayerInvaliDB Cluster Application Server Pull-Based Database

 Real-Time & OLTP
Workloads Decoupled:
 isolated failure domains
 separated resource

requirements &
independent scaling

End User

 Realtime-as-a-Service For
Heterogeneous Tenants:
 resource pooling: high

matching performance
& overall efficiency

 multi-tenancy: low
provisioning overhead
per application server

1. Query Subscription

2. Write Ingestion

3. Change Propagation

www.baqend.com

 Pluggable Query Engine:
 legacy-compatibility
 multi-tenancy across

databases

w
rit

e
pa

rt
iti

on
1

w
rit

e
pa

rt
iti

on
2

w
rit

e
pa

rt
iti

on
3

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

query
partition 1

query
partition 2

query
partition 3

read scalability

w
rit

e
sc

al
ab

ili
ty

 Read & Write Scalability:
 many concurrent users
 high write throughput
 no single-server bottleneck

www.baqend.com

W. Wingerath, Scalable Push-based Real-time Queries on top of Pull-
based Databases. PhD thesis, University of Hamburg, 2019.

Platform

− Platform for building
(Progressive) Web Apps

− 15x Performance Edge
− Faster Development

Speed Kit

− Turns Existing Sites
into PWAs

− 50-300% Faster Loads
− Offline Mode

Try It Out!

www.baqend.com

realises 1. to 4. as commercially available service

Website Speed Kit
Service Worker

Requests

Baqend
Service

Existing
Backend

Fast Requests

PushPull

3rd Party
Services

Speed Kit
Baqend Caching for Legacy Websites

Website with
Snippet

www.baqend.com

Speed Kit
Measure Your Page Speed!

https://test.speed-kit.com/

www.baqend.com

https://test.speed-kit.com/

For a large e-commerce company like Baur, supreme
performance and a snappy user experience are vital. Speed Kit

helps Baur.de stay ahead of the competition by accelerating
page loads through cutting-edge technology. Finally, there is a
German player in the web performance market that does not

only pioneer a superior approach, but also shines through
competent onboarding and immediate support.

Revenue: 1 000 000 000 € for 2018
Traffic: 70 000 000 PIs per month

Speed Kit
Built for Market Leaders

www.baqend.com

Vision

5. Provide Polyglot Persistence!

Application Layer

Billing Data Nested
Application Data Session data

Search Index

Files

Amazon Elastic
MapReduce

Google Cloud
Storage

Friend
network Cached data

& metrics
Recommen-

dation Engine

Challenge: ‚automated‘ mediation

Application Layer

Billing Data Nested
Application Data Session data

Search Index

Files

Amazon Elastic
MapReduce

Google Cloud
Storage

Friend
network Cached data

& metrics
Recommen-

dation Engine

Research Question:

Can we automate the mapping problem?

data database

Challenge: ‚automated‘ mediation

Vision
Schemas can be annotated with requirements

- Write Throughput > 10,000 RPS
- Read Availability > 99.9999%
- Scans = true
- Full-Text-Search = true
- Monotonic Read = true

Schema

DBs
Tables
Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application

Database
Metrics

Data and
Operations

db1 db2 db3

Polyglot Persistence
Mediator

Latency < 30ms

Annotated
Schema

Step I - Requirements
Expressing the application‘s needs

Requirements1

Database

Table

Field Field Field

1. Define
schema

Tenant

Inherits continuous
annotations

annotated

Table

Field

• Tenant annotates schema
with his requirements

Annotations
• Continuous non-functional

e.g. write latency < 15ms
• Binary functional

e.g. Atomic updates
• Binary non-functional

e.g. Read-your-writes

2. Annotate

Step II - Resolution
Finding the best database

• The Provider resolves the
requirements

• RANK: scores available database
systems

• Routing Model: defines the
optimal mapping from schema
elements to databases

Resolution2

Provider

Capabilities for
available DBs

1. Find optimal

RANK(schema_root, DBs)
through recursive descent

using annotated schema and metrics

2a. If unsatisfiable

Either:
Refuse or
Provision new DB

2b. Generates
routing model

Routing Model
Route schema_element → db
• transform db-independent to db-

specific operations

Step III - Mediation
Routing data and operations

• The PPM routes data
• Operation Rewriting:

translates from abstract to
database-specific operations

• Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

• Primary Database Option: All
data periodically gets
materialized to designated
database

