Cloud Polystores Overview and Open Research Questions

Daniel Glake, Felix Kiehn, Mareike Schmidt

Use Case I: E-Commerce

- Example: Otto Group, Amazon, ...
- What do they need:
 - Availability
 - Consistency only for subset of entities
 - E.g. full consistency for completed orders
 - E.g. partial consistency for ratings and stock
 - High read throughput when querying for products
 - Complex Analytics (e.g. market basket analysis, ...)

Use Case II: Simulation and decision support

- Example: Large scale traffic simulation, Game Engines, ...
- What do they need:
 - High Write throughput (persisting results)
 - Realtime Data Visualization
 - Analytics with aggregated results
 - Support for standardized spatial formats

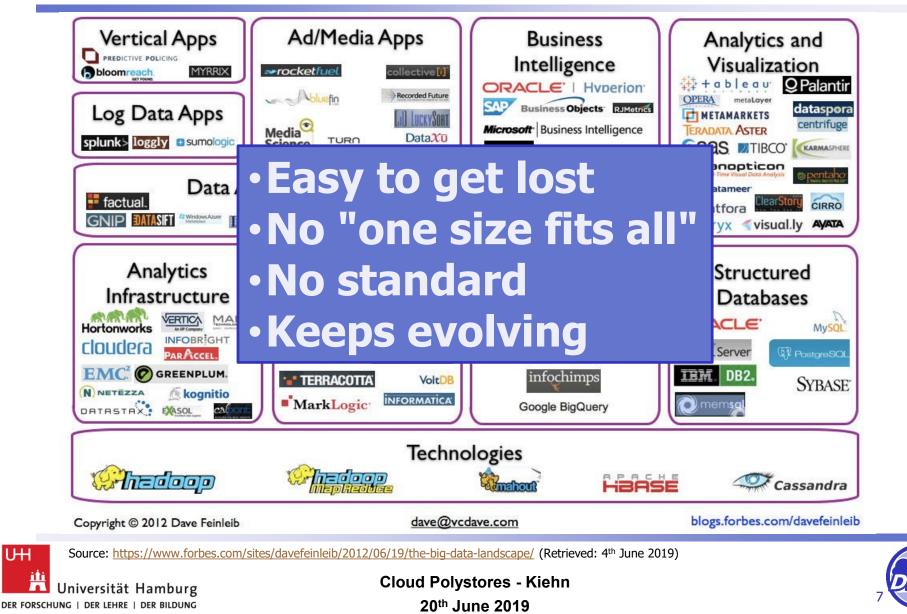
Use Case III: Medical Data Management

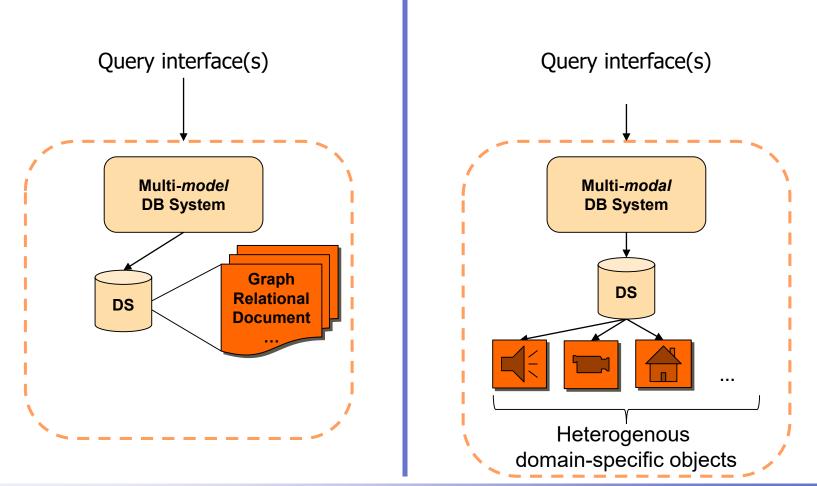
- Example: Hospital, Care facility, research centers, ...
- What do they need:
 - High demand for consistency and data quality
 - Support for multimedia formats
 - Need for full-text search in previous diagnostics
 - Privacy and restricted access to data
 - Availability

