Scalable Cloud Data Management

Felix Gessert, Norbert Ritter, Wolfram Wingerath

ritter@informatik.uni-hamburg.de
SummerSOC 2019

Ty "
— DBI%S ale
Universitat Hamburg

v www.bagend.com

Cloud Data Management

 New field tackling the design, implementation,
evaluation and application implications of database
systems in cloud environments:

Protocols, APIs, Load distribution, Auto-Scaling, SLAs Replication,
Caching Workload Management, Metering Partitioning,
______________ Transactions,
: Indexing

& &

Application Multi-Tenancy, Consistency,
architecture, Availability, Query
Data Models Processing, Security, Privacy

S e e e e e e e e e e e e

Cloud-Database Models

Data
Model
unstructured |
Analytics Analytics- Analytics/
unstructured — machine as-a- ML
image Service APIs
NoSQL i- __________________________ i
@] | |
schema- __ | machine i Mljgsgfd QIOS.QL :
|
free mage : ervice :
: | Database-as-a-Service
|
RDBMS I Managed RDBMS/ i
relational —| ~ machine i RDBMS/ DWH |
image ! DWH Service :
structured M e ' Deployment
d S | \| Model
00 oV o e &8 ¢
RN 0% o NN 09
\ R W R 0%
RN o P

Cloud-Deployed Database

Database-image provisioned in laaS/PaaS-cloud

- -~

laaS/PaaS deployment of
database system

[o
¥, ’
HBASE HYPERTABLE

Cassandra

Document

. mongoDB Wide Column
l L
Key-Value a redis
CouchDB

RAVENDB Graph

—— = = = — —— == ——

. Neogj

the graph database

4 InfiniteGraph

sssssssss

Does not solve:

Provisioning, Backups, Security,
Scaling, Elasticity, Performance
N laaS-Cloud , Tuning, Failover, Replication, ...

- m mm m mm o mm m mm o mm mm mm mm mm mm mm mm mm o
[a]
o
€
n
x
o
o
w
L]

-
~

Managed RDBMS/DWH/NoSQL DB

Cloud-hosted database

Provisioning, Backups, Security,
Scaling, Elasticity, Performance
Tuning, Failover, Replication, ...

—— = = = =

DWH NoSQL DB

laaS-Cloud

e - - - = = = = - - - - ———

. Amazon RDS SQL Azure

P
Clustrix DB =
G | ENTERPRISE §
oogle Heroku Postgres
@ Soogle Heroku Postgres
f Amazon
“w” ElastiCache |
i =
w Cloudant %
an IBM® Company
. S
@ instaclustr =
5~ bonsal Iris Couch
o
. Amazon Redshift =

H

Proprietary Cloud Database

Designed for and deployed in vendor-specific cloud environment

—————

- -~

Black-box system

-
o
o
=
Q
)
mw
m\
>
=

Managed by
Cloud Provider

e - - - = = = = - - - - ———

Amazon
DynamoDB

Amazon

SimpleDB

Google Cloud o]
Datastore

. vleforee - Database.com

Azure Tables

BigTable, Megastore, Spanner, F1, Dynamo,
PNuts, Relational Cloud, ...

asegeie(

22z Azure Blob
. Storage

n Openstack
Swift
Amazon S3 Google Cloud
Storage

9J01S 193[90

Analytics-as-a-Service

Analytic frameworks and machine learning with service APIs

/,/ \\\ —
/ Y\ _ Amazon Elastic >
| \ ‘E° MapReduce >
: : =
| : Azure é
: : HDInsight
: :
| |
| |
| |
| |
| |
| |
| |

|
. Provisioning, : o) CGoogle
! ; BigQuery
' Data Ingest ! =
|

i ! Google T
1) Prediction API
\\ /l

\

R Cloud L

Backend-as-a-Service

DBaaS with embedded custom and predefined application logic

Authentication, Users,
Validation,etc.

Backend API

Service-Layer 5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

SFirebase @ Golnstant

Meteor:::v:w D a rr S e

e AppCelerator
Cloud

BaQend

Build faster Apps faster.