Mediation3

Application

Polyglot Persistence Mediator
• Uses Routing Model
• Triggers periodic

materialization
Report
metrics

1. CRUD, queries,
transactions, etc.

db1 db2 db3

2. route

Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

read by 53,222

Article

Counter

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

Counter updates kill performance

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

No powerful queries

Evaluation: News Article
Prototype built on ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

ID
Title
…

Imp.

Imp.
ID

Document Sorted Set

Found Resolution

Meta-DBaaS: Mediate over DBaaS-Systems, unify SLAs

Polyglot Persistence: Challenges

Database Selection: Actively minimize SLA violations

Live Migration: adapt to changing requirements

Transaction Management: Alignment of ACID with NoSQL and scalability

Utility Functions/SLAs: Capture trade-offs comprehensively

Workload Management: Adaptive Runtime Scheduling

Multi-Tenancy/Privacy: Dream: full homomorphic encryption

CLOSING TIME

Summary

1. Aim at fully managed Backend (BaaS)

2. Exploit modern (NoSQL) DB Technology

3. Consider the entire Path from the (mobile)
Application through the Net to the Data Backend!

4. Make the backend push-based, additionally
(real-time queries)!

5. Provide Polyglot Persistence!

S
C
D
M 6. Other Problems? … certainly!

	
	Cloud Data Management
	Cloud-Database Models
	Cloud-Deployed Database� Database-image provisioned in IaaS/PaaS-cloud
	Managed RDBMS/DWH/NoSQL DB� Cloud-hosted database
	Proprietary Cloud Database� Designed for and deployed in vendor-specific cloud environment
	Analytics-as-a-Service� Analytic frameworks and machine learning with service APIs
	Backend-as-a-Service� DBaaS with embedded custom and predefined application logic
	Backend-as-a-Service� DBaaS with embedded custom and predefined application logic
	Backend-as-a-Service� DBaaS with embedded custom and predefined application logic
	Service Level Agreements (SLAs)�Specification of Application/Tenant Requirements
	Service Level Agreements�Expressing application requirements
	Service Level Objectives�Making SLOs measurable through utilities
	Resource & Capacity Planning�From a DBaaS provider‘s perspective
	SLAs in the wild
	Managed NoSQL Services�
	Proprietary Database Services�
	Foliennummer 18
	Foliennummer 19
	NoSQL Decision Tree
	Foliennummer 21
	System Properties�According to the NoSQL Toolbox
	System Properties�According to the NoSQL Toolbox
	System Properties�According to the NoSQL Toolbox
	Foliennummer 25
	Challenge: Slow Websites / mobile Apps�Two Bottlenecks: Latency and Processing
	Network Latency: Impact
	Network Latency: Impact
	Orestes Architecture�Infrastructure
	Solution: Global Caching�Fresh Data From Distributed Web Caches
	New Caching Algorithms�Solve Consistency Problem
	Consistent Web Caching�The Cache Sketch
	Consistent Web Caching�The Cache Sketch
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Challenge: ‚automated‘ mediation
	Challenge: ‚automated‘ mediation
	Vision�Schemas can be annotated with requirements
	Vision�The Polyglot Persistence Mediator chooses the database
	Step I - Requirements�Expressing the application‘s needs
	Step II - Resolution�Finding the best database
	Step III - Mediation�Routing data and operations
	Evaluation: News Article�Prototype of Polyglot Persistence Mediator in Orestes
	Evaluation: News Article�Prototype built on Orestes
	Evaluation: News Article�Prototype built on Orestes
	Evaluation: News Article�Prototype built on Orestes
	Polyglot Persistence: Challenges�
	Foliennummer 59
	Foliennummer 60