Concluded Requirements I

- Multiple kinds of queries
 - Point and range queries
 - Filtering data
 - Full text search
 - •
- Special complex analytic queries
 - Reading and writing spatiotemporal data
 - Making time series analysis
 - Graph analysis

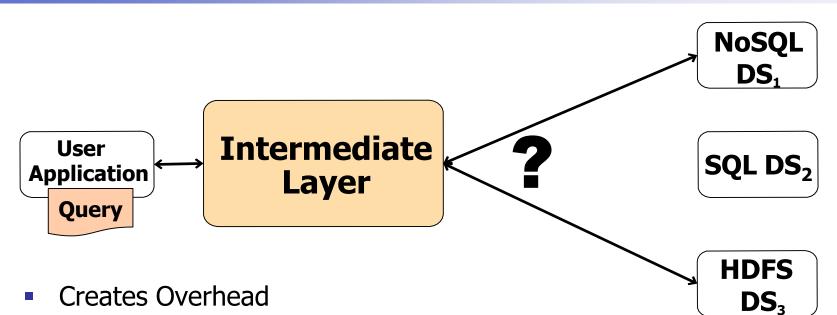
Concluded Requirements II


- Integrity constraints
- Ability to handle multiple data models
- Different degrees of consistency
- Different demands for availability of certain entities or subsets
- Different throughputs
 - High/Low reads
 - High/Low writes