Seeg (a|iqowi)

Backend-as-a-Service

DBaaS with embedded custom and predefined application logic

Backend-as-a-
Service Cloud
Infrastructure

Backend-as-a-
Service APls

REST/HTTP
and Hosting

Web Applications
and Mobile Apps
With SDKs

E =S B

Business Logic (FaaS) DBaasS Standard APIs

Orchestration Layer
(Multi-Tenancy, Scaling, Metering, Failover, ...)

8008000 EO

Data
Storage

Custom Query, Backend User File
Code Search Code APIs Storage

Internet |

N———

Access
Control

Backend-as-a-Service

DBaaS with embedded custom and predefined application logic

= rather recent trend

= progress currently driven by industry projects
(similarly to early cloud computing and big data processing)

= structured research yet to be established
= most comfortable approach for applications
= but many unsolved problems
= |atency challenge: all clients access the service via high-latency WAN
= persistence on top of one single database technology
= service/NoSQL-DBS selection problem

= usually, tenants colocated on a shared database cluster
— database system configuration (e.g., the replication protocol)
prescribes the guarantees for each tenant

Service Level Agreements (SLASs)
Specification of Application/Tenant Requirements

SLA

Technical Part

1. SLO

2. SLO
3. SLO

Legal Part
1. Fees
2. Penalties

A}

—— Service Level Objectives:

Availability

Durability
Consistency/Staleness
Query Response Time

Service Level Agreements
Expressing application requirements

Functional Service Level Objectives
e Guarantee a ,feature”
e Determined by database system
* fxamples: transactions, join

Non-Functional Service Level Objectives
e Guarantee a certain guality of service (QoS)
e Determined by database system and service provider

e Examples:
e Continuous: response time (latency), throughput
e Binary: Elasticity, Read-your-writes

Service Level Objectives
Making SLOs measurable through utilities

Utility expresses ,value® of a continuous non-functional requirement:

futitity(metric) - [0,1]

1 -

=

Utility
Utility

20 ms
Latency

99.5%
Availability

Resource & Capacity Planning

From a DBaaS$ provider’s perspective _
Goal: minimize penalty and Provisioned Resources:

e #No of Shard- or Replica
resource costs
servers

e (Comnuting, Storage,

Underprovisioning: apacities
e SlAsviolated
> ¢ Usage maximized

Resources

" Actual
Expe Load
Load
0 Dro 0 o

Time

m T. Lorido-Botran, J. Miguel-Alonso et al.: “Auto-scaling Techniques for
Elastic Applications in Cloud Environments”. Technical Report, 2013

S I_AS | n th e W| | d Most DBaaS systems offer no SLAs, or

only a a simple uptime guarantee

R

Table-Store CP
SimpleDB (NoSQL Service)

Table-Store CP
Dynamo-DB (NoSQL Service)

Table-Store CP
Azure Tables (NoSQL Service)

Entity-Group CP
AE, Cloud DataStore Store

(NoSQL Service)
Object-Store AP 99.9%
S3, Az. Blob, GCS (NoSQL Service) uptime

(S3)

Managed NoSQL Services

Model Scans | | Lia| rge| - Lear DBaaS

HBase

MongoDB

Riak

Cassandra

Redis

Wide-
Column

Doc-
ument

Key-
Value

Wide-
Column

Key-
Value

CP

AP

AP

CA

+'mongoHea

3&

(Softlayer)

With

Comp. instaclustr
Index

Through manual N/A .

LIStS) Sy EE:;(D;;che

etc.

Proprietary Database Services

o

SimpleDB Table- CP Yes (as SQL-like REST +
Store gueries) (no joins, RIS
groups, ...)
Dynamo- Table- CP By range Local Sec. Key+Cond. REST + [aUieluElile
DB Store key / Global On Range SDKs over Prim.