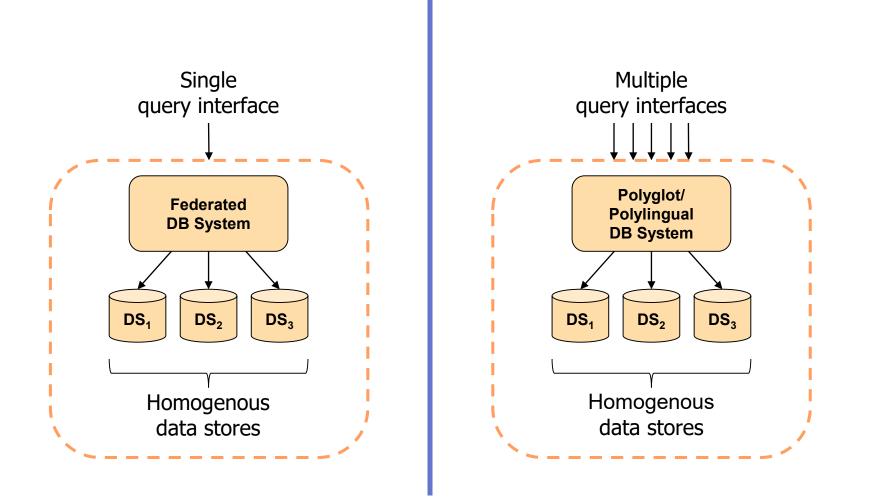


Cloud & Big Data Landscape

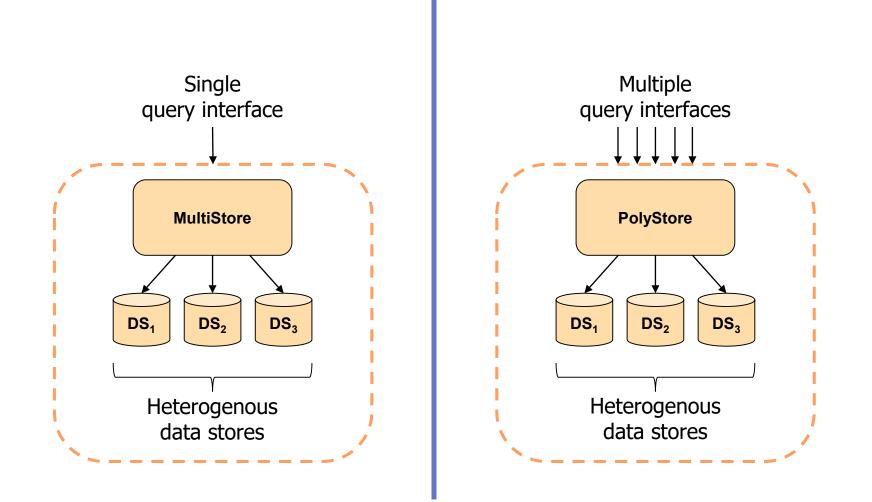
UН

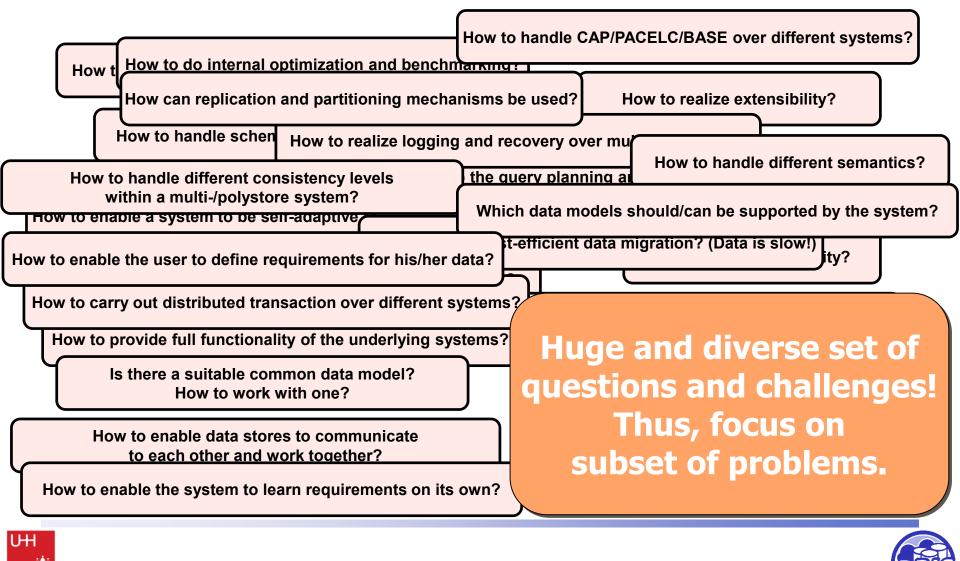

Multi-model vs. Multi-modal

How to solve this with multiple DS?



- Querying different databases
- Managing intermediate results
- Delivering (e.g. sorting) the final results
- Can performance be further enhanced despite the additional overhead?


Federated system vs. Polyglot/-lingual system


MultiStore vs. PolyStore

Problems and Challenges

Explored Systems

	Design objective	System type	DI architecture	
SQL++/ Forward	Unified relational and JSON- models	Query language and processor	GAV	
CloudMdsQL	Query relational and NoSQL stores with Python extension	Query interface	Hybrid	
Estocada	Extensible model integration	Multistore (Delegation system)	LAV	
Polybase	Querying Hadoop Cluster over Microsoft-SQL RDBMS	Multistore (HDFS bridge)	LAV	
BigDAWG	Unification of relational, NoSQL and NewSQL models	Polystore	Hybrid	
Polypheny-DB	Self-Adapting Polystore	Polystore		
(Only) a				

Vision Paper Universität Hamburg Der Forschung | Der Lehre | Der Bildung 13 **DBIS**

	SQL++/ Forward	Cloud MdsQL	Estocada Polybase BigDAWG		BigDAWG	Polypheny- DB	
Schema modeling (mult. DM)	×	×	×	×	(🗸)	?	
Query language	Single	Single	Single (QBT ^{xM})	Single (T-SQL)	Multi (SQL, AFL, D4M with SQL)	Multi (SQL, Cypher, CRUD)	
Write operations	×	×	×	×	×	✓	
Query optimization	Cost- based	Cost- based	Cost- based	Cost- based	Heuristic	Cost-based	
Query execution	Query splitting	Bind join	View- based rewriting	Query splitting	Query splitting + Data shipping	Query splitting + data shipping	
Semantic	Manual	Hybrid	Fixed	Fixed	Fixed	?	