Key

index Sec. Key(s)

Azure Table- CP By range Key+Cond. REST + FRULEInElle
Store key On Range SDKs over Part.
Tables ey

Key

AE/Cloud Entity- CP Yes (as Conjunct. REST/ Automatic
Group queries) of Eq. SDK, over Entity
DataStore
Predicates JDO,JPA [l
S3, Az. Blob- AP REST + [CICIGENe

over key
Blob, GCS >tore SDKs

NoSQL Database Systems:
A Survey and Decision Guidance

Felix Gessert, Wollram Wingerath, Steffen Friedrich, and Norbert Ritter

Universitit Hamburg, Germany
{gessert|, wingerath, friedrich, ritter}@informatik.uni-hamburg.de

1. Aim at fully managed Backend (BaaS)

1 Introduction

Traditional relational database management systems (RDBMSs) provide

2. Exploit modern (NoSQL) Database Technology

so vast that it cannot be stored or processed by traditional database solutions
User-generated content in social networks or data retrieved from large senso
networks are only two examples of this phenomenon commonly referred to as
Big Data [35]. A class of novel data storage systems able to cope with Big Dat:
are subsumed under the term NoSQL databases, many of which offer hori-
zontal scalability and higher availability than relational databases by sacrificing
querying capabilities and consistency guarantees. These trade-offs ave pivotal fol
service-oriented computing and as-a-service models, since any stateful service
can only be as scalable and fault-tolerant as its underlying data store

There are dozens of NoSQL database systems and it is hard to keep track ol
where they excel, where they fail or even where they differ, as implementation
details change quickly and feature sets evolve over time. In this article, we there-

fore aim to provide an overview of the NoSQL landscape by discussing employed

neepts |.-7I her than system specilicities : u:l ;-_|.|.-.|. the requirements |‘-.-|wi--:.||'-' http//WWWbaqendcom
posed to NoSQL database systems, the II"'|lIlI'\IlI.'~ nsed to fulfl I.|1|--n- |u--||l||.u- /ﬂles/nosql_surveypdf

ments and the trade-ofls that have to be made in the process. Owr focus lies

on key-value, dociunent and wide-column stores, since these NoSQL categories

NoSQL Decision Tree

Fast Looku ps

RA i Unbounded
AP i CP ACID iAvaabllty Ad- hoc

Access

Complex Queries

HDD-Size ‘ Unbounded

Query Pattern

Analytics
: !
Redis Cassandra HBase RDBMS CouchDB MongoDB Hadoop, Spark
Memcache Riak MongoDB Neo4j MongoDB RethinkDB Parallel DWH
Voldemort CouchBase RavenDB SimpleDB HBase,Accumulo Cassandra, HBase
Aerospike DynamoDB| |MarklLogic ElasticSeach, Solr Riak, MongoDB
<
- e Y - R < R < ———
_ aske (_History J etwor

Example Applications

Functional

Scan Queries

\ .
Range-Sharding

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Techniques

Sharding

Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Replication

Commit/Consensus Protocol
Synchronous

Asynchronous

Primary Copy

Update Anywhere

Storage Management

Logging
Update-in-Place
Caching

In-Memory Storage
Append-Only Storage

Query Processing

Global Secondary Indexing
Local Secondary Indexing
Query Planning

Analytics Framework
Materialized Views

Non-Functional

Data Scalability

Write Scalability

Read Scalability

Elasticity

Consistency

Write Latency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

System Properties
According to the NoSQL Toolbox

» For fine-grained system selection:

Functional Requirements

(7,]
e g
0 =
0 5 =
= @©
o c c
=) L R o
= S = " £
3 . 5 £ E
c'h) < (&) 2 (721
Mongo X X X
Redis X X X
HBase X X X
Riak
Cassandra X X X

MySQL X X X X X

x Filter Query
< Full-Text Search

> Analytics

X X X X

Non-functional Requirements

» For fine-grained system selection:

According to the NoSQL Toolbox

System Properties

Aijiqeing

Anjiqejieny aam

Aujiqejieny peay

indysnoayl a1

Adudjeq peay

Aduajeq a3

Aduajsisuo)

Anse|3

Ajigeess peay

Aijigeeas aum

Ajiqejeas eyeq

X
X

Mongo
Redis
HBase
Riak
Cassandra
MySQL

Techniques

» For fine-grained system selection:

According to the NoSQL Toolbox

System Properties

SM3I/\ pazijeldlen
ydomawelq sanAjeuy
Suluue|d A1anp
Suixapuj |ed07
3uixapul jeqo|9
98e101s Ajup-puaddy
Aowa|-u|

3uiyoe)
de|d-ul-alepdn
8ui1880q

aJaymAuy arepdn
Ado) Asewinng
uoned|day *dulAsy
uoinedl|day *auAg
|02030.1d uolpesuel]
Jisig-paieys

SuiyseH juaisisuo)
Suipaeys dnoan-Ajau3
3uipseys-yseH
Suipieys-a8uey

Mongo
Redis
HBase
Riak
Cassandra
MySQL

g /_QJ
y f K,:J
/K P

Ead g -
NoSQL DBS support applications in achieving horlzontal

scalability and backend performance through differentiated
trade-offs in functionality and consistency!

3. Consider the entire path
from the (mobile) application
through the net
to the data backend!

Challenge: Slow Websites / mobile Apps

Two Bottlenecks: Latency and Processing

High
Latency e
o—B
({;1
SV
Processing Overhead
. .
A o o0 |
EE ‘ 7
-
T

Bagend

www.bagend.com

Network Latency: Impact

Page Load Time (ms)

Page Load Time (ms)

3500 1
3000 1
2500 1
2000 1
1500 1

1000 -

3500 1
3000 1
2500 1
2000 1
1500 1

1000 -

1 Mbps

200 ms

2 Mbps

180 ms

3 Mbps

160 ms

Page Load Time as bandwidth increases

4Mbps 5Mbps 6Mbps 7Mbps 8Mbps 9Mbps 10 Mbps

Page Load Time as latency decreases

140 ms 120 ms 100 ms 80 ms 60 ms 40 ms 20ms

m |. Grigorik, High performance browser networking.
O’Reilly Media, 2013.

Network Latency: Impact

2x Bandwidth

Same Load Time

Q

/2 Latency /2 Load Time

F. Gessert, Low Latency for Cloud Data Management. PhD
m thesis, University of Hamburg, 2018.

Orestes Architecture Backend-as-a-Service Middleware:

Infrastructure Caching, Transactions, Schemas,

Invalidation Detection, ...

e Polyglot Storage
Unified REST AP Standard HTTP Caching yi' 5

T T T T T T T \ _____________ -~ N e e e e —— — — — — — — — — —
InvaliDB TTL Estimator
Dymarmic Wob Anp Streaming Cache Lifetime

Queries Prediction

Expiring Bloom Node.js
Filter User-defined
Stale Data Business Logic

Desktop

Content-Delivery-

f Network
AN \ Y

e o

..-_______________________..__
— e e e e e e . = — — — — =

e, —_— e ———— — — e o

Solution: Global Caching
Fresh Data From Distributed Web Caches

Bagend

www.bagend.com

New Caching Algorithms

Solve Consistency Problem

Baend

www.bagend.com

Consistent Web Caching
The Cache Sketch

purge(obj) _EB]

% E SR Browsel— —
) CDN
== Cache
| == R A
hashA(oid) I\ hashB(oid) hashA(oid);/ '\ hashB(oid)
1 \
1 \ " \
1 \ ! \
i \ Flat(Counting Bloomfilter) | 4 <
OJ1]111]1] = 013111411

BaQend

www.bagend.com

Consistent Web Caching
The Cache Sketch

purge(obj) _EB]

|
VA . Y .
hashA(oid) 7 \\ hashB(oid) hashA(oid) , '\ hashB(oid)
[} \
1 \ " \
1 \ ! \
i \ Flat(Counting Bloomfilter) | 4 <
Oj1]111]1] < 0]3]11]4]1

BaQend

www.bagend.com

nvali

““ABDB

4. Make the backend push-based,
additionally (real-time queries)!

BaQend

www.bagend.com

Challenge: Real-Time Queries

Research Question: ,How can expressive push-based
real-time queries be implemented on top of an existing
pull-based database in a scalable and generic manner?”

BaQend

www.bagend.com

Overview Real-time DBSs

Poll-and-Diff Change Log Tailing Unknown
Write Scalability | v/ x X X
Read Scalability \/ ?
(100k connections)
Composite ‘/

Filters (AND/OR)

(AND In Firestore)

Queries

NSNS NN %

NSNS NN N %

N IR T N N N RN

Sorted Queries X
(single attribute)
Limit X v
Offset X
(value-based)
Self-Maintaining x x

Event Stream
Queries

v

Overview Stream-Processors

Strictest
Guarantee

Achievable
Latency

State
Management

Processing
Model

Backpressure

Ordering

Elasticity

Storm

at-least-
once

<100 ms

(small state)

one-at-a-
time

v

x
v

Trident

exactly-
once

<100 ms

(small state)

micro-batch

v

between
batches

v

Samza

at-least-
once

<100 ms

v

one-at-a-
time

no
(buffering)

within
partitions

X

Spark
Streaming

exactly-once

<1 second
v

micro-batch

v

between
batches

v

Flink
(streaming)

exactly-once

<100 ms

v

one-at-a-
time

within
partitions

X

Overview Stream-Processors

cies ¢
ond\ ‘eﬁ\ﬂe
-8 \\a\l\“ L)
\(\O S“_ Y m\(\% (
KL Wit Srredt | nighne
|- yand F\\gu%“‘”‘s cV- S’pa‘\((e\a"\\'e\\l
agrof M Lok i\ “\e\a’t KUt @ at @
celatV e\ggm pe‘;eg ghpu®>’
X (
\O\Ne XS \(\\%\ﬂ
upPOt

From https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at

InvaliDB: A Scalable Real-Time Database Design
System Model & Overview

Realtime-as-a-Service For Real-Time & OLTP
Heterogeneous Tenants: End User Workloads Decoupled:
3. GesoyrSapaalingtibigh . » isolated failure domains
matching performance » separated resource

2. Vgréireingestiincy
3. dﬂgl’i"EeB?B%é%‘%’ion

provisioning overhead
per application server

T E oA = Q
nvali - ' I y | - r %E N }
<.L

InvaliDB Cluster Event Layer Application Server Pull-Based Database BaQend
V

www.bagend.com

requirements &
independent scaling

InvaliDB: A Scalable Real-Time Database Design
Two-Dimensional Workload Partitioning

@ Pluggable Query Engine:
» legacy-compatibility

» multi-tenancy across
databases

Read & Write Scalability:

» many concurrent users

» high write throughput

» no single-server bottleneck read scalability

»

query query
partition 2 partition 3 q p

query
partition 1

write \‘
! :partitionl‘

\
(D
.

partiti

write
partition 3/

write scalability

&
<

' BaQend
W. Wingerath, Scalable Push-based Real-time Queries on top of Pull- v

m based Databases. PhD thesis, University of Hamburg, 2019.

www.bagend.com

BaQend realises 1. to 4. as commercially available service

www.bagend.com

Platform
o .
.o
.
— Platform for building —Turns Existing Sites
(Progressive) Web Apps into PWAs

—15x Performance Edge —50-300% Faster Loads
— Faster Development — Offline Mode

Try It Out!

Speed Kit
Bagend Caching for Legacy Websites

Website with Speed Kit Bagend
Snippet Service Worker Service

LR}
.....

l Requests

3rd Party g Rﬁ Existing
o — . — .
BB E Services "I~ Backend

BaQend

www.bagend.com

Speed Kit

Measure Your Page Speed!

BaQend

E] www.bagend.com

https://test.speed-kit.com/

Speed Kit
Built for Market Leaders

For a large e-commerce company like Baur, supreme
performance and a snappy user experience are vital. Speed Kit
helps Baur.de stay ahead of the competition by accelerating
page loads through cutting-edge technology. Finally, there is a
German player in the web performance market that does not
only pioneer a superior approach, but also shines through
competent onboarding and immediate support.