Cloud Polystores - Kiehn

20th June 2019

	SQL++/ Forward	Cloud MdsQL	Estocada	Polybase	BigDAWG	Polypheny- DB
Monitoring	×	×	×	×	(✔) (Bench- marking)	×
Migration	×	×	× (virtual)	Offline, Ad-hoc	Ad-hoc	Online, Offline
Adaptable Topology	×	×	×	X (Hadoop)	×	✓
Automatic Replication	×	×	×	(🗸)	×	~
Automatic Partitioning	×	×	×	~	×	~
Logging + Recovery	×	×	×	×	×	×

	SQL++/ Forward	Cloud MdsQL	Estocada	Polybase	BigDAWG	Poly pheny DB
Data Models	NoSQL*, NewSQL, Relational	Relational, JSON- based, Array	JSON, Key- Value, Relational, XML	Relational	Array, Relational, Text	?
Common Data Model	JSON- based	JSON- based	Relational	Relational	×	Assoc. Arrays
Annotations	×	×	×	×	×	~

* except graph & key-value

Summary

- Wide variety of use cases with diverse persistency requirements
- No "one fits all" solution
- Multiple ways of implementing intermediate layer
- A handful of solutions available (5+1 shown)
- Solutions are very rudimentary and tailored for very specific use cases
- We see a need for intelligent and feature-rich Multi-/Polystores

Conclusions for future Multi-/Polystores

- Able to adapt its data store topology
 - Provide "optimal" ecosystem for current requirements
- Routing data to "optimal" data store (Mediation)
 - based on user requirement, user behavior and queries
- Live Migration to adapt to changing topology + requirements
- Using flexible nature of the cloud to orchestrate adaptive topology
 Our research focus

Thank you for your attention.

- *Tan, R.; Chirkova, R.; Gadepally, V.; Mattson, T. G. V.:* Enabling query processing across heterogeneous data models: A survey. In 2017 IEEE International Conference on Big Data (Big Data), 3211–3220 (2017)
- *Ong, K. W.; Papakonstantinou, Y.; Vernoux, R.:* The SQL++ query language: Configurable, unifying and semi-structured (2014)
- Kolev, B.; Bondiombouy, C.; Valduriez, P.; Jiménez-Peris, R.; Pau, R.; Pereira, J.: The CloudMdsQL Multistore System. In ACM SIGMOD, San Francisco, United States (2016)
- Kolev, B.; Valduriez, P.; Bondiombouy, C.; Jiménez-Peris, R.; Pau, R.; Pereira, J.: CloudMdsQL: Querying Heterogeneous Cloud Data Stores with a Common Language. Distributed and Parallel Databases, 34(4): 463–503 (2016)
- Alotaibi, R.; Bursztyn, D.; Deutsch, A.; Manolescu, I.; Zampetakis, S.: Towards Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue. In SIGMOD 2019 - ACM SIGMOD International Conference on Management of Data, Amsterdam, Netherlands (2019)
- DeWitt, D. J.; Halverson, A.; Nehme, R.; Shankar, S.; Aguilar-Saborit, J.; Avanes, A.; Flasza, M.; Gramling J.: Split query processing in polybase. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD '13, pages 1255–1266, New York, NY, USA, ACM (2013)
- Gadepally, V.; O'Brien, K.; Dziedzic, A.; Elmore, A.; Kepner, J.; Madden, S.; Mattson, T.; Rogers, J.; She, Z.; Stonebraker, M.: Bigdawg version 0.1. In 2017 IEEE High Performance Extreme Computing Conference (HPEC), 1– 7 (2017)
- Yu, X.; Gadepally, V.; Zdonik, S.; Kraska, T.; Stonebraker, M.: Fastdawg: Improving data migration in the bigdawg poly-store system. In Heterogeneous Data Management, Polystores, and Analytics for Healthcare, 3–15, Cham (2019)
- Vogt, M.; Stiemer, A.; Schuldt, H.: Polypheny-DB: Towards a distributed and self-adaptive polystore. In 2018 IEEE International Conference on Big Data (Big Data), 3364–3373 (2018)