Revenue: 1 000 000 000 € for 2018 a
Traffic: 70 000 000 PlIs per month

A member of the otto group

BaQend

www.bagend.com

fllfl!f {11 STV T

W'“"ﬂl\ mnlmntmmmnw» JW 10001101001 R
2111

5. Provide Polyglot Persistence!

RDBMS Key-Value Store Document Store
Financial Data Session Data Product Catalog
Consistency, ACID Write-Availability, Scalability, Query
Transactions Fast Reads Response Time
— — —
~—~ N N

Application ﬂ'

N

a N— N

— — ~—
Wide-Column Store Search Engine Graph Store
Clickstream Data Full-Text Index Social Graph
Scalability, Batch- Text Search, Graph Queries

Analytics Facetting

Challenge: ,automated’ mediation

l

-
: Ei E 1
I iis
i i 5 0

T
|

1%
|

I
|

Nested
Application Data ¢

Billing Data

Session data Files \

) 4

éngg S5, Google Cloud
== Storage

cassar. Recommen-

.-\ dation Engine

?® Neoyj . . i
.. the gra}ﬂ;]database e red|s el(]SfICSGG rCh ‘ Amazon Elastic

MapReduce

Friend DB2
network

mongoDB
Cached data

& metrics

)
\
\

Search Index

Challenge: ,automated’ mediation

[Dynamic Web App

Hastrg bacirg

| 5

o

Can we automate the — S mapping problem?

Research Question:

data database

Vision
Schemas can be annotated with requirements

Write Throughput > 10,000 RPS
Read Availability > 99.9999%
Scans = true

Full-Text-Search = true
Monotonic Read = true

Schema
DBs e_/
Tables ‘_—//

Fields

Vision
The Polyglot Persistence Mediator chooses the database

Application |

Data and
Operations
) Annotated
Database 4 e Polyglot Persistence " ° - » Schema
Metrics Te., N Mediator &
@ N N Latency < 30ms
= N =
dbl dbz db3

Annotation Type Annotated at
Read Availability Continuous
Write Availability Continuous
Read Latency Continuous
Write Latency Continuous
Write Throughput Continuous

Data Vol. Scalability
Write Scalability
Read Scalabilty
Elasticity

Durability
Replicated
Linearizability
Read-your-Writes
Causal Consistency
Writes follow reads
Monotonic Read
Monotonic Write
Scans

Sorting

Range Queries
Point Lookups
ACID Transactions
Conditional Updates
Joins

Analytics Integration
Fulltext Search
Atomic Updates

Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Non-Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional
Functional

Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class/DB
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field/Class
Field

Field

Field

Field

Class/DB

Field

Class/DB
Field/Class/DB
Field
Field/Class

Step | - Requirements
Expregcino the annliratinn’ce npeds

/ Tenant

1. Define
schema

2. Annotate

'Database!

/ %,

Table I}
| ™

7

Field Field Field Field
[| annotated

Inherits continuous
annotations

Annotations
Continuous non-functional
e.g. write latency < 15ms
Binary functional
e.g. Atomic updates
e Binary non-functional

e.g. Read-your-writes

(1) Requirements

Step Il - Resolution
Finding the best database

e The Provider resolves the
requirements

e RANK: scores available database
systems

e Routing Model: defines the
optimal mapping from schema
elements to databases

/ Provider \

. Either:
Capabilities for Refuse or

available DBs ¢——— provision new DB

ll. Find optimal 2a. IfunsatisfiableT

RANK(schema_root, DBs)
through recursive descent
using annotated schema and metrics

2b. Generates
routing model

Routing Model

Route schema_element - db

e transform db-independent to db-
specific operations

(2) Resolution

Step Il - Mediation

Routing data and operations
e The PPM routes data

e Operation Rewriting:
translates from abstract to
database-specific operations

 Runtime Metrics: Latency,
availability, etc. are reported
to the resolver

* Primary Database Option: All
data periodically gets
materialized to designated
database

4 Application)

R
—

1. CRUD, queries,
transactions, etc.
Polyglot Persistence Mediator
e Uses Routing Model
Triggers periodic
materialization

TN

metrics

(3) Mediation

Evaluation: News Article
Prototype of Polyglot Persistence Mediator in ORESTES

Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article

1. * NoSQL Databases: A Survey and Decision Guidance (medium.com)
297 points by DivineTraube 9 days ago | past | web | 73 comments | in pocket speichern

read by 53,222

Counter

£

Evaluation: News Article

Prototype built on ORESTES
Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

‘ mongoDB

Counter updates kill performance

Evaluation: News Article

Prototype built on ORESTES
Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Mediator

é redis

No powerful queries

Evaluation: News Article

Prototype built on ORESTES
Scenario: news articles with impression counts
Objectives: low-latency top-k queries, high-
throughput counts, article-queries

Article Imp. 2000
w 1500
ID < Imp. E
Title ID > 1000
5 \
=
Document Sorted Set 0 A% G
7500 9500 11500 13500 15500 17500
. mongo DB é redis Actual throughput in OPS
=@ restes with PPM == Orestes without PPM Varnish

Found Resolution

Polyglot Persistence: Challenges

‘ Database Selection: Actively minimize SLA violations

Utility Functions/SLAs: Capture trade-offs comprehensively

Meta-DBaaS: Mediate over DBaaS-Systems, unify SLAs

Live Migration: adapt to changing requirements

Workload Management: Adaptive Runtime Scheduling

—y) Transaction Management: Alignment of ACID with NoSQL and scalability

-._\

6 Multi-Tenancy/Privacy: Dream: full homomorphic encryption

CLOSING TIME

Summary

1. Aim at fully managed Backend (Baa$)
2. Exploit modern (NoSQL) DB Te

9
S
@Q

e (mobile)
et to the Data Backend!

3. Consider the entire
Application thro

4. Make t

S

C

D (real-
M

ush-dased, additionally
eries)!

5. Provide Polyglot Persistence!

6. Other Problems? ... certainly!

	
	Cloud Data Management
	Cloud-Database Models
	Cloud-Deployed Database� Database-image provisioned in IaaS/PaaS-cloud
	Managed RDBMS/DWH/NoSQL DB� Cloud-hosted database
	Proprietary Cloud Database� Designed for and deployed in vendor-specific cloud environment
	Analytics-as-a-Service� Analytic frameworks and machine learning with service APIs
	Backend-as-a-Service� DBaaS with embedded custom and predefined application logic
	Backend-as-a-Service� DBaaS with embedded custom and predefined application logic
	Backend-as-a-Service� DBaaS with embedded custom and predefined application logic
	Service Level Agreements (SLAs)�Specification of Application/Tenant Requirements
	Service Level Agreements�Expressing application requirements
	Service Level Objectives�Making SLOs measurable through utilities
	Resource & Capacity Planning�From a DBaaS provider‘s perspective
	SLAs in the wild
	Managed NoSQL Services�
	Proprietary Database Services�
	Foliennummer 18
	Foliennummer 19
	NoSQL Decision Tree
	Foliennummer 21
	System Properties�According to the NoSQL Toolbox
	System Properties�According to the NoSQL Toolbox
	System Properties�According to the NoSQL Toolbox
	Foliennummer 25
	Challenge: Slow Websites / mobile Apps�Two Bottlenecks: Latency and Processing
	Network Latency: Impact
	Network Latency: Impact
	Orestes Architecture�Infrastructure
	Solution: Global Caching�Fresh Data From Distributed Web Caches
	New Caching Algorithms�Solve Consistency Problem
	Consistent Web Caching�The Cache Sketch
	Consistent Web Caching�The Cache Sketch
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Foliennummer 45
	Foliennummer 46
	Challenge: ‚automated‘ mediation
	Challenge: ‚automated‘ mediation
	Vision�Schemas can be annotated with requirements
	Vision�The Polyglot Persistence Mediator chooses the database
	Step I - Requirements�Expressing the application‘s needs
	Step II - Resolution�Finding the best database
	Step III - Mediation�Routing data and operations
	Evaluation: News Article�Prototype of Polyglot Persistence Mediator in Orestes
	Evaluation: News Article�Prototype built on Orestes
	Evaluation: News Article�Prototype built on Orestes
	Evaluation: News Article�Prototype built on Orestes
	Polyglot Persistence: Challenges�
	Foliennummer 59
	Foliennummer 60

